Time-Varying Flow Analysis and Visualization for Climate Science

Scalable Computation of Field Lines and Surfaces
The starting point of all flow analysis is particle advection.

Streamlines and Pathlines
Particle trajectories are connected into curves.

- **Strong Scaling Performance**
 - Strong scaling performance time shows 3x improvement over previously published results.
 - Teleconnections can be derived from correlations in source and destination of field lines.

Stream Surfaces
Field lines are connected into surfaces.

- Stream surface computations can cause severe load imbalance. Our work-stealing algorithm had < 5% imbalance at scale.

LaRangian Coherent Structures
The divergence in pathlines can segment flow structures.

Scalable Computation of Deterministic FTLE
The Finite-Time Lyapunov Exponent (FTLE) is computed from pathlines seeded at each time step.

Information Theoretic Feature Detection
Data distribution statistics can also classify features.

Time Activity Curves
Temporal summarization helps scientists understand underlying time series in climate models.

Time Histograms
Time histograms computed at block levels can serve as visual signatures of a feature’s behavior over space and time.

Tom Peterka (ANL), Hanqi Guo (ANL), Wenbin He (OSU), Han-Wei Shen (OSU), Boonthanome Nouanesengsy (OSU), Kewei Lu (OSU), Scott Collis (ANL), Jonathan Helmus (ANL), Teng-Yok Lee (OSU), Wesley Kendall (UTK), Jian Huang (UTK), Abon Chaudhuri (OSU)