
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

A Study of Parallel Particle Tracing for Steady-State
and Time-Varying Flow Fields	

Tom Peterka, Rob Ross Argonne National Laboratory	

Boonth Nouanesengsey, Teng-Yok Lee, Han-Wei Shen The Ohio State University	

Wes Kendall, Jian Huang University of Tennessee, Knoxville	

IPDPS 2011	

5/18/11 Anchorage AK	

Early stages of
Rayleigh-Taylor
Instability flow	

The Need for Parallel Visualization and Analysis	

2	

When data sizes are too large for moving data or
processing serially, parallel analysis and visualization
needs to be executed on HPC machines at increasingly
large scale. Results are available sooner, access to all
data at full resolution is possible. Visualization / data
analysis are becoming computational challenges in their
own right, requiring scalable algorithms.	

Dataset Grid size Data size
(GB)

MAX 512^3 1.5

MAX 1024^3 12

MAX 2048^3 98

RTI 2304 x 4096
x 4096 432

Flame
1408 x 1080
x 1100 x 32
time steps

608

Test Data Sizes	

Image courtesy Mark Petersen, Daniel
Livescu, LANL. Code: CFDNS	

Image courtesy Ray Grout,
NREL, Hongfeng Yu, Jackie
Chen, SNL Code: S3D	

Image courtesy Paul
Fischer, Aleks
Obabko, ANL. Code:
Nek5000	

MAX Experiment	

Rayleigh-Taylor Instability	

Flame Stabilization	

Parallel Particle Tracing of Field Lines	

3	

Problem	

Field lines require high-order iterative numerical integration to trace particles in the flow field.	

Data sizes are large, as the previous slide showed, and large numbers of particles are needed

(hundreds of thousands) for accurate further analysis of field line features.	

High communication volume and data-dependent load balance make particle tracing
challenging to parallelize and scale efficiently.	

Contributions	

A configurable 3D / 4D hybrid data structure enables variable size and number of blocks, and

adjustable in-core parallelism / out-of-core sequencing while tracing time-varying flows.	

A communication algorithm that enables adjustable synchronization	

A study of load balancing with three solutions that we tested	

Large-scale parallel benchmark results of both and static and time-varying scientific data	

Reference Max. Grid
Size

Max.
processes

Max.
Particles

Time
Dependence Data Structure Load Balance

Yu et al. SC 07 8643 256 1 M Time-varying 4D Preprocess
Pugmire et al. SC

09 8003 512 22 K Steady-state 3D Dynamic

Peterka et al.
IPDPS 11 2K x 4K x 4K 32 K 128 K Time-varying 3D / 4D hybrid Static

Comparison to Prior Work	

4	

decompose domain into blocks	

 and assign blocks to processes	

for (epochs) {	

 read my process’ data blocks	

 for (rounds) {	

 for (my blocks) { 	

 advect particles	

 }	

 exchange particles	

 } 	

}	

Configurable, 3D / 4D Hybrid Data Structure and Algorithm	

Data structure	

Internally, all blocks are 4D, but we allow separate
grouping in space (blocks) and time (epochs) such that
we can control how much data are kept in-core with
the size of the epoch. This enables time-varying data to
be traced natively in 4D, without requiring the entire
4D dataset to be resident in memory, to run on
desktops, clusters, and supercomputers.	

Algorithm	

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

5	

Sparse collectives can be implemented
using all-to-all (A2A) or point-to-point
(P2P).	

A2A is synchronous, while P2P allows for
varying degrees of synchrony.	

Communication Algorithm	

All-to-all implementation	

for (processes in my neighborhood) {	

 pack message of block IDs and particle counts	

 post nonblocking send	

 pack message of particles	

 post nonblocking send	

 post nonblocking receive of IDs and counts	

}	

wait for enough IDs and counts to arrive	

for (IDs and counts that arrived) {	

 post blocking receive for particles	

}	

Point-to-point implementation	

Pack vector of sending block ids, # points	

Exchange point counts (MPI_Allltoallv)	

Unpack vector of receiving point counts	

Pack vector of sending points	

Exchange points (MPI_Alltoallv)	

Unpack vector of received points	

6	

Changing from all-to-all (A2A) to point-to-point (P2P) and waiting for all messages to arrive
offers little improvement, but dialing down the percentage of messages for which to wait
helps significantly.	

Communication Performance	

MAX experiment data. A2A is virtually
the same as 100% synchronized P2P	

Flame stabilization data. Less synchronization
(waiting for a smaller percentage of
messages) improves performance.	

7	

Computational load is data dependent: data blocks containing vortices (sinks) attract
particles and have high angular frequency requiring thousands more advection steps to
compute than blocks with homogeneous flow. In the following slides, we evaluate three
solutions: particle termination, multiblock assignment, and dynamic block re-assignment.	

The Problem of Load Balancing	

One process containing 4 blocks, with one block containing a
vortex, can affect the load balance of the entire program execution.	

8	

Problem: A busy process causes others to wait, which propagates throughout the system.	

Solution: Particles that don’t exit the current block after one round are terminated. There
is no loss of information because these particles have near-zero velocity.	

Particle Termination	

Jumpshots of 128 processes: process 105 is computation-bound and causes all others to wait.Terminating
particles that do not leave the current block reduces maximum computation time and overall time.	

BEFORE	

 AFTER	

Time	

 Time	

Without Particle Termination With Particle Termination
Max. Computation Time 243 s 55 s

Total Execution Time 256 s 67 s

9	

Decomposing the domain into a larger number of smaller blocks helps, to a limit.
Computational hot-spots are more likely to be amortized over a greater number of
processes. Limiting factor: smaller blocks incur less computation and more
communication because surface area / volume increases.	

Multiblock Assignment	

Example of 512 voxels
decomposed into 64 blocks
and assigned to 3
processes. Each process
contains 21 or 22 blocks.	

!"#$%

&#'("

)*
)+
),

Decompositions of 1, 2, 4, 8, and 16 blocks per
process in the MAX dataset, 512^3, 8K particles.
Higher block numbers reduce the overall
execution time. Early particle termination not
applied in these tests.	

10	

Re-assignment is performed with the help of the Zoltan Parallel Data Services Toolkit.
Granularity is block-level, and the weighting function is the number of advection steps
per block. Reassignment is performed between epochs in time-varying flame dataset.	

Dynamic Block Re-assignment	

Dynamic re-assignment algorithm	

start with default round-robin partition	

for (epochs) {	

 read data for current epoch 	

 with current block assignment	

 advect particles	

 compute weighting function	

 compute new block assignment	

}	

Std. Dev. Total
Advection Steps

Max. Compute
Time

Time
steps Epochs Static Dynamic Static Dynamic

16 4 31 20 0.15 0.14
16 8 57 28 1.03 0.99
32 4 71 42 0.18 0.16
32 8 121 52 1.12 1.06
64 4 172 103 0.27 0.21
64 8 297 109 1.18 1.09

Next steps	

-Optimize re-assignment	

-Test in steady-state flow	

Dynamic re-assignment compared to static
assignment, measured by standard deviation in
number of steps (blue columns) and maximum
compute time (red columns)	

compare	

 compare	

Large-Scale Benchmark Results: Test Environment	

11	

Tests were run on the Argonne Leadership Facility’s Intrepid Machine at up
to 32 K processes in virtual node mode (one MPI process per core).	

The Blue Gene/P features a highly scalable
compute architecture composed of 160,000
compute cores. Peak performance is 557 TF.	

Specifications
Clock frequency 850 MHz

Total cores 160 K 4 cores / node
3D Torus network 5 us latency 3.4 Gb/s per link

Tree network 5 us latency 6.8 Gb/s per link
Memory per MPI process 512 MB vn mode 2 GB smp mode

Total memory 80 TB
System software MPI, CNK IBM xlcxx

Compute
Nodes

Switch
I/O
Nodes

Eureka
Data Analysis Cluster

GPFS / PVFS
Parallel File System

Intrepid
Supercomputer

ALCF operates Intrepid, Eureka, and a
parallel file system connected to the same
network. Our tests were run on Intrepid.	

MAX Experiment Results	

12	

Strong scaling, 5123, 10243, 20483 data, 128K particles, 1 time-step	

Data courtesy Aleks Obabko and Paul Fischer, ANL	

Rayleigh-Taylor Results	

13	

Weak scaling, 2304 x 4096 x 4096 data, 16K to 128K particles, 1 time-step	

Data courtesy Mark Petersen and Daniel Livescu, LANL	

Flame Stabilization Results	

14	

Weak scaling, 1408 x 1080 x 1100 data, 512 to 16K particles,1 to 32 time-steps	

Data courtesy Ray Grout, NREL and Jackie Chen, SNL	

Summary	

15	

Successes	

A configurable time-space data structure with variable size epochs and blocks	

A communication algorithm with adjustable synchronization	

A study of load balancing that tested three solutions	

Large-scale parallel benchmark results of both and static and time-varying scientific data	

Conclusions	

Our data structure enables us to load as many time-steps into memory as possible.	

Less synchronization in communication is better, eg. waiting for 10% of pending messages.	

In practice, we use particle termination and multiblock assignment for load balancing.	

Dynamic re-assignment is a promising avenue for further research.	

Demonstrated some of the largest parallel results to date (grid size, system size, # particles).	

Ongoing / future work	

Continuing to study load balancing, including preprocessing using graph partitioning	

Continuing to develop prototype AMR grid version	

Planning to tackle unstructured grid problems	

Investigating hybrid messaging / threading parallel approaches	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

A Study of Parallel Particle Tracing for Steady-State
and Time-Varying Flow Fields	

Subversion repository	

https://svn.mcs.anl.gov/repos/osuflow/trunk	

Thank You	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational

Sciences (NCCS)	

Funding	

US DOE SciDAC UltraVis Institute	

People	

Rob Latham, Dave Goodell, Paul Fischer, Aleks
Obabko, Mark Petersen, Daniel Livescu, Ray
Grout, Jackie Chen, Paul Ricker, Matt Sutter	

