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Data Analysis Comes in Many Flavors

Statistical

Information entropy analysis of astrophysics

Topological Geometric

Morse-Smale complex of combustion Voronoi tessellation of cosmology




Fortunately, Their Data Movement Patterns Do Not

Analysis Communication
Homogeneous

Sort-Last Rendering Swap-Based Reduction Data

Morse-Smale Complex Merge-Based Reduction
Heterogeneous

Information Entropy Merge-Based Reduction Data
Particle Tracing Nearest Neighbor

Semi Voronoi Tessellation Nearest Neighbor
Regular ~
Region Growing Nearest Neighbor

Irregular { Graph layout Send-Receive

Many different analysis operations share a small set of communication
patterns. These communication kernels together with supporting utilities for
decomposition and I/O can be encapsulated, optimized, and reused.




How to Parallelize Data Analysis: 2 Ways

By hand With tools

Application Application

Analysis Algorithm Analysis Algorithm
Stochastic| Linear Algebra | Iterative |Nearest Neighbor q ( > Stochastic| Linear Algebra | Iterative [Nearest Neighbor
Interface

OS / Runtime ‘

OS / Runtime

void ParallelAlgorithm() {

MPI_Send(); void ParallelAlgorithm() {
MPI_Recv(); LocalAlgorithm();

MPI_Barrier(); DIY _Merge blocks();

MPI_File_write(); DIY_File_write()
}




DIY is a Library for Option #2.

Features Library
Parallel I/O to/from storage Written in C++ with C bindings
Domain decomposition Autoconf build system (configure, make, make install)
Network communication Lightweight: libdiy.a 800KB

Utilities Maintainable: ~15K lines of code, including examples

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt I/O Decomposition Communication

| | Read
Analysis Library Data Blocking Neighbor
ITL, Osuflow, Qhull, VTK Whrite .
| Results Assignment Global

DIY
|

o Parallel Datatype Parallel
M Pl Utilities Creation

DIY usage and library organization




Nine Things That DIY Does

. Separate analysis ops from data ops

. Group data items into blocks

. Assign blocks to processes

. Group blocks into neighborhoods

. Support multiple multiple instances of 2, 3, and 4
Handle time

. Communicate between blocks in various ways

Read data and write results
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Integrate with other libraries and tools
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Two examples of 3 out of a total of 25 neighborhoods
8 processes 4 processes rocess




Parallel Information-Theoretic Analysis

Collaboration with the Ohio State University and New York University Polytechnic Institute

Obijective
Nek5000

-Decide what data are the most essential for CED model

analysis

-Minimize the information losses and maximize the

quality of analysis Information-

-Steer the analysis of data based on information theoretic
. algorithms
saliency

Information-theoretic approach

Areas of high information
entropy--turbulent
entropy regions in original [
data--are the interesting
regions in simulating

-Quantify Information content based on Shannon’s

-Use this model to design new analysis data

structures and algorithms coolant flow in a nuclear
reactor.

Shannon’s Entr.opy ) Section of information
The average amount of information entropy field

expressed by the random variable is

H(z) = —) pilogp;
1=1




Information Entropy

Strong Scaling

@
]
=
l_
2
1]
2
-
=3
£
£
o
@)
+
w
i
3
o
£
o
)

16 32 64 128 256 512 1024
Number of Processes

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.

Chaudhuri et al., Scalable Computation of Distributions from Large Scale Data Sets, LDAV ‘12




Parallel Topological Analysis
Collaboration with SCI Institute, University of Utah

-Transform discrete scalar field into Morse-Smale complex
-Nodes are minima, maxima, saddle points of scalar values
-Arcs represent constant-sign gradient flow

-Used to quickly see topological structure

Two levels of simplification o
the Morse-Smale complex for jet

Example of computing discrete gradient and Morse-Smale Complex ) )
mixture fraction.

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS ‘12




Discrete
Gradient

Parallel
Read

Top: overview o
algorithm, the arrows a
circled component
indicate the sequence of
operations performed by
a single process: (a)
parallel read, (b) local
gradient computation, (c)
local MS complex
computation, (d)
simplification, (e)
preparing data structures
for communication, (f)
merging complexes, (g)
parallel write.
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éft: Typical flow chart of
a DIY parallel analysis
program. Lines to upper
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specific parallel Morse-
Smale Complex
construction algorithm.
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Synthetic Data
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An artificially generated $256”3$ dataset is volume rendered (top row), and the corresponding
Morse-Smale Complex is illustrated (bottom row) for varying feature counts.




Synthetic Data Performance Study
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Compute time, merge time, and output size as a function of number of processes, data size, and data complexity.




Cross-Flow Combustion

Total Time and Scaling

[ime for Morse-Smale

256 512 1024

% of Time

Number of Processes

Above: Performance of parallel Morse-Smale
analysis in log-log scale. Total time includes
reading the dataset from storage, computing

the analysis, and writing results to storage.
Data size | timestep @ 1408x1080x 1 100.

Right: Percentage of time spent in each
component of the Morse-Smale analysis.
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Jet Mixture Fraction

Total & Component Time For ] et Mixture Fraction

| ime
npute time

32 64 128 256 512 1024 2048 409 8192

Number of Processes
Above: Overall time and four components: read data, compute, merge, and write results, plotted

in log-log scale. At small numbers of processes, time is dominated by computing, and at higher

numbers of processes by merging. Right: Full complex (top) and simplified complex (bottom).
Data size one timestep @ 768x896x512.




Turbulent Mixing

Strong Scaling
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Computation of Morse-Smale complex in | 1523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including 1/O.
Data size | timestep @ 1152 x 1152 x 1152,




Recap and Looking Ahead

Done: Benefits To Do: Research Directions

* Productivity Advanced decomposition
* Express complex algorithms flexibly .
* Multiple blocks per process

* Complete / partial reductions
»  Neighbor inclusion and * Less synchronous, more overlap

with computation

Block groups

Improved communication algorithms

communication
Simplify existing tasks High-level communication operations
* Custom data type creation * Ghost cell exchange, kernel

* Compression convolution (stencil)
* Performance

* Published scalability
* Configurable algorithms

Load balancing

* Block overloading, dynamic
reassignment

Programming models
« MPI+X
Usability
* Improved API
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3 Communication Patterns

Swap-based
reduction

Merge-based
reduction




