
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

DIY Parallel Data Analysis	

Image courtesy pigtimes.com	

Preliminaries	

2	

Moving from Postprocessing
to Run-Time Scientific Data

Analysis in HPC ���

3	

Analyze!

Postprocessing particle
tracing and visualization	

Run-time particle tracing and
postprocessing visualization 	

Example of a data flow network

Definition of Data Analysis	

•  Any data transformation, or a network or transformations.	

•  Anything done to original data beyond its original generation.	

•  Can be visual, analytical, statistical, or data management.	

4	

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics

Morse-Smale complex of combustion Voronoi tessellation of cosmology

Examples of Data Analysis	

… and infinitely many more
5	

Scientific Data Analysis Today	

•  Big science = big data, and	

•  Big data analysis => big science resources	

•  Data analysis is data intensive.	

•  Data intensity = data movement.	

•  Parallel = data parallel (for us)	

•  Big data => data decomposition	

•  Task parallelism, thread parallelism, while important, are

not part of this work	

•  Most analysis algorithms are not up to the challenge	

•  Either serial, or 	

•  Communication and I/O are scalability killers	

6	

You Have Two Choices to Parallelize Data Analysis	

7	

or	

By hand	

 With tools	

void ParallelAlgorithm() {	

 …	

 MPI_Send();	

 …	

 MPI_Recv();	

 …	

 MPI_Barrier();	

 …	

 MPI_File_write();	

}	

void ParallelAlgorithm() {	

 …	

 LocalAlgorithm();	

 …	

 DIY_Merge_blocks();	

 …	

 DIY_File_write()	

}	

Executive Summary���

DIY helps the user write data-parallel analysis algorithms. ���

8	

Main ideas and Objectives 	

-Large-scale parallel analysis for HPC	

-Scientists, visualization researchers,
tool builders	

-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	

-Scalable data movement algorithms	

Benefits	

-Researchers can focus on their own

work, not on parallel infrastructure	

-Analysis applications can be custom	

-Reuse core components and algorithms
for performance and productivity	

Thirteen things you need for parallel
data analysis	

9	

#1: Separate Analysis Ops from Data Ops	

You do this yourself	

Can use serial libraries such as OSUFlow, Qhull, VTK
(don’t have to start from scratch)

DIY handles this

Analysis Application Application
Data Model

Analysis
Data Model

Analysis
Algorithm

Particle
Tracing

CFD Unstructured
Mesh

Particles Numerical
Integration

Information
Entropy

Astrophysics AMR Histograms Convolution

Morse-Smale
Complex

Combustion Structured
Grid

Complexes Graph
Simplification

Computational
Geometry

Cosmology Particles Tessellations Voronoi

Communica
tion

Additional

Nearest
neighbor

File I/O,
Domain
decompositi
on, process
assignment,
utilities

Global
reduction,
nearest
neighbor

Global
reduction

Nearest
neighbor

10	

#2: Group Data Items Into Blocks	

11	

The block is DIY’s basic unit of data decomposition. Original dataset is
decomposed into generic subsets called blocks, and associated analysis items live
in the same blocks. Blocks don’t have to be “blocky.” Any subdivision of data (eg.,
a set of graph nodes, a group of particles, etc.) is a block in DIY.	

!"#$%"$#&'()#*' +,-()#*' ./0"#$%"$#&'(,&01

#3: Support Multiple Domains	

12	

Uses:	

1.  Organize input
(upper right)	

2.  Second
decomposition
suited for
particular analysis
(lower right)	

3.  Comparing
multiple unrelated
data domains (not
shown)	

#4: Distinguish Between Blocks and Processes	

13	

All data movement operations are per block; blocks exchange information with
each other using DIY’s communication algorithms. DIY manages and optimizes
exchange between processes based on the process assignment. This allows for
flexible process assignment as well as easy debugging.	

!"#$%&'(('()"#$%&'(('(*"#$%&'((

#5: Handle Time	

14	

-Time often goes forward only	

-Usually do not need all time steps at once	

Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D blocks that
can also be decomposed such that time blocking is handled separately. 	

!"#$%&'(&)#*+',-'

./0(-1#20(-1#30(-1#40(-5

./0&+1#20&+1#30&+1#40&+5

./0(-1#20(-1#30(-5

./0&+1#20&+1#30&+5
!"#$%&

!"#'(&

'(0,

'6
'7

'8

9%&'(&)#:);<=
>,?'(<,9

',0%;?&)
:);<=

'(0,#9',%9

'!
'8

'@

'A
'@

'B

@"#C);<=

@"#D,(EF:;?F;;G
.-;'#G?&H-5

!"#$%&'(&)#D,(EF:;?F;;G 6"#4,0%;?&)#D,(EF:;?F;;G

@" !" 6"

6"#4,0%;?&)#*+',-'

#6: Group Blocks into Neighborhoods	

15	

-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and
knowledge of other blocks (not master-
slave global knowledge)	

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

!"#$%
&'(

!"#$%
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

333

!"#$%
&'(

!"#$%
)*+),+-

333

333

!"#$%
&'(

!"#$%
)*+),+-

333

"'(1415

"'(1416

"'(141
,!"#$%-1716

&'(141&"#!8"1!"#$%1'(),+'9'$8+'#,
"'(141"#$8"1!"#$%1'(),+'9'$8+'#,
2'(1412/#$)--1'(),+'9'$8+'#,

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

#7 Make Communication Fun	

16	

Many different analysis operations share a small
set of communication patterns. These
communication kernels together with supporting
utilities for decomposition and I/O can be
encapsulated, optimized, and reused. DIY provides
3 efficient scalable communication algorithms on
top of MPI. May be used in any combination.	

Analysis Communication

Sort-Last Rendering Swap-Based Reduction

Morse-Smale Complex Merge-Based Reduction

Information Entropy Merge-Based Reduction

Particle Tracing Neighborhood Exchange

Voronoi Tessellation Neighborhood Exchange

Graph layout Send-Receive

Semi	

Regular	

Regular	

 Heterogeneous	

Data	

Homogeneous	

Data	

Irregular	

Factors for selecting
communication
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory
size	

-homogeneity of data	

3 Communication Patterns	

17	

!"#$%&'
' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&(

!12#342

' () * + , - .

/ 0 (' ((() (* (+ (,

' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	

 Swap-based
reduction	

Merge-based
reduction	

Communication Performance Benchmarks	

18	

Communication time only for our merge algorithm compared with MPI's reduction algorithm
(left) and our swap algorithm compared with MPI's reduce-scatter algorithm (right).	

Different Neighborhood Communication Patterns	

19	

DIY provides point to point and different varieties of collectives within a neighborhood via
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	

How to enqueue items
for neighbor exchange	

•  DIY offers several
options	

•  Send to a particular
neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors	

•  Support for periodic
boundary conditions
involves tagging which
neighbors are periodic
and calling user-defined
transform on objects
being sent to them	

20	

Adjustable Synchronization Communication Algorithm	

 for (blocks in my neighborhood) {	

 	

pack and send messages of block IDs and
	

particle counts	

 	

pack and send messages of particles	

 }	

 wait for enough IDs and counts to arrive	

 for (IDs and counts that arrived) {	

 	

receive particles	

 }	

Wait factor: the
fraction of items for
which to wait is
adjustable. Typically
we use 0.1 (wait for
10% of pending
items to arrive in
each round).	

Stress Test: Number of Items Exchanged	

21	

Particle tracing usually exchanges few particles between blocks; eg., previous results
were between 8 and 256 particles per block. We also benchmarked our neighbor
exchange algorithm for much greater number of items exchanged.	

Items Bytes/
Item

Total
Bytes

Procs Exchange
Time (s)

64 20 1 K 32 0.018

128 0.028

512 0.028

256 20 5 K 32 0.064

128 0.097

512 0.098

1 K 20 20 K 32 0.235

128 0.354

512 0.357

Conclusion: Exchanging up to a few thousand small items performs well. Beyond that
number, the user should aggregate small items into a larger item prior to exchanging.	

Items Bytes/
Item

Total
Bytes

Procs Exchange
Time (s)

4 K 20 80 K 512 1.358

16 K 320 K 512 5.507

64 K 1 M 512 22.083

256 K 20 5 M 512 90.238

1 M 20 M 512 351.068

Items Bytes/
Item

Total
Bytes

Procs Exchange
Time (s)

1 20 M 20 M 512 0.223

Platform: IBM Blue Gene/Q	

Small item counts at various process counts	

 Large item counts at 512 processes	

One aggregated item at 512 processes	

#8: Define Custom Data Models	

22	

HACC (cosmology)
Data Model	

int num_particles;	

float *xx, *yy, *zz;	

float *vx, *vy, *vz;	

float *phi;	

int64_t pid;	

uint16_t mask;	

Corollary: analysis X data
model ≠ analysis Y data
model 	

Tess (voronoi tessellation) Data Model	

float mins[3]; 	

float maxs[3]; 	

int num_verts; 	

int num_cells; 	

double *verts; 	

int *num_cell_verts; 	

int tot_num_cell_verts;	

int *cells	

double *sites; 	

int num_complete_cells; 	

int *complete_cells; 	

double *areas; 	

double *vols; 	

int tot_num_cell_faces;	

int *num_cell_faces; 	

int *num_face_verts;	

int tot_num_face_verts;	

int *face_verts;	

Compact DIY Datatypes	

23	

-Any C/C++/Fortran data structure can be represented as an DIY (MPI) data type	

-DIY uses data type to fetch data directly from memory or storage	

-User does not pack / unpack (serialize / deserialize) data	

-Zero copy at application level saves time and space	

-DIY helps make data type creation easier	

float mins[3]; 	

float maxs[3]; 	

double *verts; 	

double *sites; 	

int *complete_cells; 	

double *areas; 	

double *vols; 	

int *num_cell_faces; 	

int *num_face_verts;	

int *face_verts;	

DIY_Datatype type;	

struct map_block_t map[] = {	

 { DIY_FLOAT, OFST, 3, offsetof(struct vblock_t, mins) },	

 { DIY_DOUBLE, ADDR, v->num_verts * 3, DIY_Addr(v->verts) },	

 { DIY_DOUBLE, ADDR, v->num_cells * 3, DIY_Addr(v->sites) },	

 { DIY_INT, ADDR, v->num_complete_cells, DIY_Addr(v->complete_cells) },	

 { DIY_DOUBLE, ADDR, v->num_complete_cells, DIY_Addr(v->areas) },	

 { DIY_DOUBLE, ADDR, v->num_complete_cells, DIY_Addr(v->vols) },	

 { DIY_INT, ADDR, v->num_complete_cells, DIY_Addr(v->num_cell_faces) },	

 { DIY_INT, ADDR, v->tot_num_cell_faces, DIY_Addr(v->num_face_verts) },	

 { DIY_INT, ADDR, v->tot_num_face_verts, DIY_Addr(v->face_verts) },	

 { DIY_FLOAT, OFST, 3, offsetof(struct vblock_t, maxs) },	

};	

DIY_Create_struct_datatype(DIY_Addr(vblock), 10, map, dtype);	

C data structure	

 DIY data type	

#9 Output and Input Results	

24	

Features	

Binary	

General header/data blocks	

Footer with indices	

Application assigns semantic value to DIY blocks	

Written efficiently in parallel	

Parallel block-wise compression	

Output file format	

!"#$"%
&#'#

()#*+,-,
&#'# ././. ././.01,' 01,' 01,'20'3*4,

5/)

3*064/7 3*064/8 3*064/)/9/8 :00'"%

!"#$"%
&#'#

()#*+,-,
&#'#

!"#$"%
&#'#

()#*+,-,
&#'#

Data Input	

25	

Multiblock and Multifile I/O	

-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains	

-75% of IOR benchmark on actual scientific data	

Input algorithm	

Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11

#10: Play Nicely with Others	

26	

DIY by design doesn’t include input or output data models. Rather than re-
inventing them, it can import and export those models.	

Import: Replicate model using DIY_Decomposed(), explicitly providing blocks and
neighbors to DIY	

Export: Just use the other model API. DIY does not prevent you from making
other library calls.	

Support Applications ���

In Situ Unstructured Spectral Meshes With Help from MOAB	

27	

-Decomposition assigned by the application, not DIY	

-DIY needs to get the decomposition from the app	

-Call on MOAB for help with connectivity	

Given the above mesh, assume the
green block wants ghost cells in a given
ghost radius of size t.	

Result: the green block will have
these cells (original green cells plus
transparent cells)	

!

MOAB Example	

28	

void foo(imesh *mesh) { // MOAB mesh	

 DIY_Init(num_blocks);	

 for (num_blocks) { 	

 // query MOAB for verts in block	

 get_adjacencies(hex, adj_verts);	

 BlockBounds(bounds); // find min/max of verts 	

 // query MOAB for local neighbors of vertices	

 get_adjacencies(adj_verts, adj_hexes); 	

 store adj_hexes in neighbors, num_neighbors	

 // query MOAB for remote neighbors 	

 get_sharing_data(adj_verts, remote_handles, 	

 remote_procs); 	

 remote_data = remote_handles, remote_procs; 	

 // query MOAB for local vertex ids	

 loc_vids[block] =	

 id_from handle(shared_adj_verts); 	

 }	

 DIY_Decomposed(blocks, bounds, remote_data, 	

 num_remote_data, loc_vids, neighbors,	

 num_neighbors);	

}	

while (!done) {	

 for (cells) {	

 for (neighbors) {	

 if (cell intersects neighbor extents + t &&	

 cell was not sent already &&	

 cell did not come from neighbor)	

 post cell to neighbor;	

 }	

 }	

 num_recvd = DIY_Exchange_neighbors();	

 done = DIY_Check_done_all(!num_recvd); 	

}	

!

#11: Be Lightweight���

A library with a small l	

29	

Library	

Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	

DIY usage and library organization	

Features	

Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

#12: Come with Instructions	

30	

Tutorial Examples	

•  Block I/O: Reading data, writing analysis

results	

•  Static: Merge-based, Swap-based reduction,

Neighborhood exchange	

•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with

VTK filters	

•  R: Integrating DIY communication with R

stats algorithms	

•  Multimodel: multiple domains and

communicating between them	

Documentation	

•  README for installation	

•  User’s manual with description, examples

of custom datatypes, complete API
reference	

Example Usage	

31	

// initialize	

int dim = 3; // number of dimensions in the problem	

int tot_blocks = 8; // total number of blocks	

int data_size[3] = {10, 10, 10}; // data size	

MPI_Init(&argc, &argv); // init MPI before DIY	

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks, &nblocks,

data_size, MPI_COMM_WORLD);	

// read data	

 for (int i = 0; i < nblocks; i++) {	

 DIY_Block_starts_sizes(i, min, size);	

 DIY_Read_add_block_raw(min, size, infile, MPI_INT, (void**)&(data[i]));	

}	

DIY_Read_blocks_all();	

// decompose domain	

int share_face = 0; // whether adjoining blocks share the same face	

int ghost = 0; // additional layers of ghost cells	

int ghost_dir = 0; // ghost cells apply to all or some sides of a block	

int given[3] = {0, 0, 0}; // constraints on blocking (none)	

DIY_Decompose(share_face, ghost, ghost_dir, given);	

Example API Continued	

32	

// your own local analysis	

// merge results, in this example	

// could be any combination / repetition of the three communication patterns	

int rounds = 2; // two rounds of merging	

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge	

int nb_merged; // number of output merged blocks	

DIY_Merge_blocks(in_blocks, hdrs, num_in_blocks, out_blocks, num_rounds, k_values,
&MergeFunc, &CreateItemFunc, &DeleteItemFunc, &CreateTypeFunc, &num_out_blocks);	

// write results	

DIY_Write_open_all(outfile);	

DIY_Write_blocks_all(out_blocks, num_out_blocks, datatype);	

DIY_Write_close_all();	

// terminate	

DIY_Finalize(); // finalize DIY before MPI	

MPI_Finalize();	

#13: Deliver Performance and Scalability	

33	

DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.:
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and
Visualization Symposium (LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special
Session on Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	

DIY applications	

•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11,
Anchorage AK, May 2011. 	

•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale
Complexes. Proceedings of IPDPS'12, Shanghai, China, 2012.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT. 	

•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.: Meshing the
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT.	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: Scalable
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large
Data Analysis and Visualization, LDAV'12, Seattle, WA.	

34	

Parallel Time-Varying Flow Analysis	

Approach	

-In core / out of core processing of time
steps	

-Simple load balancing (multiblock
assignment, early particle termination)	

-Adjustable synchronization
communication 	

Collaboration with the Ohio State University and University of Tennessee Knoxville

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

Algorithm	

for (epochs) {	

 read my process’ data blocks	

 for (rounds) {	

 for (my blocks) { 	

 advect particles	

 }	

 exchange particles	

 } 	

}	

Pathline tracing of 32
time-steps of combustion

in the presence of a cross-
flow	

Parallelization
within epochs and
serialization across
epochs adds
greater flexibility.	

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11

Particle Tracing	

35	

Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	

36	

Parallel Information-Theoretic Analysis	

Objective	

-Decide what data are the most essential for
analysis 	

-Minimize the information losses and maximize the
quality of analysis	

-Steer the analysis of data based on information
saliency	

Information-theoretic approach	

-Quantify Information content based on Shannon’s
entropy	

-Use this model to design new analysis data
structures and algorithms	

Collaboration with the Ohio State University and New York University Polytechnic Institute

!"#$%&'()$"*
(+,$%,()-.
'/0$%)(+&1

2,34555
678.&$9,/

:,-()$".$#.)"#$%&'()$"
,"(%$;<.#),/9

=%,'1.$#.+)0+.)"#$%&'()$"
,"(%$;<**(>%?>/,"(.
%,0)$"1.)".$%)0)"'/.

9'('**'%,.(+,.)"(,%,1()"0
%,0)$"1.)".1)&>/'()"0.

-$$/'"(.#/$@.)".'.">-/,'%.
%,'-($%A

Shannon’s Entropy 	

The average amount of information
expressed by the random variable is	

Information Entropy	

37	

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.	

38	

Parallel Topological Analysis	

- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	

Two levels of simplification of
the Morse-Smale complex for jet
mixture fraction.	

Collaboration with SCI Institute, University of Utah

Example of computing discrete gradient and Morse-Smale Complex	

1	

 2	

3	

 4	

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12

Morse-Smale Complex	

39	

Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	

40	

For 1283 particles, 41 % strong scaling for total tessellation time, including I/O;
comparable to simulation strong scaling.	

In Situ Voronoi Tessellation	

Recap and Looking Ahead	

41	

To Do: Research Directions	

•  Advanced decomposition	

•  Block groups	

•  Improved communication algorithms	

•  Less synchronous, more overlap

with computation	

•  High-level communication operations	

•  Ghost cell exchange, kernel

convolution (stencil)	

•  Load balancing	

•  Block overloading, dynamic
reassignment	

•  Programming models	

•  MPI + X on Mira, Titan	

•  Usability	

•  Improved API	

Done: Benefits	

•  Productivity	

•  Express complex algorithms flexibly	

•  Multiple blocks per process	

•  Complete / partial reductions	

•  Neighbor inclusion and
communication	

•  Simplify existing tasks	

•  Custom data type creation	

•  Compression	

•  Performance	

•  Published scalability	

•  Configurable algorithms	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	

DOE SciDAC SDAV Institute	

DIY Parallel Data Analysis

https://svn.mcs.anl.gov/repos/diy/trunk	

