
Tom Peterka	

tpeterka@mcs.anl.gov	

SDMAV Kickoff PI Meeting	

Jan. 13-15, 2015	

High-Performance Decoupling of Tightly Coupled
Data Flows	

Halo particles,
Voronoi

tessellation, and
2D density
estimation	

Tom Peterka 	

Argonne National Laboratory	

Jay Lofstead 	

Sandia National Laboratory	

Franck Cappello 	

Argonne National Laboratory	

Executive Summary���

To achieve high performance, programmers tightly couple the data analysis with
data generation -- making the analysis interdependent and closely coordinated
with the computation, but limiting modularity and reuse. To address this issue,

this project will explore a hybrid approach that combines both types of
coupling---tight and loose---in effect decoupling tightly coupled applications. ���

Key Ideas	

•  Inject a separate dataflow between producer and consumer that enables:	

•  Aggregation, deep data permutations	

•  Automatic buffering	

•  Data redistribution and pipelining	

•  Resilience to faults	

•  Implement generic coupling between producers to consumers in a lightweight library
that other tools can use	

•  Target extreme-scale architectures, workflows, and applications	

2	

Analysis Workflow	

Generic analysis data flow graph, primarily for simulation data, single or ensemble sources
and multiple users. Results are written to persistent storage at the cyan line that partitions
the graph into operations done at run time (in situ) and post hoc. 	

Analysis = Any data transformation, or a network or transformations. Can be visual, analytical,
statistical, or data management. Anything done to original data beyond its original generation.	

Custom Coupling
of Software	

4	

•  Today, we write analysis tasks
as libraries with a different driver
for each combination of analysis
tasks. 	

•  Writing custom one-off main
programs for each combination
of producer and consumer is not
a scalable approach. 	

•  Neither is tuning the producer
(number of nodes, output size,
etc.) to the consumer and vice
versa. 	

•  Producers and consumers
ought to be written
independently, and generic
coupling software should manage
their connection.	

����

�������	

���
�

���������������������

����� ���

���

�����

��������������������

���

����

������	
����

���!�"#���������������

���

���

�������

�������

$�%�������

A More Generic Approach	

User Libraries and Tools	

System Services	

Intracode	

(distr. data parallelism)	

Custom libraries, standard visualization/analysis packages, scripting and workflow	

Storage systems, resource managers, schedulers	

Intra- and intercode data
movement building blocks,
data as a service data layer 	

Intercode	

(coupling dataflows)	

Data Movement	

Common Libraries	

Statistical, math, vis, ML, graph analytics	

Applications	

Mission-driven simulations, experiments, observations, ensembles, parameter sweeps	

Optimized System Libraries	

Run time, programming model, I/O	

Decaf: Decoupling Tightly Coupled Data Flows	

6	

Decoupling by
converting a
single link into a
dataflow enables
new features
such as fault
tolerance and
improved
performance. 	

We are building a generic coupling library out of 4 primitives
that can be used for many purposes.	

Decaf Modes	

7	

Major Decaf modes include aggregation, pipelining, and automatic buffering while
potentially permuting data in an N:M and direct coupling of parallel codes.	

Dataflow using Abstract Flexible Communicators	

8	

Three abstract
communicators—producer,
dataflow, and consumer—
are used to couple
producer to consumer. 	

The dataflow can be a
simple noop or a complete
parallel program performing
complex data
transformations.	

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�	
��
�	 ������
� �
�����	

��
	��
	��	
�����
�
�����

���������	��

��������

����	���

Resilience to Faults	

9	

Another research topic is modeling the dataflow and
optimally adding replication and roll back mechanisms
to recover from hard (fail stop) errors and soft
errors detected above.	

One of our resilience efforts attempts to detect
silent data corruption by validating analysis tasks
with an auxiliary method, usually less expensive
and less accurate, but hopefully good enough to
detect soft errors.	

Related Work	

10	

The above table summarizes the state of the art by describing various tools
along different dimensions with respect to the capability needed for Decaf. A
dark check mark indicates that the tool has all the capability that we need in
Decaf. A light check mark indicates less than complete coverage compared
with our projected need.	

Flexible
Communica
tors

M:N
redistribut
ion

Generic
Datatypes

Complex
Permutat
ions

Pipelining Automatic
Buffering

Fault
Tolerance

EV Path ✔ ✔ ✔ ✔ ✔
Damaris ✔ ✔ ✔
Flow VR ✔ ✔ ✔
Glean ✔ ✔ ✔ ✔ ✔
Catalyst ✔ ✔ ✔
Decaf ✔ ✔ ✔ ✔ ✔ ✔ ✔

Wrapping Up���

Decaf is a new project to couple analysis tasks together with simulations and
with each other. ���

Knowns	

•  We already know how to write individual data analysis tasks with scalable
intracode data movement	

•  We are designing an intercode data movement layer featuring:	

•  A separate scalable dataflow between producer and consumer	

•  Automatic buffering	

•  Data redistribution and pipelining	

•  Resilience to faults	

11	

Challenges	

•  Synergy with existing coupling tools and transport layers	

•  High-level interface: workflow representation and execution	

•  Data model representation	

Tom Peterka	

tpeterka@mcs.anl.gov	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

National Energy Research Scientific Computing Center (NERSC)	

Funding	

US DOE SDMAV2 Exascale Research	

People	

Jay Lofstead, Patrick Widener, Franck Cappello, Florin Isaila, Lokman Rahmani,

Hadrien Croubois, Guillaume Aupy	

“The purpose of computing is insight,
not numbers.”	

	

–Richard Hamming, 1962

SDMAV Kickoff PI Meeting	

Jan. 13-15, 2015	

