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Streamlines and pathlines Stream surfaces 

FTLE Information entropy 

Morse-Smale 
complex 

Voronoi 
Tessellation 

•  Block = unit of decomposition	


•  Block size, shape can be configured	



•  From coarse to fine	



•  Regular, adaptive, KD-tree	


•  Block placement is flexible, dynamic	



•  Blocks per task	



•  Tasks per block	



• Memory / storage hierarchy	


• Data is first-class citizen	



•  Separate operations per block	



•  Thread safety	



Parallel data analysis consists of decomposing 
a problem into blocks, operating on them, 
and communicating between them.	


	



Abstractions Matter: Blocks, not Tasks	





Particle Tracing Streamlines and Pathlines	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	



Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields.  IPDPS ’11. 



Lagrangian Coherent 
Structures from 

FTLE	
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Left: Particle tracing of 288 million particles over 36 time steps in a 3600x2400x40 eddy resolving 
dataset. Right: 131 million particles over 48 time steps in a 500x500x100 simulation of Hurricane 
Isabel. Time includes I/O.	



Nouanesengsy et al., Parallel Particle Advection and FTLE Computation for Time-Varying Flow Fields, SC12, 

Courtesy Boonthanome Nouanesengsy 
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Left: 64 surfaces each seeded with 512 particles are advected in a 504x504x2048 simulation of a 
solar flare. Right: 64 surfaces each with 2K seeds in a 2K x 2K x 2K Nek5000 thermal hydraulics 
simulation. Time excludes I/O.	



Stream Surfaces	



Lu et al., Scalable Computation of Stream Surfaces on Large Scale Vector Fields, submitted to SC14. 

Courtesy Kewei Lu 



Information Entropy	
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Computation of information entropy in 126x126x512 solar plume dataset shows 
59% strong scaling efficiency. Time excludes I/O.	



Chaudhuri et al., Scalable Computation of Distributions from Large Scale Data Sets, LDAV ’12. 

Courtesy Abon Chaudhuri 



Topological Analysis	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	



Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS ’12. 

Courtesy Attila Gyulassy 



Computational Geometry	
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Strong and weak scaling for up to 
20483 synthetic particles and up to 
128K processes (excluding I/O) 
shows up to 90% strong scaling 
and up to 98% weak scaling.	



With Dmitriy Morozov and Carolyn Phillips 



 Above: Strong scaling of 
estimating the density of 
512^3 synthetic particles 
onto grids of various 
sizes.	



Left: comparison of 
tessellation-based and 
CIC density	
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Tessellation-based density estimation is 
parameter free, shape free, and automatically 
adaptive	



Tessellation-Based Density Estimation	





Parallel Reconstruction 
Performance	
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A gold Siemens star test pattern, with 
30 nm smallest feature size, was raster 
scanned through a 26×26 grid using a 
step size of 40nm and an exposure 
time of 0.6s per scan point, using a 5.2 
keV X-ray beam. The total scanning 
time was about 20 minutes.	



[Courtesy of Youssef Nashed, ANL]	





Image Segmentation in Porous Media	
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LBL (Dmitriy Morozov and Patrick O’Neil) developed tools for segmentation 
and connectivity analysis of granular and porous media using diy2.	


	



Left: 3D image of a granular material (flexible sandstone) acquired at 
ALS by Michael Manga and Dula Parkinson. (Data: 2560 × 2560 × 
1276). Right: Watershed segmentation of the material identifies 
individual grains (run on Edison @ NERSC) [courtesy Morozov, 
O’Neil (LBL)].	



Courtesy Dmitriy Morozov and Patrick O’Neil 
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