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Definition of Image Compositing"
 Visualization definition: the “sort” in sort-last parallel rendering


The final stage in sort-last parallel visualization 
algorithms:

1.  Partition data among processes

2.  Visualize local data

3.  Composite resulting images into one


Composition = communication + computation


The computation is usually an alpha-blend called “Over”

i =   ( 1.0  –  αold) * inew + iold 
α = ( 1.0  –  αold) * αnew +α old 

where i = intensity (R,G,B),  α = opacity


Communication is the subject


 of this paper


[Porter & Duff, Compositing Digital 

Images, 1984]
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Abstraction of Image Compositing"
 The message-passing view: a reduction or reduce-scatter


Reduce-scatter is actually 
better. No need to gather 
at one node; output image 
can be written using 
collective I/O in parallel.


Can be implemented as an 
MPI collective with user-
defined noncommutative 
reduction operator.
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Formal Problem Definition"
 Three rules


Tested at 1, 2, 4, and 8 Megapixels. 1 pixel = 4 floats (R,G,B,A) (16 bytes per pixel)

Vector lengths are 16MB, 32 MB, 64 MB, and 128 MB, respectively.


1.  P processes each own a vector xp of length n. (Each element of n is 
one pixel)


2.  Over is a binary component-wise linear combination of two vectors. 
Over is associative and noncommutative. In our tests, the canonical 
order of compositing is p1 over p2 iff rank(p1) < rank(p2). Under is 
an equivalent operator,  p1 over p2    p2 under p1


3.  The algorithm terminates when every vector element has its final 
value. Not all elements need to reside at the same process.
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Background: Baseline Performance"
 MPI collectives, direct-send, and binary swap


Performance of direct-send compositing for 
2.5 Mpixel image degrades after 2048 
processes due to contention from larger 
number of messages.


Performance of binary swap and MPI 
collectives for 2 Mpixel image. Binary swap 
performs 3X faster than reduce-scatter.
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Direct-Send and Binary Swap Operation"
Number of rounds, groups, number of participants in a group


Direct-send: maximum parallelism but high number of small messages results in 
network contention, al messages in one round, non-power-of-two processes ok


Binary swap: fewer messages per round,  log2p rounds, 
p = number of processes, power of 2 


[Hsu, Segmented Ray 

Casting for DataParallel 

Volume Rendering, 1993]


[Ma et al., Parallel Volume Rendering 

Using Binary-Swap Compositing, 1994]
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Radix-k Compositing"
 A generalization of direct-send and binary swap


Radix-k: More parallel, managed contention, p does not need to be power of 2 
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Keys to Success"
 Increase message concurrency and overlap 

communication with computation


- More participants per group than binary swap (k > 2)


- Manage contention by limiting k value (k < p)


- Overlap communication with computation (nonblocking 
communication and careful order of operations)


- Can never do worse than binary swap or direct-send 


- No penalty for non-powers-of two numbers of processes
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Theoretical Complexity "
 Lower bounds on latency, bandwidth, and computation


Algorithm Latency Bandwidth Computation 

Reduce-scatter α log2 p n β (p – 1) / p n γ (p – 1) / p 

Direct-send α p / k n β (p – 1) / p n γ (p – 1) / p 

Binary swap α log2 p n β (p – 1) / p n γ (p – 1) / p 

2-3 swap 
(nonpower-of-

two case)* 
4 α log2 p 4 / 3 n β p 2 n γ p 

Radix-k α logk p n β (p – 1) / p n γ (p – 1) / p 

Standard model assuming fully connected network, nonoverlapping 
communication and computation, zero contention for k participants. 

Time to transmit one message consisting of n elements is α + n β +  n γ.


p = number of processes

k = number of participants with 

no contention

n = length of vector

α = latency per message 
β = time to transmit one 

vector element 
γ = time to compute (reduce) 

one vector element


*[Yu et al., Massively Parallel 

Volume Rendering Using 2-3 Swap 

Image Compositing, 2008]
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Profiling Actual Cost"
 MPE and Jumpshot


Jumpshot profile of binary swap for 64 
processes is highly synchronized into 6 
compute – communication rounds.


Radix-k for 64 processes factored into 2 
rounds of k = [8, 8] overlaps 
communication with computation 
whenever possible.
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Radix-k Performance"
 Powers of two process counts on Blue Gene/P Intrepid


Scalability over a range of process 
counts and image sizes. Radix-k 
performance is 40% better than 
binary swap. The step at 1024 
processes is due to moving beyond a 
single rack in the 3D torus of Blue 
Gene/P.
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Radix-k Performance"
 From 32 to 35,000 processes including non-powers-of-two on Blue Gene/P Intrepid


Radix-k continues to perform with a 40% improvement over binary swap at non-powers-
of-two process counts. Left: p varies from 32 to 1024 in steps of 32. Right: p continues 
from 1024 to 35,000 in steps of 1024. 
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Selecting the K-vector"
 Factoring the number of processes and considering network topology


Sweet spot for this architecture:

k = [8 8 4] with mapping process 
ranks into physical blocks of 2x2x2.


Performance of different k-values for 
256 processes, 2 megapixel image 
size. 


Binary swap:

 k = [2 2 2 2 2 2 2 2]


Direct-send:

 k = [256]
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Recap"
 Review and looking ahead


Contributions


- Unifies direct-send, binary swap and points between


-  Configurable to architecture


-  Non-powers-of-two number of processors


Ongoing and future work


- Optimizations: bounding boxes, load balancing


-  Autotuning


- Implementation in visualization libraries and MPI 
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