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Executive Summary ���
We describe work in progress for sampling a regular 

density field from a distribution of particle positions using a 
Voronoi tessellation as an intermediate data model.	
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Key Ideas 	



•  Convert discrete particle data into continuous function that 
can be interpolated, differentiated, interpolated, represented 
as a regular grid (field)	



•  Automatically adaptive window size and shape	



•  Comparison with CIC and SPH using synthetic and actual data	



•  Voronoi tessellation and density estimation computed in 
parallel on distributed-memory HPC machines	



•  Application to gravitational lensing	





Preliminaries	
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Estimation Kernels	
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CIC	


Fixed  size and shape	



SPH	


Variable size and fixed shape	



TESS	


Variable size and shape	



In cloud-in-cell (CIC) methods, 
particles are distributed to a 
fixed number of grid points.	



In smoothed particle 
hydrodynamics  (SPH) methods, 

particles are distributed to a 
variable number of grid points 
according to a variable size and 
fixed shape smoothing kernel.	



In tessellation (TESS) methods, 
particles are distributed to a 

variable number of grid points 
according to the Voronoi or 

Delaunay tessellation that has 
variable size and shape cells.	





Cloud in Cell (CIC)	
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The mass of point P is 
distributed among nearest 
grid points G0 – G7.	



The volume of of the grid 
cube with corners G0 – G7, 	



  v(G0 , G7) is normalized to 
1.0	



The mass assigned to grid 
point Gi is 	



  m(Gi) = 1.0 – v(Gi , P)	





Smoothed Particle Hydrodynamics (SPH)	
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Size of kernel is determined 
by particle density, not by 
grid spacing (eg. radius of n 
particles)	



n is a parameter that must still 
be determined a priori	



Kernel W(r) also must be 
specified, eg. Gaussian	



Shape is symmetrical, eg. 
spherical	





Tessellation (TESS)	
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Parameter free: no fixed 
window size determined by 
grid or number of particles	



Kernel free: no smoothing 
kernel	



Shape free: asymmetrical, no 
window or kernel shape	



Automatically adaptive	



P0 is a particle whose Voronoi cell covers several grid points. Its 
mass is uniformly distributed (zero-order estimation) to those 
grid points. P1 is a small cell that covers no grid points. Its mass is 
assigned to the nearest grid point.	





Tess Library	
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Tess is our parallel library for large-scale 
distributed-memory Voronoi and 
Delaunay tessellation.	



Dense, our density estimator, currently reads the 
tessellation from disk and estimates density onto a 
regular grid. Eventually dense will be converted to a 
library that can be coupled in memory to tess 
output, saving the tessellation storage.	





DIY Library	
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DIY usage and library organization	



Features	


-Parallel I/O to/from storage	


-Domain decomposition	


-Network communication	


-Written in C++, with C-style  
bindings, can be called from 
Fortran, C, C++	


-Autoconf build system	


-Lightweight: libdiy.a 800KB	


-Maintainable: ~15K LOC	


-MPI + openmp hybrid parallel 
model	



Benefits 	


-Enable large-scale data-parallel 
analysis on all HPC machines	


-Provide internode scalable data 
movement	



-Analysis applications can be 
custom	


-Reuse core components	



Applications	



Particle tracing in 
thermal hydraulics 

Information entropy 
in astrophysics 

Topology in 
combustion 

Computational 
geometry in 
cosmology 
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Method	
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Overall Algorithm	
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for (all Voronoi cells) {	



  compute grid points in cell bounding box	



  compute Voronoi cell interior grid points from 	


     grid points in cell bounding box	



  for (all interior grid points) {	



    if (grid point is in bounds of local block)	


      add mass contribution to grid point	



    else	


      send mass contribution to neighboring block 	


         containing grid point and add it there	



    if (no grid points in interior of  Voronoi cell)	


      add mass contribution to single nearest 	


         grid point	



    if (2D projection) {	


      accumulate mass at 2D pixel	


      divide by pixel area for 2D density	


    } 	



    else	


        divide by voxel volume for 3D density	



  } // interior grid points	



} // Voronoi cells	





Complexity and Optimizations	
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Naïve algorithm to find interior 
grid points of each Voronoi cell 
(polyhedron) is O(n3). Triple 
nested loop	



for all z, {	


    for all y {	


      for all x {	


         scan line search for border	



n is size of grid in one dimension 
since bounding boxes tessellate 
the grid (plus some overlap in 
cell bounds)	



Limit grid point search:	


• Limit x scans: don’t need to find 
interior, only cell boundary 
crossings, and can use previous 
scan boundary crossings as 
starting points for next scan	



• Limit y scans: use y limits at 
previous z as starting y 
coordinates of next set of scans	





Optimizations	
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Run time for naïve and improved algorithms is 
bounded by number of interior evaluations	



Time complexity as a function of number of 
interior evaluations for different grid sizes	





Tess Strong 
Scaling	
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•  128^3 synthetic 
particles	



•  End-to-end time 
and component 
times shown	



•  60% strong scaling 
excluding I/O	





Dense Strong 
and Weak 

Scaling	
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•  128^3 synthetic 
particles	



•  End-to-end time 
(including reading 
tessellation and 
writing image)	



•  3D->2D projection	



•  51% strong scaling 
(End-to-end) for 
4096^3 grid	





Accuracy	
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Navarro-Frenk-White (NFW)	
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k is a constant, 1 for us	



ρ(r) is Monte Carlo 
sampled to get test set of 
particles	



Ground truth is 2D plot of 	


ρ(r)	



We limit r to [-1.5, 1.5] and 
NFW(r) to 106	



Our first synthetic dataset is derived from an analytical density function commonly 
used in cosmology.	





NFW 2D Density Fields	



18	



Analytical	

 TESS	

 CIC	



Top row:	


10243 3D density projected 
to 10242 2D density field 
and rendered in ParaView	



Bottom row:	


Ratio of analytical divided 

by estimated density	





TESS	
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Comparison between analytical 2D 
density and estimated density at	


 y = 0 cross section	



Ratio between analytical 2D density 
divided by estimated density at	


 y = 0 cross section	
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CIC	



Comparison between analytical 2D 
density and estimated density at	


 y = 0 cross section	



Ratio between analytical 2D density 
divided by estimated density at	


 y = 0 cross section	





Complex NFW (CNFW)	
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Our second synthetic dataset is a combination of several NFWs of varying cutoff 
densities and asymmetric scaling factors.	



Analytical cutoff density 
contours	



2e5 sampled particles	

 Voronoi tessellation	





CNFW 2D 
Density Fields	
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Top row:	


10243 3D density projected 
to 10242 2D density field 
and rendered in ParaView	



Bottom row:	


Ratio of analytical divided 

by estimated density	



Analytical	

 TESS	

 CIC	





Isocontours	
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Isocontours taken at a target density 
value near the center of the CNFW 
dataset are another comparison of 
estimation methods. Upper right: 
SPH. Lower right: CIC. Lower left: 
TESS.	





Density Power Spectrum	
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CNFW density power spectrum is derived from FFT of density and shows amount of 
density contained at different spatial frequencies. All methods do well at low frequencies, 
but diverge from analytical in high frequency regions.	





Application: Gravitational Lensing	
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Lensing	
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•  Gravitational lensing = 
light rays deflecting 
when passing through a 
gravitational potential	



•  Properties of lensed 
images a a function of 
the gravitational 
potential between object 
and observer	



•  Can model gravitational 
potential as a 2D image 
of density of dark matter 
tracers	



 One application of the density estimator is gravitational lensing for simulating 
the distortion of sky surveys as light rays are refracted by galaxies en route to 
the observer.	





Lensing for Validating Simulations with Sky Surveys	



27	



Actual far field	



Simulated far field	



Actual near field density	



Simulated near field density	



Distorted observations	



Simulated distortion	



Far Field	

 Lens	


Observed	





2D Density of Halo	
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Particle data from 
HACC N-body 
cosmology code from 
halo ID 7445077095 	



Voronoi tesellation 
of halo particles 
colored by cell 
volume	



Final output 
2D density 
field for 
lensing	





Summary���
I described sampling a regular density field from a 

distribution of particle positions using a Voronoi tessellation 
as an intermediate data model.	
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Key Ideas 	



•  Automatically adaptive window size and shape	



•  Comparison with CIC and SPH using synthetic and actual data	



•  Voronoi tessellation and density estimation computed in 
parallel on distributed-memory HPC machines	



•  Application to gravitational lensing	



Ongoing and Future Work 	



•  Linear Barycentric interpolation inside Voronoi cells through 
Delaunay tessellation	



•  Shared memory threading inside MPI tasks	



•  Other applications such as 3D volume rendering	





Tom Peterka	



tpeterka@mcs.anl.gov	



Mathematics and Computer Science Division	



Acknowledgments:	



Facilities	


Argonne Leadership Computing Facility (ALCF)	



Funding	


US DOE SciDAC SDAV Institute	



People	


Juliana Kwan, Hal Finkel, Adrian Pope, Nick 

Frontiere, George Zagaris	



Software	


https://repo.anl-external.org/repos/tess/trunk	



“The purpose of computing is insight, not numbers.”	


	

–Richard Hamming, 1962 
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