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The Need for Parallel Visualization and Analysis	
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When data sizes are too large for moving data or 
processing serially, parallel analysis and visualization 
needs to be executed on HPC machines at increasingly 
large scale. Results are available sooner, access to all 
data at full resolution is possible. Visualization / data 
analysis are becoming  computational challenges in their 
own right, requiring scalable algorithms.	



Dataset Grid size Data size 
(GB) 

MAX 512^3 1.5 

MAX 1024^3 12 

MAX 2048^3 98 

RTI 2304 x 4096 
x 4096 432 

Flame 
1408 x 1080 
x 1100 x 32 
time steps 

608 

Test Data Sizes	


Image courtesy Mark Petersen, Daniel 
Livescu, LANL. Code: CFDNS	



Image courtesy Ray Grout, 
NREL, Hongfeng Yu, Jackie 
Chen, SNL Code: S3D	



Image courtesy Paul 
Fischer, Aleks 
Obabko, ANL. Code: 
Nek5000	



MAX Experiment	



Rayleigh-Taylor Instability	



Flame Stabilization	





Parallel Particle Tracing of Field Lines	
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Problem	



Field lines require high-order iterative numerical integration to trace particles in the flow field.	


Data sizes are large, as the previous slide showed, and large numbers of particles are needed 

(hundreds of thousands) for accurate further analysis of field line features.	



High communication volume and data-dependent load balance make particle tracing 
challenging to parallelize and scale efficiently.	



Contributions	


A configurable 3D / 4D hybrid data structure enables variable size and number of blocks, and 

adjustable in-core parallelism / out-of-core sequencing while tracing time-varying flows.	



A communication algorithm that enables adjustable synchronization	


A study of load balancing with three solutions that we tested	


Large-scale parallel benchmark results of both and static and time-varying scientific data	



Reference Max. Grid 
Size 

Max. 
processes 

Max. 
Particles 

Time 
Dependence Data Structure Load Balance 

Yu et al. SC 07 8643 256 1 M Time-varying 4D Preprocess 
Pugmire et al. SC 

09 8003 512 22 K Steady-state 3D Dynamic 

Peterka et al. 
IPDPS 11 2K x 4K x 4K 32 K 128 K Time-varying 3D / 4D hybrid Static 

Comparison to Prior Work	





4	



decompose domain into blocks	



  and assign blocks to processes	


for (epochs) {	


  read my process’ data blocks	


  for (rounds) {	


    for (my blocks) { 	


      advect particles	


    }	


    exchange particles	


  } 	


}	



Configurable, 3D / 4D Hybrid Data Structure and Algorithm	



Data structure	



Internally, all blocks are 4D, but we allow separate 
grouping in space (blocks) and time (epochs) such that 
we can control how much data are kept in-core with 
the size of the epoch. This enables time-varying data to 
be traced natively in 4D, without requiring the entire 
4D dataset to be resident in memory, to run on 
desktops, clusters, and supercomputers.	



Algorithm	
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Sparse collectives can be implemented 
using all-to-all (A2A) or point-to-point 
(P2P).	



A2A is synchronous, while P2P allows for 
varying degrees of synchrony.	



Communication Algorithm	



All-to-all implementation	



for (processes in my neighborhood) {	



  pack message of block IDs and particle counts	


  post nonblocking send	


  pack message of particles	


  post nonblocking send	


  post nonblocking receive of IDs and counts	


}	


wait for enough IDs and counts to arrive	


for (IDs and counts that arrived) {	


  post blocking receive for particles	


}	



Point-to-point implementation	



Pack vector of sending block ids, # points	


Exchange point counts (MPI_Allltoallv)	


Unpack vector of receiving point counts	


Pack vector of sending points	


Exchange points (MPI_Alltoallv)	


Unpack vector of received points	
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Changing from all-to-all (A2A) to point-to-point (P2P) and waiting for all messages to arrive 
offers little improvement, but dialing down the percentage of messages for which to wait 
helps significantly.	



Communication Performance	



MAX experiment data. A2A is virtually 
the same as 100% synchronized P2P	



Flame stabilization data. Less synchronization 
(waiting for a smaller percentage of 
messages) improves performance.	
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Computational load is data dependent: data blocks containing vortices (sinks) attract 
particles and have high angular frequency requiring thousands more advection steps to 
compute than blocks with homogeneous flow. In the following slides, we evaluate three 
solutions: particle termination, multiblock assignment, and dynamic block re-assignment.	



The Problem of Load Balancing	



One process containing 4 blocks, with one block containing a 
vortex, can affect the load balance of the entire program execution.	
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Problem: A busy process causes others to wait, which propagates throughout the system.	



Solution: Particles that don’t exit the current block after one round are terminated. There 
is no loss of information because these particles have near-zero velocity.	



Particle Termination	



Jumpshots of 128 processes: process 105 is computation-bound and causes all others to wait.Terminating 
particles that do not leave the current block reduces maximum computation time and overall time.	



BEFORE	

 AFTER	



Time	

 Time	



Without Particle Termination With Particle Termination 
Max. Computation Time 243 s 55 s 

Total Execution Time 256 s 67 s 
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Decomposing the domain into a larger number of smaller blocks helps, to a limit. 
Computational hot-spots are more likely to be amortized over a greater number of 
processes. Limiting factor: smaller blocks incur less computation and more 
communication because surface area / volume increases.	



Multiblock Assignment	



Example of 512 voxels 
decomposed into 64 blocks 
and assigned to 3 
processes. Each process 
contains 21 or 22 blocks.	
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Decompositions of 1, 2, 4, 8, and 16 blocks per 
process in the MAX dataset, 512^3, 8K particles. 
Higher block numbers reduce the overall 
execution time. Early particle termination not 
applied in these tests.	
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Re-assignment is performed with the help of the Zoltan Parallel Data Services Toolkit. 
Granularity is block-level, and the weighting function is the number of advection steps 
per block. Reassignment is performed between epochs in time-varying flame dataset.	



Dynamic Block Re-assignment	



Dynamic re-assignment algorithm	



start with default round-robin partition	



for (epochs) {	


  read data for current epoch 	


    with current block assignment	


  advect particles	


  compute weighting function	


  compute new block assignment	


}	



Std. Dev. Total 
Advection Steps 

Max. Compute 
Time 

Time 
steps Epochs Static Dynamic Static Dynamic 

16 4 31 20 0.15 0.14 
16 8 57 28 1.03 0.99 
32 4 71 42 0.18 0.16 
32 8 121 52 1.12 1.06 
64 4 172 103 0.27 0.21 
64 8 297 109 1.18 1.09 

Next steps	



-Optimize re-assignment	


-Test in steady-state flow	



Dynamic re-assignment compared to static 
assignment, measured by standard deviation in 
number of steps (blue columns) and maximum 
compute time (red columns)	



compare	

 compare	





Large-Scale Benchmark Results: Test Environment	
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Tests were run on the Argonne Leadership Facility’s Intrepid Machine at up 
to 32 K processes in virtual node mode (one MPI process per core).	



The Blue Gene/P features a highly scalable 
compute architecture composed of 160,000 
compute cores. Peak performance is 557 TF.	



Specifications 
Clock frequency 850 MHz 

Total cores 160 K 4 cores / node 
3D Torus network 5 us latency 3.4 Gb/s per link 

Tree network 5 us latency 6.8 Gb/s per link 
Memory per MPI process 512 MB vn mode 2 GB smp mode 

Total memory 80 TB 
System software MPI, CNK IBM xlcxx 

Compute
Nodes

Switch
I/O
Nodes

Eureka
Data Analysis Cluster

GPFS / PVFS
Parallel File System

Intrepid
Supercomputer

ALCF operates Intrepid, Eureka, and a 
parallel file system connected to the same 
network. Our tests were run on Intrepid.	





MAX Experiment Results	
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Strong scaling, 5123, 10243, 20483 data, 128K particles, 1 time-step	



Data courtesy Aleks Obabko and Paul Fischer, ANL	





Rayleigh-Taylor Results	
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Weak scaling, 2304 x 4096 x 4096 data, 16K to 128K particles, 1 time-step	



Data courtesy Mark Petersen and Daniel Livescu, LANL	





Flame Stabilization Results	
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Weak scaling, 1408 x 1080 x 1100 data, 512 to 16K particles,1 to 32 time-steps	



Data courtesy Ray Grout, NREL and Jackie Chen, SNL	





Summary	
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Successes	



A configurable time-space data structure with variable size epochs and blocks	


A communication algorithm with adjustable synchronization	


A study of load balancing that tested three solutions	


Large-scale parallel benchmark results of both and static and time-varying scientific data	



Conclusions	


Our data structure enables us to load as many time-steps into memory as possible.	


Less synchronization in communication is better, eg. waiting for 10% of pending messages.	


In practice, we use particle termination and multiblock assignment for load balancing.	


Dynamic re-assignment is a promising avenue for further research.	


Demonstrated some of the largest parallel results to date (grid size, system size, # particles).	



Ongoing / future work	


Continuing to study load balancing, including preprocessing using graph partitioning	


Continuing to develop prototype AMR grid version	


Planning to tackle unstructured grid problems	


Investigating hybrid messaging / threading parallel approaches	
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Subversion repository	


https://svn.mcs.anl.gov/repos/osuflow/trunk	



Thank You	
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