Parallelizing Data Analysis

Tom Peterka

Big Data Get Together
10/26/12
Obvious, but worth reminding

• Big science begets big data, and
 – Big data analysis needs big science resources

• Data analysis is data intensive.
 – Data intensity = data movement.

• Big data movement is hard fun.
 – Embarrassingly parallel and MapReduce are limited.

• Most analysis algorithms are not up to the challenge
 – Either serial, or
 – Communication, I/O are scalability killers
There is hope.
Parallel Time-Varying Flow Analysis

Approach

- In core / out of core processing of time steps
- Simple load balancing (multiblock assignment, early particle termination)
- Adjustable synchronization communication

Pathline tracing of 32 time-steps of combustion in the presence of a cross-flow in S3D (in collaboration with Jackie Chen, Hongfeng Yu, Janine Bennett, Ray Grout)

Parallelization within epochs and serialization across epochs adds greater flexibility.

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS '11
Parallel Particle Tracing

Particle tracing of ¼ million particles in Nek5000 2048³ thermal hydraulics dataset results in strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms (In collaboration with Paul Fischer and Aleks Obabko)
Parallel Topological Analysis

Collaboration with SCI Institute, University of Utah

- Transform discrete scalar field into Morse-Smale complex
- Nodes are minima, maxima, saddle points of scalar values
- Arcs represent constant-sign gradient flow
- Used to quickly see topological structure

Example of computing discrete gradient and Morse-Smale Complex

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS '12

Two levels of simplification of the Morse-Smale complex for jet mixture fraction.
Parallel Morse-Smale Complex

Computation of Morse-Smale complex in 1152^3 Rayleigh-Taylor instability data set results in 35% end-to-end strong scaling efficiency, including I/O.
Parallel Voronoi Tessellation

Deriving a dense mesh representation from a sparse N-body particle simulation allows scientists to conduct novel analyses not possible with the original data, because particle density is now a continuous function that can be computed everywhere in the field. The Voronoi tessellation is ideal for cosmological data because it self-adapts to widely varying particle distributions.

Applying threshold filtering on cell volume and forming connected components of remaining Voronoi cells locates cosmological voids.

Approach

- Compute parallel Voronoi tessellation in situ
- Compute connected components of threshold-filtered Voronoi cells to identify cosmological voids
- Time-varying tessellations help scientists understand feature evolution
Parallel Information Entropy

Computation of information entropy in 126x126x512 solar plume dataset shows 59% strong scaling efficiency.
Black Box Parallelism
Fortunately, a variety of different parallel analyses have common data needs.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Application</th>
<th>Application Data Model</th>
<th>Analysis Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Tracing</td>
<td>CFD</td>
<td>Unstructured Mesh</td>
<td>Numerical Integration</td>
</tr>
<tr>
<td>Information Entropy</td>
<td>Astrophysics</td>
<td>AMR</td>
<td>Convolution</td>
</tr>
<tr>
<td>Morse-Smale Complex</td>
<td>Combustion</td>
<td>Structured Grid</td>
<td>Graph Analysis</td>
</tr>
<tr>
<td>Computational Geometry</td>
<td>Cosmology</td>
<td>Particles</td>
<td>Voronoi Tessellations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest neighbor</td>
<td>File I/O, Domain decomposition, process assignment, utilities</td>
</tr>
<tr>
<td>Global reduction, nearest neighbor</td>
<td></td>
</tr>
<tr>
<td>Global reduction</td>
<td></td>
</tr>
<tr>
<td>Nearest neighbor</td>
<td></td>
</tr>
</tbody>
</table>

You do this yourself with the help of serial libraries such as OSUFlow, Qhull, VTK (don’t have to start from scratch)

DIY does this for you
Draw a line between user space and data space.

- Let users do what they do best
 ie, custom serial analysis
- Let DIY do what it does best
 ie, data parallelization
DIY is that common data library.

Main Ideas and Objectives
- Large-scale data-parallel analysis (visual and numerical)
- For scientists, visualization researchers, tool builders
- In situ, coprocessing, postprocessing
- MPI + threads hybrid parallelism
- Scalable data movement algorithms
- Runs on Unix-like platforms, from laptop to supercomputer (including all IBM and Cray HPC leadership machines)

Features
- Parallel I/O to/from storage
- Domain decomposition
- Network communication
- Written in C++ w/ C bindings, called from Fortran, C, C++
- Autoconf build system
- Lightweight: libdiy.a 800KB
- Maintainable: ~15K lines of code

Benefits
- Researchers can focus on their own work, not on parallel infrastructure
- Analysis applications can be custom
- Reuse core components and algorithms for performance and productivity
Usage
Examples

• Block I/O
 – Reading data, writing analysis results
• Static
 – Merge-based reduction
 – Swap-based reduction
 – Neighborhood exchange
• Time-varying
 – Neighborhood exchange
• Spare thread
 – Simulation and analysis overlap
• MOAB
 – Unstructured mesh data model
• VTK
 – Integrating DIY communication with VTK filters
• R
 – Integrating DIY communication with R stats algorithms
// initialize
int dim = 3; // number of dimensions in the problem
int tot_blocks = 8; // total number of blocks
int data_size[3] = {10, 10, 10}; // data size
MPI_Init(&argc, &argv); // init MPI before DIY
DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks, data_size, MPI_COMM_WORLD);

// decompose domain
int share_face = 0; // whether adjoining blocks share the same face
int ghost = 0; // additional layers of ghost cells
int ghost_dir = 0; // ghost cells apply to all or some sides of a block
int given[3] = {0, 0, 0}; // constraints on blocking (none)
DIY_Decompose(share_face, ghost, ghost_dir, given);

// read data
for (int i = 0; i < nblocks; i++) {
 DIY_Block_starts_sizes(i, min, size);
 DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));
}
DIY_Read_blocks_all();
Example API Continued

// your own local analysis

// merge results, in this example
// could be any combination / repetition of the three communication patterns
int rounds = 2; // two rounds of merging
int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge
int nb_merged; // number of output merged blocks
DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values, &MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);

// write results
DIY_Write_open_all(outfile);
DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);
DIY_Write_close_all();

// terminate
DIY_Finalize(); // finalize DIY before MPI
MPI_Finalize();
Summary
Benefits

• Productivity
 – Express complex algorithms
 • Multiple blocks per process
 • Neighbor inclusion
 • Complete / partial reductions
 • Neighborhood communication pattern
 – Simplify existing tasks
 • Custom data type creation
 • Compression

• Performance
 – Published scalability
 – Configurable algorithms
To Do: Research Directions

- Advanced decomposition
 - Block groups
- More / better low-level communication algorithms
 - Less synchronous, more overlap with computation
 - Point to point between blocks
- High-level communication operations
 - Ghost cell exchange
 - Kernel convolution (stencil)
- Load balancing and Resiliency
 - Block overloading
 - Dynamic reassignment
- Keeping up with new developments
 - Programming models
 - MPI + X, MPI-3
 - Architectures
 - Mira, Titan
Resources

• **Software**

• **Publications**
 – Peterka et al., Scalable Parallel Building Blocks for Custom Data Analysis, LDAV'11.
 – Peterka et al., T., Versatile Communication Algorithms for Data Analysis, IMUDI'12.
 – Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS'12.

• **More info**
 – tpeterka@mcs.anl.gov