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We are computing more data, faster than we can manage.

1000 ¢ Storage and Computation Rates over Time
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CPU performance
doubles in 18 months
60% annual increase

doubles in 45 months
40% annual increase

o

Rate of performance
improvement (FLOPS)

in supercomputers
since 1993.
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Ref: Rob Ross, Visualization and Parallel I/O at Extreme Scale, SciDAC 08




More than Peak FLOPS: disk /O rate limits analysis
capability. Data that is not stored can’t be analyzed.

Normalized Storage / Compute Metrics Percent Saved of Computed Data

. %
Storage FLOPS Flops per byte Code Domain o P

Machine BW (Pflop/s) stored
(GB/s) FLASH Astrophysics 10 Ricker

LLNLBG/LL 43 0.6 0104 Nek5000 CFD 1 Fischer
Jaguar XT4 42 0.3 0(10 4) CCSM Climate 1 Jacob

Intrepid BG/P 50 0.6 o(10%4) GCRM  Climate 10 Cram
Roadrunner 50 10 0(10 %) S3D Combustion  1-5  Bennett

Jaguar XT5 42 1.4 O(10 5) Ref: CScADS Scientific Data Analysis &
Visualization Workshop ‘09

-The average flops per byte of parallel I/O

disk access today is between 10,000 and

100,000 -Applications can only afford to save

-In 2001, this number was approximately between |-10% of what they compute.
500. Ref: John May, 2001. -With postprocessing, what is not saved
-DOE science applications generate cannot be analyzed.

results at an average rate of 40 flops per

byte of data. Ref: Murphy et al. ICS’05.




Our Science Workflow Cannot Scale Indefinitely
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sim — write — read — analysis/vis — write — read —view

‘ | dataset | ‘ | images | \

supercomputer vis cluster desktop

The increasing demands for analysis and visualization can be met by performing more

analysis and visualization tasks directly on supercomputers traditionally reserved for
simulation.

-Potential benefits: Increased overall performance, reduced cost, tighter integration
of analysis and visualization in computational science.

-Potential drawbacks: Reduced per-core performance, increased load on computing
resources, potential to crash computations.




Parallel Volume Rendering

Volume rendering of shock wave
formation in core-collapse supernova
dataset, courtesy of John Blondin, NCSU.

Structured grid of 11203 data elements, 5
variables per cell.

Angular momentum at

time-step 1403
Pressure at time-step 1530

Entropy over 100 time-steps

Angular momentum at Entropy at time-
time-step 1492 step 1518




Parallel Volume Rendering Algorithm

Parallel structure for volume
rendering algorithm consists of
3 stages performed in parallel

Process 0
Render @ Composite

Process 1

S Render @ Composite
I

Storage Process 2

5

Render l Composite

Process n

Render @ Composite

Parallel Volume Rendering on the IBM Blue Gene/P. EGPGV’08.
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Performance: Total and Component Time

Total and Component Time

total

I/0
Rendering
Compositing

I I I
50 100 200 500 1000 2000 5000 20000

Number of Processes
Total frame time and individual

component times. Raw data format,
| 1203, image size 16002,

Fraction of Total Frame Time (%)

Time Distribution

Render (ray casting)

Compdsiting

I/O (file reading)

I I I I I I I
50 100 200 500 1000 2000 5000 10000

. Number of Processes
The relative percentage of time in the stages of

volume rendering as a function of system size.
Large visualization is primarily dominated by data
movement: |/O and communication.




Performance: Large-scale Results

Volume Rendering End-to—-End Performance

—&— 448073 data, 4096”2 image
2240/3 data, 2048”2 image
112073 data, 10242 image

Time- Image
Grid Size step size size
(GB)  (px)

2240° 42 2048° 8K 51 96 0.9
16K 43 97 1.0
32K 35 96 1.3
44803 335 4096° 8K 96 1.1
16K 97 1.3
32K 96 1.6

Tot. Read B/W
Procs time (s) ° "©C  (GBIs)
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Number of Processes

Scalability over a variety of data, image, and
system sizes. A number of performance
points exist for each data size.




Parallel Image Compositing

The final stage in sort-last parallel visualization algorithms:
|. Partition data among processes

2. Visualize local data

3. Composite resulting images into one

2

-




Direct-Send Optimization

Compositing Time

—A— Original
—a&— Improved
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Usually in direct-send, n = m, but setting m
< n can reduce contention when n is large.
On average, O(m * n'’3) total messages,
can get down to O(n) if m = n23,

50 100 200 500 1000 2000 5000 20000

Number of Processes

) . ) ) End-to-End Study of Parallel Volume
Direct-send compositing time improved up to Rendering on the IBM Blue Gene/P. ICPP'09

30X. 11203 data volume, 16002 image size.




Radix-k Compositing Algorithm

E ; b
. .

Round 1 Round 2

Radix-k: More parallel, managed contention, p does not need to be power of 2

A Configurable Algorithm for Parallel Image-Compositing Applications. SC09




Radix-k Performance

Compositing Time for 8 Mpx Image Compositing Time for 8 Mpx Image

—a— Binary swap —&— Binary swap
—4— Radix-k —A— Radix-k

a—=

I I I I I I
600 5000 10000 15000 20000 25000 30000

Number of Processes Number of Processes

Tested at |, 2,4, and 8 Mpix. | pixel = 4 floats (16 bytes per pixel)
40% improvement over binary swap at a variety of process counts. Left: p varies from 32
to 1024 in steps of 32. Right: p continues from 1024 to 35,000 in steps of 1024.
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Parallel Flow Visualization Algorithm

Iterate

Process 0 Transfer

particles

Process 1 Transfer

particles Gather Render
Storage

Process n

Transfer
particles

Parallel structure for flow visualization algorithm
consists of iterations of particle tracing and
transfer, followed by a rendering stage.




Parallel Flow Visualization Algorithm

Time for 10 Rounds

Plume dataset

Type A supernova

I I I
8 16 32

Number of Processes

Tornado dataset




Looking Toward In Situ Analysis & Visualization

Pros Cons
- Reduced data movement - Memory footprint
- Access to every data byte - Application constraints
- Native data structures - Increased complexity
- Native algorithms - Expanded / collaborative domain

- Custom operations knowledge

- Increased accuracy

Challenges to Address
- Appropriate analysis / visualization applications
- Programming model

- Execution and use model
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