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Scalable Parallel Building Blocks for Custom Data Analytics	



Early stages of 
Rayleigh-Taylor 
Instability flow	



“I have had my results for a long time, but I do 
not yet know how I am to arrive at them.”	



	

–Carl Friedrich Gauss, 1777-1855 



Exabytes, not Exaflops: Data-Intensive Computing and Analysis	



Machine FLOPS 
(PF/s) 

Storage B/W 
(GB/s) 

Bytes comp. 
per byte stored 

LLNL BG/L 0.6 43 O(10 3) 

Jaguar XT4 0.3 42 O(10 3) 

Intrepid BG/P 0.6 50 O(10 3) 

Roadrunner 1.0 50 O(10 4) 

Jaguar XT5 1.4 42 O(10 4) 

Normalized Storage / Compute Metrics Today	



In 2001, Flops per bytes stored was approximately 500, 
John May, 2001.	
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“Analysis and visualization will be 
limiting factors in gaining insight from 
exascale data.”	


–Dongarra et al., International Exascale 
Software Project Draft Road Map, 2009. 

Specification 2010 2018 X Change 

FLOPS 2 PF/s 1 EF/s 500 

Memory size 0.3 PB 10 PB 33 

Memory BW 25 GB/s 400 GB/s 16 

Network BW 1.5 GB/s 50 GB/s 33 

Storage BW 0.2 TB/s 20 TB/s 100 

Future Architecture Design Points	



DOE Exascale Initiative Roadmap, Architecture and Technology 
Workshop,  San Diego, 12/09. 	



Code Domain % 
Saved PI 

FLASH Astrophysics 10 Ricker 

Nek5000 CFD 1 Fischer 

CCSM Climate 1 Jacob 

GCRM Climate 10 Cram 

S3D Combustion 1-5 Bennett 

Percent Saved of Computed Data	



CScADS Sci. Data Analysis & Visualization 
Workshop ‘09 



Analysis and its Impact on Future Hardware and 
Software: Codesign	
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Analysis Characteristics:	



-Various kernels need to be 
considered	


  -eg. Ray casting, image 

compositing, particle tracing, 
topology	



-Not Compute or Memory 
bound	



-Network, Storage (data 
movement) bound	


-Global reductions	


-Local nearest neighbor 
communication	



-Asynchronous and 
synchronous communication	


-Highly imbalanced workloads	


-Memory capacity can be 
limiting	



-Short run time at scale	



System software:	



-MPI + threads	


-Efficient Parallel I/O	


-Efficient reduction	


-Sparse collectives	


-Nonblocking collectives	


-One-sided communication	


-Load balancing libraries	



System hardware:	


-More or less powerful 
CPUS ok	


-Separate collective 
networks	



-Node-local storage	


-Combined CPU-GPU 
memory and network	



Analysis is dominated by data 
movement: I/O and 
communication.	





Data Analysis at *scale���

Keys to parallel data analysis at scale	



-Decompose the domain	


-Assign to processors	


-Access data	


-Combine local and global operations	


-Scale efficiently	


-Balance load, minimize communication	


-Store results	



“The combination of massive scale and 
complexity is such that high performance 
computers will be needed to analyze data, 
as well as to generate it through modeling 
and simulation.” 	


–Lucy Nowell, LAB 10-256, 2010. 
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Integrate with simulation	



Approach	



-Analysis driven by scientists 
themselves and their codes	


-RASV:	


  Reduce: data mining, probabalistic,	


    data transformations, feature	


    identification (data triage)	


  Analyze:  machine learning, statistical,	


    automated approaches	


  Store: less, more important data	


  Visualize: in situ, coprocessing,	


    postprocessing	

Sounds just like a parallel 

computation problem	


The simulation already does 
decomposition, processor 
assignment, data access	
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Case Study: Parallel Volume Rendering	



1.  Group data into 
blocks and 
assign blocks to 
processors.	



2. 	

Each processor 
casts rays 
through its data 
blocks and 
produces an 
image of its data.	



3. 	

These images have yet to 
be composed into a 
single, final image. 



Parallel Volume Rendering Performance	



Pressure at time-step 1530	



Angular momentum at 
time-step 1492	



Volume rendering of shock wave 
formation in core-collapse supernova 
dataset, courtesy of John Blondin, NCSU. 
Structured grid of 11203 data elements, 5 
variables per cell.	



Entropy over 100 time-steps	
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Scalability over a 
variety of data, 

image, and 
system sizes. 	



End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. Peterka et al., ICPP’09 
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Case Study: Large Scale Parallel Image Compositing	



The final stage in sort-last parallel visualization algorithms:	


1.  Partition data among processes	


2.  Visualize local data	


3.  Composite resulting images into one	



Composition = communication + computation	



The computation is usually an alpha-blend called “Over”	


i =   ( 1.0  –  αold) * inew + iold 
α = ( 1.0  –  αold) * αnew +α old 

where i = intensity (R,G,B),  α = opacity	



A Configurable Algorithm for Parallel Image-Compositing Applications. Peterka et al., SC09 
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How the Radix-k Algorithm Works	


- Increase Concurrency: 
More participants per 
group than binary swap 
(k > 2)	



- Manage contention: 
limiting k value (k < p)	



- Overlap 
communication with 
computation: 
nonblocking and 
careful ordering of 
operation	



- No penalty for non-
powers-of two 
numbers of processes: 
inherent in the 
algorithm design	
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Radix-k Parallel Image Compositing at Scale	


       	

zoom = 3.0 	

zoom = 1.5 	

      zoom = 0.5	



3X – 6X 
improvement over 
optimized binary 
swap (with 
bounding boxes 
and RLE) in many 
cases. 64Mpix at 
32K processes can 
be composited at .
08 s, or 12.5 fps.	



Examples of volume rendering at the 3 zoom levels shown below	



Accelerating and Benchmarking Radix-k Image Compositing at Large-Scale. Kendall et al., EGPGV’10 
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Case Study: Parallel Particle Tracing	



2. 	

Each voxel 
contains a 
velocity vector	



3. 	

Advect particles 
along velocity 
vectors.	



5. 	

Repeat 3, 4 

1.  Group data into 
blocks and 
assign blocks to 
processors.	



4. 	

Exchange 
particles among 
processes when 
they reach the 
block boundary.	





Parallel Particle Tracing Performance	



Thermal hydraulics data 
courtesy Aleks Obabko and 
Paul Fischer, ANL	
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Rayleigh-Taylor instability data 
courtesy Mark Petersen and 
Daniel Livescu, LANL	



Flame stabilization data 
courtesy Ray Grout, NREL 
and Jackie Chen, SNL	



A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Peterka et al., IPDPS’11 
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Putting the Pieces Together: Building Blocks for 
Developing Scalable Parallel Analysis	



DIY Data movement components:	


-Partitioning	


       -Round robin	


       -Graph	


       -Repartitioning	


-Parallel I/O	


       -Input datasets	


       -Output analysis	


-Global reduction	


       -Merging	


       -Compositing	


-Local nearest-neighbor exchange	


       -Particle tracing	


       -Ghost cell exchange	


       -Component labeling	



Problem:	



 -Large data -> scalable, parallel analysis	


  -Analysis is custom 	


-Large data analysis has tough initial barriers	


  -Lack of resources	


  -Steep parallel learning curve	


Achieve scalability through a library of core data 
movement components that:	



-Balance load (computation, communication)	


-Minimize / optimize data movement (storage and 
network)	


-Hide data movement (overlap with work)	


Benefits:	


-Researchers can study new algorithms	


-Computer / computational scientists can build 
custom applications	


-Reuse core components	
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Partitioning and Repartitioning: ���
Eg. Round Robin Assignment 	



1. 	

Initial Partition	



3. 	

Repartition to 
optimize metric 

2. 	

Compute, 
determine 
balance metric	



Particle tracing with 1, 2, 4, 8, and 16 
blocks per process. A larger number 
of smaller blocks is better, to a limit.	



Partition data 
structure:	



Maintain local data 
only, not a global table 

of the partition. Do 
not want O(total data 

size) or O(total 
system size) memory 

use.	
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Parallel I/O: BIL – The Block I/O Layer	



I/O patterns in analysis/visualization often 
revolve around block-oriented patterns. 
BIL abstracts these patterns across files 
and variables in raw, netCDF, and HDF 
formats.	
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Multifile test: BIL runs at 75% of the IOR Benchmark. 
Scales with number of processes, up to 10X 
improvement over original MPI-IO implementation.	



Visualization Viewpoint: Towards a General I/O Layer for Parallel Visualization Applications. 
Kendall et al., To appear IEEE Computer Graphics and Applications, 2011 

Courtesy of Wesley Kendall, University of Tennessee, Knoxville 

API:	


-BIL_Add_{r,w}block{raw,nc,hdf}(	


     block_bounds, file, variable, buffer);	


-BIL_{Read,Write}();	





Communication Kernels 	



1. 	

Round 1 
exchange with k 
= 4, eg.	



3. 	

Repeat for as 
many rounds as 
desired (may be 
partial merge) 

2. 	

Round 2 
exchange with k 
= 2, eg.	



Parameters:	


Number of rounds, k-values per round, 
swap or transfer, gather to root or parallel 
output, complete or partial merge	



1. 	

Perform local 
computations 
on blocks	



3. 	

Repeat 

2. 	

Exchange 
objects among 
processes when 
they reach the 
block boundary.	



Parameters:	


Number of rounds, terminating 
criteria, degree of synchony in 
communication	



Global Reduction	

 Local Nearest Neighbor Exchange	
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Ongoing Work: Information-Theoretic Analysis	



Objective	


Decide what data are the most essential for analysis 	


Transform data into effective representations/visualizations that rapidly 

convey the most insight 	



Minimize the information losses and maximize the quality of analysis	


Steer the analysis of data based on information saliency	



An Information-theoretic approach	


Quantify Information content based on Shannon’s entropy	


Create a quantitative data analysis model to analyze the information flow 

across the entire data analysis and visualization pipeline	


Use this model to design new analysis data structures and algorithms	



Feature 
E

xtraction 

R
endering 

Visual 
M

apping 

010100010 
1010111100 
0001110111 

Collaboration with the Ohio State University and New York University Polytechnic Institute 

Images courtesy Han-Wei Shen, the Ohio State University 
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Ongoing Work: Parallel Topological Analysis	



- Transform discrete scalar field into Morse-Smale complex	


-Nodes are minima, maxima, saddle points of scalar values	


- Arcs represent constant-sign gradient flow	


- Used to quickly see topological structure	


- Never parallelized before; we scaled to 32K nodes	



Two levels of 
simplification of 

the Morse-Smale 
complex for jet 

mixture fraction.	



Image courtesy Attila 
Gyulassy, University of Utah 

Combustion data courtesy 
Jackie Chen (SNL) and 

Ray Grout (NREL). 
Generated by the S3D 

combustion code. 

Collaboration with SCI Institute, University of Utah 

Streamlines 
and Morse-
Smale complex  
in turbulent 
region in flame 
stabilization	
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Ongoing Work: Geometric Analysis	



Material interfaces are key to energy breakthroughs.	



Current analysis, visualization, and display methods are 
inadequate for complex multiscale materials science.	



Nanobowls are nanoscale bowl-shaped aluminum oxide 
structures designed to trap catalysts. Scientists model 
these structures under different conditions and use 
visual analysis to determine whether they are stable.	



Material interfaces require quantitative and visual analysis.	


A unified volumetric representation for electrostatic 

material boundaries	


Advanced 3D display technology for improved depth 

perception	



Analysis, 3D visualization, and validation in an end-to-end 
work environment	



Exploration environment is assisting in scientific 
discovery.	



Our solution revealed that the volume of the simulated 
nanobowl varied over time and temperature.	



This result helped guide future simulations and facilitated 
communication with other scientists.	



Evolution of 15 angstrom 
nanobowls at different 
temperatures, courtes Aaron Knoll	



SciDAC-e collaboration with EVL, University of Illinois at Chicago & CNM, MSD 

Custom-built autostereoscopic 
display for resolving complex 
structures	
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Data-Intensive Analysis at the Forefront of Science	



Ongoing, Future	



- Continue developing software infrastructure for scalable analysis in HPC systems	



- Continue collaborating with scientists to integrate analysis with applications	



Conclusions	



- Exascale requires new thinking about analysis	


- More analysis must (will) be integrated with simulation	


- Scalable analysis is data-intensive: Moving data, transforming data, reducing data, 
analyzing data, storing data	


- Scientists need to take ownership of their own analysis	


- Less visual, more analytical analysis at early stages of the science pipeline	


- Intelligent data reduction	
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“The purpose of computing is insight, not numbers.”	


	

–Richard Hamming, 1962 

ANL Initiatives Workshop 4/4/11	




