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Visual	



Particle tracing of thermal hydraulics flow 

Statistical	



Information entropy analysis of astrophysics 

Topological	



Morse-Smale complex of combustion 

Geometric	



Voronoi tessellation of cosmology 

Data Analysis Comes in Many Flavors	





Fortunately, Their Data Movement Patterns Do Not	
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Many different analysis operations share a small set of communication 
patterns. These communication kernels together with supporting utilities for 
decomposition and I/O can be encapsulated, optimized, and reused.	



Analysis Communication 

Sort-Last Rendering Swap-Based Reduction 

Morse-Smale Complex Merge-Based Reduction 

Information Entropy Merge-Based Reduction 

Particle Tracing Nearest Neighbor 

Voronoi Tessellation Nearest Neighbor 

Region Growing Nearest Neighbor 

Graph layout Send-Receive 

Semi	


Regular	



Regular	


Heterogeneous	


Data	



Homogeneous	


Data	



Irregular	





How to Parallelize Data Analysis: 2 Ways	
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or	

By hand	

 With tools	



void ParallelAlgorithm() {	


   …	


   MPI_Send();	


   …	


   MPI_Recv();	


   …	


   MPI_Barrier();	


   …	


   MPI_File_write();	


}	



void ParallelAlgorithm() {	


   …	


   LocalAlgorithm();	


   …	


   DIY_Merge_blocks();	


   …	


   DIY_File_write()	


}	





DIY is a Library for Option #2. ���
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Library	



Written in C++ with C bindings	


Autoconf build system (configure, make, make install)	


Lightweight: libdiy.a 800KB	


Maintainable: ~15K lines of code, including examples	



DIY usage and library organization	



Features	



Parallel I/O to/from storage	


Domain decomposition	


Network communication	


Utilities	
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Nine Things That DIY Does	
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1. Separate analysis ops from data ops	



2. Group data items into blocks	



3. Assign blocks to processes	



4. Group blocks into neighborhoods	



5. Support multiple multiple instances of 2, 3, and 4	



6. Handle time	



7. Communicate between blocks in various ways	



8. Read data and write results	



9. Integrate with other libraries and tools	
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Parallel Information-Theoretic Analysis	



Objective	


-Decide what data are the most essential for 
analysis 	



-Minimize the information losses and maximize the 
quality of analysis	



-Steer the analysis of data based on information 
saliency	



Information-theoretic approach	


-Quantify Information content based on Shannon’s 
entropy	



-Use this model to design new analysis data 
structures and algorithms	



Collaboration with the Ohio State University and New York University Polytechnic Institute 
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Shannon’s Entropy 	


The average amount of information 
expressed by the random variable is	





Information Entropy	



8	



Computation of information entropy in 126x126x512 
solar plume dataset shows 59% strong scaling efficiency.	



Chaudhuri et al., Scalable Computation of Distributions from Large Scale Data Sets, LDAV ‘12 
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Parallel Topological Analysis	



- Transform discrete scalar field into Morse-Smale complex	


-Nodes are minima, maxima, saddle points of scalar values	


- Arcs represent constant-sign gradient flow	


- Used to quickly see topological structure	



Two levels of simplification of 
the Morse-Smale complex for jet 
mixture fraction.	



Collaboration with SCI Institute, University of Utah 

Example of computing discrete gradient and Morse-Smale Complex	



1	

 2	



3	

 4	



Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS ‘12 



Parallel 
Approach	
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Top: overview of our 
algorithm, the arrows and 
circled component 
indicate the sequence of 
operations performed by 
a single process: (a) 
parallel read, (b) local 
gradient computation, (c) 
local MS complex 
computation, (d) 
simplification, (e) 
preparing data structures 
for communication, (f) 
merging complexes, (g) 
parallel write.	



Left: Typical flow chart of 
a DIY parallel analysis 
program. Lines to upper 
diagram map these to the 
specific parallel Morse-
Smale Complex 
construction algorithm.	



Parallel	


Read	



Discrete	


Gradient	



Compute 
Complex	



Simplify	


Complex	



Merge	


Blocks	



Parallel	


Write	





Synthetic Data	
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An artificially generated $256^3$ dataset is volume rendered (top row), and the corresponding 
Morse-Smale Complex is illustrated (bottom row) for varying feature counts.	





Synthetic Data	
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Compute time, merge time, and output size as a function of number of processes, data size, and data complexity.	





Cross-Flow Combustion	
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Above: Performance of parallel Morse-Smale 
analysis in log-log scale. Total time includes 
reading the dataset from storage, computing 
the analysis, and writing results to storage. 
Data size 1 timestep @ 1408x1080x1100.	



Right: Percentage of time spent in each 
component of the Morse-Smale analysis.	





Jet Mixture Fraction	
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Above: Overall time and four components: read data, compute, merge, and write results, plotted 
in log-log scale. At small numbers of processes, time is dominated by computing, and at higher 
numbers of processes by merging. Right: Full complex (top) and simplified complex (bottom). 
Data size one timestep @ 768x896x512.	





Turbulent Mixing	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 
Data size 1 timestep @ 1152 x 1152 x 1152. 	





Recap and Looking Ahead	
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To Do: Research Directions	



•  Advanced decomposition	


•  Block groups	



•  Improved communication algorithms	


•  Less synchronous, more overlap 

with computation	



•  High-level communication operations	


•  Ghost cell exchange, kernel 

convolution (stencil)	


•  Load balancing	



•  Block overloading, dynamic 
reassignment	



•  Programming models	


•  MPI + X	



•  Usability	


•  Improved API	



Done: Benefits	


•  Productivity	



•  Express complex algorithms flexibly	


•  Multiple blocks per process	


•  Complete / partial reductions	


•  Neighbor inclusion and 
communication	



•  Simplify existing tasks	


•  Custom data type creation	


•  Compression	



•  Performance	


•  Published scalability	


•  Configurable algorithms	
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17	



DIY	


•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.: 
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and 
Visualization Symposium (LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	


•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special 
Session on Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	



DIY applications	


•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of 
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11, 
Anchorage AK, May 2011. 	


•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale 
Complexes. Proceedings of IPDPS'12, Shanghai, China, 2012.	


•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE 
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT. 	


•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.: Meshing the 
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale 
Visualization Workshop, Salt Lake City, UT.	


•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: Scalable 
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large 
Data Analysis and Visualization, LDAV'12, Seattle, WA.	





Backup Slides	
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3 Communication Patterns	
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Nearest neighbor	

 Swap-based 
reduction	



Merge-based 
reduction	




