
Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

CScADS Summer
 Workshop 7/22/10

Visualization and Data Analysis: Past, Present, and Future

Jet data courtesy Kwan-
Liu Ma, UC Davis.

Image courtesy Wes
Kendall, UTK

“I have had my results for a long time, but I do not yet
know how I am to arrive at them.”

 –Carl Friedrich Gauss, 1777-1855

2

The Past: 400 Years of
Visualization

McCormick

et al., 1987
Galileo, 1610
 John Snow, 1854

William Playfair, 1786

“Datasets being produced by experiments and simulations are rapidly outstripping our ability
to explore and understand them” –Johnson et al., 2007.

Johnson

et al., 2007

The Present: Scientific Data Analysis in HPC Environments"

A linear,
 sequential
 pipeline where
 tasks mapped
 to
 architectures
 in fixed
 fashion is
 robust but not
 necessarily
 scalable.

3

Examples:

2D statistical graphics using R

3D scientific visualization using ParaView

Scientific visualization using VisIt

4

Statistical Graphics:

http://r-project.org/

http://cscads.rice.edu/workshops/
summer09/slides/analysis-visualization/
nagiza-samatova-cscads-2009.pdf

- S (1976) John Chambers, Bell
Labs

- R (1993) R. Gentleman and R.
Ihaka, Auckland

- ~250K – 1M users

- Steep learning curve (3000-
page manual)

- Merges statistics with plotting

- Powerful plotting features

- Bill Cleveland approved

- Parallel R research

Flexible Analysis & Visualization: The
Pipeline Approach"

Data analysis as a series of transformations

-Source, filters, and sink

-VTK (Schroeder, Martin, Lorensen 1993)

-Many tools on top of VTK: ParaView, VisIt, VisTrails

-Code reuse, portability, standardization

5

6

3D & 4D Scientific Visualization:

- Started in 2000 with Kitware and LANL, later included SNL and ARL

- VTK engine

- Qt interface

- Contacts: Ken Moreland (SNL), Berk Geveci (Kitware)

- Tutorials at SC, SciDAC, elsewhere

 http://www.itk.org/Wiki/ParaView_2.X_documentation_and_tutorials

http://www.paraview.org

0.5 billion-cell
 weather
 visualization
 courtesy Ken
 Moreland

7

Advanced ParaView: Client-Server Mode

On Eureka:

-Add a few one-time items to .softenvrc, .bashrc

-Grab nodes in interactive mode for a time:

qsubi -n 4 –t 60
- Start the pvserver:

mpirun -np 4 -machinefile $COBALT_NODEFILE /soft/apps/
paraview-3.4.0-mpich-mx/bin/pvserver

On local machine:

-Setup a tunnel:

ssh -NL 11111:vs37:11111 username@eureka.alcf.anl.gov
-Start ParaView, configure connection, connect

-Beware to have matched ParaView versions between client and server

http://paraview.org/paraview/resources/software.html

Eureka setup instructions at

https://wiki.alcf.anl.gov/index.php/Paraview_on_the_Data_Analytics_Cluster

8

3D & 4D Scientific Visualization:

- Started in 2000 at LLNL as an ASCI-funded program

- VTK-like engine

- Qt interface

- Contacts: Hank Childs (BNL, UC-Davis), Jeremy Meredith (ORNL)

- Tutorials at SC, SciDAC, elsewhere

 https://wci.llnl.gov/codes/visit/1.4.1/VisualizationWithVisIt.pdf

https://wci.llnl.gov/codes/visit/
home.html

Rayleigh-Taylor
 Instability
 visualization
 courtesy Hank
 Childs

9

Advanced VisIt: Scripting Mode

OpenDatabase("localhost:/filename", 0)

AddPlot("Pseudocolor", ”velx", 1, 1)

AddOperator("Box", 1)

AddOperator("Resample", 1)

SetActivePlots(0)

SetActivePlots(0)

BoxAtts = BoxAttributes()

BoxAtts.amount = BoxAtts.Some

BoxAtts.minx = -0.4

BoxAtts.maxx = 0.4

BoxAtts.miny = -0.4

BoxAtts.maxy = 0.4

BoxAtts.minz = -0.4

BoxAtts.maxz = 0.4

SetOperatorOptions(BoxAtts, 1)

DrawPlots()

ExportDBAtts = ExportDBAttributes()

ExportDBAtts.db_type = "BOV"

ExportDBAtts.filename = "0.x"

ExportDBAtts.dirname = "."

ExportDBAtts.variables = ”velx"

ExportDBAtts.opts.types = ()

ExportDatabase(ExportDBAtts)

quit()

Save in script.py.

Run with:

visit –cli –nowin –s script.py

Capture the script with Controls | Command
 and record

The Data-Intensive Nature of Computing and Analysis

Machine FLOPS
(Pflop/s)

Storage B/W
(GB/s)

Flops per
byte

stored

Bytes comp.
per byte
stored

LLNL BG/L 0.6 43 O(10 4) O(10 3)

Jaguar XT4 0.3 42 O(10 4) O(10 3)
Intrepid BG/

P 0.6 50 O(10 4) O(10 3)

Roadrunner 1.0 50 O(10 5) O(10 4)

Jaguar XT5 1.4 42 O(10 5) O(10 4)

Normalized Storage / Compute Metrics

-In 2001, Flops per bytes stored was
approximately 500. Ref: John May, 2001.

-DOE science applications generate
results at an average rate of 40 flops per
byte of data. Ref: Murphy et al. ICS’05.

The relative percentage of time in the stages of
 volume rendering as a function of system size.
 Large visualization is dominated by data
 movement: I/O and communication.

10

“Models … produce data in amounts that make storage expensive, movement cumbersome,
visualization difficult, and detailed analysis impossible.” -Mark Rast, Laboratory for Atmospheric and
Space Physics, University of Colorado

“Analysis and visualization will be limiting factors in gaining insight from exascale data.”

–Dongarra et al., International Exascale Software Project Draft Road Map, 2009.

Scalable Analysis & Visualization: The
Data Parallel Approach"

Treat analysis as any other parallel computation

-Decompose the domain

-Assign to processors

-Combine local and global operations

-Use parallel I/O, MPI, other programming models

-Balance load, minimize communication

-Measure strong, weak scaling, efficiency, isoefficiency

“The combination of massive scale and complexity is such that high performance computers
will be needed to analyze data, as well as to generate it through modeling and simulation.”

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program
Announcement LAB 10-256, 2010. 11

Integrate with simulation

12

Large-Scale Parallel Volume Rendering

Parallel Volume Rendering on
 the IBM Blue Gene/P.
 EGPGV’08.

Parallel structure for
volume rendering
algorithm consists of
3 stages performed
in parallel

Entropy over
100 time-steps

13

Benchmarking Performance

Scalability over a
 variety of data, image,
 and system sizes.

Grid
Size

Time-
step
size
(GB)

Image
size
(px)

Procs

Tot.
time
(s)

% I/O Read B/
W (GB/s)

22403 42 20483 8K 51 96 0.9
16K 43 97 1.0
32K 35 96 1.3

44803 335 40963 8K 316 96 1.1
16K 272 97 1.3
32K 220 96 1.6

Volume rendering performance at large size is
 dominated by I/O.

End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. ICPP’09.

Changing data file
layout can improve

I/O performance,
shown by access

pattern signatures
and performance

data.

14

Large Scale Parallel Image Compositing

The final stage in sort-last parallel visualization algorithms:

1.  Partition data among processes

2.  Visualize local data

3.  Composite resulting images into one

Composition = communication + computation

The computation is usually an alpha-blend called “Over”

i = (1.0 – αold) * inew + iold
α = (1.0 – αold) * αnew +α old

where i = intensity (R,G,B), α = opacity

A Configurable Algorithm for Parallel Image-Compositing Applications. Peterka et al., SC09

15

Direct-Send, Binary Swap, and Radix-k

Radix-k: Managed parallelism and contention, no power of 2 limitations

Direct-send: Parallel, contentious
 Binary swap: Low parallelism, limited to powers of 2

16

Radix-k at Scale

zoom = 3.0
zoom = 1.5
 zoom = 0.5

3X – 6X
improvement over
optimized binary
swap (with
bounding boxes
and RLE) in many
cases. 64Mpix at
32K processes can
be composited at .
08 s, or 12.5 fps.

Examples of volume rendering at the 3 zoom levels shown below

Accelerating and Benchmarking Radix-k Image Compositing at Large-Scale. Kendall et al., EGPGV’10

Large-Scale Parallel Particle Tracing

Parallel structure for
flow visualization
algorithm consists of
iterations of particle
tracing and transfer,
followed by a
rendering stage.

Ocean current
data courtesy
Rob Jacob, ANL

Type IA supernova
data courtesy
George Jordan,
UofC FLASH
Center

Jet data courtesy
Kwan-Liu Ma, UC
Davis

17

18

4D Block Structure

- True 4D blocks

- Blocks consist of 4D voxels (eg 16x16x16x4 time steps)

- Messages are sent when any of the 4 extents are exceeded

- 3^4 = 81 neighbors for regular grid, counting self

- Time blocks
are control in-
core / out-of-
core behavior

- One time
block resident
in memory at
any one time

- Memory
distributed in
spatial (x,y,z)
dimensions,
serialized in
time dimension

Strong Scaling Baseline Performance

Thermal hydraulics flow. 134M cells, 8K particles.

1,2,4,8,16 round robin blocks per process.

19

20

Conclusions

- There are different levels of analysis needs

- Tools have steep learning curves, may require expert assistance

- Peta- and exascale requires new thinking about analysis

- HPC resources can be harnessed for scalable run-time analysis

- Scalable analysis is data-intensive

- Detailed study of analysis data patterns is needed

- Continued collaboration with scientists is necessary

Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

Acknowledgments:

Facilities

Argonne Leadership Computing Facility (ALCF)

Oak Ridge National Center for Computational

 Sciences (NCCS)

Funding

US DOE SciDAC UltraVis Institute

People

Rob Ross, Han-Wei Shen, Jian Huang, Wes

 Kendall, Rajeev Thakur, Dave Goodell, Kwan-Liu
 Ma, Hongfeng Yu, Rob Latham

“The purpose of computing is insight, not numbers.”

 –Richard Hamming, 1962

CScADS Summer
 Workshop 7/22/10

