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Visualization and Data Analysis: Past, Present, and Future


Jet data courtesy Kwan-
Liu Ma, UC Davis. 


Image courtesy Wes 
Kendall, UTK


“I have had my results for a long time, but I do not yet 
know how I am to arrive at them.”


 –Carl Friedrich Gauss, 1777-1855 
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The Past: 400 Years of 
Visualization


McCormick 


et al., 1987
Galileo, 1610
 John Snow, 1854

William Playfair, 1786


“Datasets being produced by experiments and simulations are rapidly outstripping our ability 
to explore and understand them” –Johnson et al., 2007. 

  

Johnson 


et al., 2007




The Present: Scientific Data Analysis in HPC Environments"

A linear,
 sequential
 pipeline where
 tasks mapped
 to
 architectures
 in fixed
 fashion is
 robust but not 
 necessarily
 scalable.
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Examples:

2D statistical graphics using R


3D scientific visualization using ParaView


Scientific visualization using VisIt
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Statistical Graphics: 

http://r-project.org/ 

http://cscads.rice.edu/workshops/
summer09/slides/analysis-visualization/
nagiza-samatova-cscads-2009.pdf 

- S (1976) John Chambers,  Bell 
Labs 

- R (1993) R. Gentleman and R. 
Ihaka, Auckland

- ~250K – 1M users

- Steep learning curve (3000-
page manual)

- Merges statistics with plotting

- Powerful plotting features

- Bill Cleveland approved

- Parallel R research




Flexible Analysis & Visualization: The 
Pipeline Approach"

Data analysis as a series of transformations


-Source, filters, and sink


-VTK (Schroeder, Martin, Lorensen 1993)

-Many tools on top of VTK: ParaView, VisIt, VisTrails


-Code reuse, portability, standardization
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3D & 4D Scientific Visualization:


- Started in 2000 with Kitware and LANL, later included SNL and ARL

- VTK engine

- Qt interface

- Contacts: Ken Moreland (SNL), Berk Geveci (Kitware)

- Tutorials at SC, SciDAC, elsewhere

     http://www.itk.org/Wiki/ParaView_2.X_documentation_and_tutorials


http://www.paraview.org


0.5 billion-cell
 weather
 visualization
 courtesy Ken
 Moreland
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Advanced ParaView: Client-Server Mode


On Eureka:

-Add a few one-time items to .softenvrc, .bashrc

-Grab nodes in interactive mode for a time: 

qsubi -n 4 –t 60  
- Start the pvserver: 

mpirun -np 4 -machinefile $COBALT_NODEFILE /soft/apps/
paraview-3.4.0-mpich-mx/bin/pvserver 

On local machine:

-Setup a tunnel:

ssh -NL 11111:vs37:11111 username@eureka.alcf.anl.gov  
-Start ParaView, configure connection, connect

-Beware to have matched ParaView versions between client and server

http://paraview.org/paraview/resources/software.html


Eureka setup instructions at 

https://wiki.alcf.anl.gov/index.php/Paraview_on_the_Data_Analytics_Cluster
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3D & 4D Scientific Visualization:


- Started in 2000 at LLNL as an ASCI-funded program

- VTK-like engine

- Qt interface

- Contacts: Hank Childs (BNL, UC-Davis), Jeremy Meredith (ORNL)

- Tutorials at SC, SciDAC, elsewhere

    https://wci.llnl.gov/codes/visit/1.4.1/VisualizationWithVisIt.pdf


https://wci.llnl.gov/codes/visit/
home.html


Rayleigh-Taylor
 Instability
 visualization
 courtesy Hank
 Childs
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Advanced VisIt: Scripting Mode


OpenDatabase("localhost:/filename", 0)

AddPlot("Pseudocolor", ”velx", 1, 1)

AddOperator("Box", 1)

AddOperator("Resample", 1)

SetActivePlots(0)


SetActivePlots(0)

BoxAtts = BoxAttributes()

BoxAtts.amount = BoxAtts.Some

BoxAtts.minx = -0.4

BoxAtts.maxx = 0.4

BoxAtts.miny = -0.4

BoxAtts.maxy = 0.4

BoxAtts.minz = -0.4

BoxAtts.maxz = 0.4

SetOperatorOptions(BoxAtts, 1)


DrawPlots()

ExportDBAtts = ExportDBAttributes()

ExportDBAtts.db_type = "BOV"

ExportDBAtts.filename = "0.x"

ExportDBAtts.dirname = "."

ExportDBAtts.variables = ”velx"

ExportDBAtts.opts.types = ()

ExportDatabase(ExportDBAtts)


quit()


Save in script.py.


Run with:

visit –cli –nowin –s script.py


Capture the script with Controls | Command
 and record




The Data-Intensive Nature of Computing and Analysis


Machine FLOPS 
(Pflop/s) 

Storage B/W 
(GB/s) 

Flops per 
byte 

stored 

Bytes comp. 
per byte 
stored 

LLNL BG/L 0.6 43 O(10 4) O(10 3) 

Jaguar XT4 0.3 42 O(10 4) O(10 3) 
Intrepid BG/

P 0.6 50 O(10 4) O(10 3) 

Roadrunner 1.0 50 O(10 5) O(10 4) 

Jaguar XT5 1.4 42 O(10 5) O(10 4) 

Normalized Storage / Compute Metrics


-In 2001, Flops per bytes stored was 
approximately 500. Ref: John May, 2001.


-DOE science applications generate 
results at an average rate of 40 flops per 
byte of data. Ref: Murphy et al. ICS’05.


The relative percentage of time in the stages of
 volume rendering as a function of system size.
 Large visualization is dominated by data
 movement: I/O and communication.
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“Models … produce data in amounts that make storage expensive, movement cumbersome, 
visualization difficult, and detailed analysis impossible.” -Mark Rast, Laboratory for Atmospheric and 
Space Physics, University of Colorado 

“Analysis and visualization will be limiting factors in gaining insight from exascale data.”

–Dongarra et al., International Exascale Software Project Draft Road Map, 2009. 



Scalable Analysis & Visualization: The 
Data Parallel Approach"

Treat analysis as any other parallel computation


-Decompose the domain


-Assign to processors

-Combine local and global operations


-Use parallel I/O, MPI, other programming models


-Balance load, minimize communication


-Measure strong, weak scaling, efficiency, isoefficiency


“The combination of massive scale and complexity is such that high performance computers 
will be needed to analyze data, as well as to generate it through modeling and simulation.” 

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program 
Announcement LAB 10-256, 2010. 11


Integrate with simulation
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Large-Scale Parallel Volume Rendering


Parallel Volume Rendering on
 the IBM Blue Gene/P.
 EGPGV’08. 

Parallel structure for 
volume rendering 
algorithm consists of 
3 stages performed 
in parallel


Entropy over 
100 time-steps
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Benchmarking Performance


Scalability over a
 variety of data, image,
 and system sizes. 


Grid 
Size 

Time-
step 
size 
(GB) 

Image 
size 
(px) 

# 
Procs 

Tot. 
time 
(s) 

% I/O Read B/
W (GB/s) 

22403 42 20483 8K 51 96 0.9 
16K 43 97 1.0 
32K 35 96 1.3 

44803 335 40963 8K 316 96 1.1 
16K 272 97 1.3 
32K 220 96 1.6 

Volume rendering performance at large size is
 dominated by I/O.  


End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. ICPP’09. 

Changing data file 
layout can improve 

I/O performance, 
shown by access 

pattern signatures 
and performance 

data.
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Large Scale Parallel Image Compositing


The final stage in sort-last parallel visualization algorithms:

1.  Partition data among processes

2.  Visualize local data

3.  Composite resulting images into one


Composition = communication + computation


The computation is usually an alpha-blend called “Over”

i =   ( 1.0  –  αold) * inew + iold 
α = ( 1.0  –  αold) * αnew +α old 

where i = intensity (R,G,B),  α = opacity


A Configurable Algorithm for Parallel Image-Compositing Applications. Peterka et al., SC09 
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Direct-Send, Binary Swap, and Radix-k


Radix-k: Managed parallelism and contention, no power of 2 limitations 


Direct-send:  Parallel, contentious 
 Binary swap: Low parallelism, limited to powers of 2
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Radix-k at Scale

       
zoom = 3.0 
zoom = 1.5 
      zoom = 0.5


3X – 6X 
improvement over 
optimized binary 
swap (with 
bounding boxes 
and RLE) in many 
cases. 64Mpix at 
32K processes can 
be composited at .
08 s, or 12.5 fps.


Examples of volume rendering at the 3 zoom levels shown below


Accelerating and Benchmarking Radix-k Image Compositing at Large-Scale. Kendall et al., EGPGV’10 



Large-Scale Parallel Particle Tracing


Parallel structure for 
flow visualization 
algorithm consists of 
iterations of particle 
tracing and transfer, 
followed by a 
rendering stage.


Ocean current 
data courtesy 
Rob Jacob, ANL


Type IA supernova 
data courtesy 
George Jordan, 
UofC  FLASH 
Center


Jet data courtesy 
Kwan-Liu Ma, UC 
Davis
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4D Block Structure


- True 4D blocks

- Blocks consist of 4D voxels (eg 16x16x16x4 time steps)

- Messages are sent when any of the 4 extents are exceeded

- 3^4 = 81 neighbors for regular grid, counting self


- Time blocks 
are control in-
core / out-of-
core behavior

- One time 
block resident 
in memory at 
any one time

- Memory 
distributed in 
spatial (x,y,z) 
dimensions, 
serialized in 
time dimension




Strong Scaling Baseline Performance


Thermal hydraulics flow. 134M cells, 8K particles.

1,2,4,8,16 round robin blocks per process.
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Conclusions


- There are different levels of analysis needs

- Tools have steep learning curves, may require expert assistance

- Peta- and exascale requires new thinking about analysis

- HPC resources can be harnessed for scalable run-time analysis

- Scalable analysis is data-intensive

- Detailed study of analysis data patterns is needed

- Continued collaboration with scientists is necessary
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“The purpose of computing is insight, not numbers.”


 –Richard Hamming, 1962 

CScADS Summer
 Workshop 7/22/10



