
Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

www.ultravis.org

A Configurable Algorithm for Parallel Image-
Compositing Applications

Tom Peterka

Argonne National Laboratory

Dave Goodell

Argonne

Rob Ross

Argonne

Rajeev Thakur

Argonne

Han-Wei Shen

The Ohio State University

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 2

Definition of Image Compositing"
 Visualization definition: the “sort” in sort-last parallel rendering

The final stage in sort-last parallel visualization
algorithms:

1.  Partition data among processes

2.  Visualize local data

3.  Composite resulting images into one

Composition = communication + computation

The computation is usually an alpha-blend called “Over”

i = (1.0 – αold) * inew + iold
α = (1.0 – αold) * αnew +α old

where i = intensity (R,G,B), α = opacity

Communication is the subject

 of this paper

[Porter & Duff, Compositing Digital

Images, 1984]

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 3

Abstraction of Image Compositing"
 The message-passing view: a reduction or reduce-scatter

Reduce-scatter is actually
better. No need to gather
at one node; output image
can be written using
collective I/O in parallel.

Can be implemented as an
MPI collective with user-
defined noncommutative
reduction operator.

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 4

Formal Problem Definition"
 Three rules

Tested at 1, 2, 4, and 8 Megapixels. 1 pixel = 4 floats (R,G,B,A) (16 bytes per pixel)

Vector lengths are 16MB, 32 MB, 64 MB, and 128 MB, respectively.

1.  P processes each own a vector xp of length n. (Each element of n is
one pixel)

2.  Over is a binary component-wise linear combination of two vectors.
Over is associative and noncommutative. In our tests, the canonical
order of compositing is p1 over p2 iff rank(p1) < rank(p2). Under is
an equivalent operator, p1 over p2  p2 under p1

3.  The algorithm terminates when every vector element has its final
value. Not all elements need to reside at the same process.

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 5

Background: Baseline Performance"
 MPI collectives, direct-send, and binary swap

Performance of direct-send compositing for
2.5 Mpixel image degrades after 2048
processes due to contention from larger
number of messages.

Performance of binary swap and MPI
collectives for 2 Mpixel image. Binary swap
performs 3X faster than reduce-scatter.

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 6

Direct-Send and Binary Swap Operation"
Number of rounds, groups, number of participants in a group

Direct-send: maximum parallelism but high number of small messages results in
network contention, al messages in one round, non-power-of-two processes ok

Binary swap: fewer messages per round, log2p rounds,
p = number of processes, power of 2

[Hsu, Segmented Ray

Casting for DataParallel

Volume Rendering, 1993]

[Ma et al., Parallel Volume Rendering

Using Binary-Swap Compositing, 1994]

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 7

Radix-k Compositing"
 A generalization of direct-send and binary swap

Radix-k: More parallel, managed contention, p does not need to be power of 2

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 8

Keys to Success"
 Increase message concurrency and overlap

communication with computation

- More participants per group than binary swap (k > 2)

- Manage contention by limiting k value (k < p)

- Overlap communication with computation (nonblocking
communication and careful order of operations)

- Can never do worse than binary swap or direct-send

- No penalty for non-powers-of two numbers of processes

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 9

Theoretical Complexity "
 Lower bounds on latency, bandwidth, and computation

Algorithm Latency Bandwidth Computation

Reduce-scatter α log2 p n β (p – 1) / p n γ (p – 1) / p

Direct-send α p / k n β (p – 1) / p n γ (p – 1) / p

Binary swap α log2 p n β (p – 1) / p n γ (p – 1) / p

2-3 swap
(nonpower-of-

two case)*
4 α log2 p 4 / 3 n β p 2 n γ p

Radix-k α logk p n β (p – 1) / p n γ (p – 1) / p

Standard model assuming fully connected network, nonoverlapping
communication and computation, zero contention for k participants.

Time to transmit one message consisting of n elements is α + n β + n γ.

p = number of processes

k = number of participants with

no contention

n = length of vector

α = latency per message
β = time to transmit one

vector element
γ = time to compute (reduce)

one vector element

*[Yu et al., Massively Parallel

Volume Rendering Using 2-3 Swap

Image Compositing, 2008]

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 10

Profiling Actual Cost"
 MPE and Jumpshot

Jumpshot profile of binary swap for 64
processes is highly synchronized into 6
compute – communication rounds.

Radix-k for 64 processes factored into 2
rounds of k = [8, 8] overlaps
communication with computation
whenever possible.

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 11

Radix-k Performance"
 Powers of two process counts on Blue Gene/P Intrepid

Scalability over a range of process
counts and image sizes. Radix-k
performance is 40% better than
binary swap. The step at 1024
processes is due to moving beyond a
single rack in the 3D torus of Blue
Gene/P.

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 12

Radix-k Performance"
 From 32 to 35,000 processes including non-powers-of-two on Blue Gene/P Intrepid

Radix-k continues to perform with a 40% improvement over binary swap at non-powers-
of-two process counts. Left: p varies from 32 to 1024 in steps of 32. Right: p continues
from 1024 to 35,000 in steps of 1024.

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 13

Selecting the K-vector"
 Factoring the number of processes and considering network topology

Sweet spot for this architecture:

k = [8 8 4] with mapping process
ranks into physical blocks of 2x2x2.

Performance of different k-values for
256 processes, 2 megapixel image
size.

Binary swap:

 k = [2 2 2 2 2 2 2 2]

Direct-send:

 k = [256]

Supercomputing 2009
 November 17, 2009 Tom Peterka tpeterka@mcs.anl.gov
 14

Recap"
 Review and looking ahead

Contributions

- Unifies direct-send, binary swap and points between

-  Configurable to architecture

-  Non-powers-of-two number of processors

Ongoing and future work

- Optimizations: bounding boxes, load balancing

-  Autotuning

- Implementation in visualization libraries and MPI

Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

www.ultravis.org

Acknowledgments:

Argonne Leadership Computing Facility

US DOE SciDAC UltraVis Institute

A Configurable Algorithm for Parallel Image-
Compositing Applications

Thank you

