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Abstract: Moving Horizon Estimation (MHE) is an efficient optimization-based
strategy for state estimation. Despite the attractiveness of this method, its
application in industrial settings has been rather limited. This has been mainly
due to the difficulty to solve, in real-time, the associated dynamic optimization
problems. In this work, a fast MHE algorithm able to overcome this bottleneck
is proposed. The framework exploits the advantages of simultaneous collocation-
based formulations and makes use of large-scale nonlinear programming algorithms
and sensitivity concepts. The approach is demonstrated on a full-scale polymer
process, where accurate state estimates are obtained and on-line calculation times
are reduced dramatically. Copyright c© 2007 IFAC
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1. INTRODUCTION

Moving horizon estimation has been identified as
an efficient method for state estimation for con-
strained, linear and nonlinear systems. From a
theoretical point of view, a deeper understanding
of the estimator filtering and stability properties
have led to efficient formulations (Robertson et
al., 1996; Rao et al., 2003; Rawlings and Bak-
shi, 2006). In addition to this, increased interest
has resulted from its proven superiority over tradi-
tional estimation approaches such as the extended
Kalman filter (Haseltine and Rawlings, 2005).
From a computational point of view, on-line im-
plementations of MHE in industrial settings still
represent a challenge. In NMPC strategies, the
estimated state of the system is required for the
solution of the NMPC or regulator problem from
which feedback is obtained. An important ob-

servation is that, in order to retain the stabiliz-
ing properties of the controller, both the MHE
and NMPC problems should be solved in real-
time (Findeisen and Allgöwer, 2004; Diehl et
al., 2005b). However, this is not currently pos-
sible in most practical applications. Because of
this, several alternatives have been explored in
trying to overcome this computational burden. A
key conceptual breakthrough has been the idea of
separating the computational tasks into a prepa-
ration and a feedback phase (Diehl et al., 2005).
Some variants of this idea have been proposed
for NMPC (Diehl et al., 2005; Kadam and Mar-
quardt, 2004; Dehaan and Guay, 2006; Zavala et
al., 2006) and, more recently, for MHE (Kraus et
al., 2006). These approaches mainly differ on the
numerical methods used for the solution of the dy-
namic optimization problem. In this work, the fast



computational framework for NMPC presented in
(Zavala et al., 2006) is extended to consider MHE
problems. The framework exploits the advantages
of simultaneous collocation-based (or direct tran-
scription) formulations. In addition, it makes use
of efficient large-scale NLP algorithms and builds
on well-established NLP sensitivity concepts. The
next section presents the MHE problem under
consideration. The proposed fast MHE algorithm
is described in detail in Section 3. The algorith-
mic framework is then applied to an industrial
polymer process and the results are presented
in Section 4 while the last section concludes the
paper.

2. MHE PROBLEM

Consider the scenario in which a given dynamic
system is located at time t`. A general MHE
problem consists of obtaining an estimate of the
current state of the system z` and of the pa-
rameters π given a set of past measurements
{ȳ`−N , ȳ`−N+1, ..., ȳ`}. Here, the measurements
are distributed along a horizon comprised of N
sampling times. For the sake of simplicity and
without loss of generality, we consider only mea-
surement noise and that z` and π can be obtained
from the solution of an optimization problem of
the form:

min
z0, π

1
2
(‖z0 − z̄0‖2Wz

+ ‖π − π̄‖2Wπ
)

+
N∑

k=0

1
2
‖yk − ȳk+`−N‖2Wy

s.t. zk+1 = zk + Bwk, k=0,...,N−1

h(zk, wk, uk, π) = 0, k=0,...,N−1

yk − g(zk) = 0, k=0,...,N (1)

In the following, this problem is denoted as M(`)
and the current state of the system is given by
z` := z∗N . Here, zk ∈ <nz is the vector of state
variables at the k-th sampling time, uk ∈ <nu

is the vector of past control variables, yk ∈ <ny

is the vector of estimated output variables and
wk ∈ <nw is a vector of algebraic variables. Matrix
B projects a subset of the algebraic variables into
the evolution of the states. Accordingly, this for-
mulation allows general Runge-Kutta discretiza-
tions, including multiple shooting or collocation
on finite elements. The first term of the objective
function is an arrival cost summarizing the effect
of past information before k = 0. The weighting
matrices Wz, Wπ represent the inverse of the
covariance matrices of the a priori state and pa-
rameter estimates z̄0 and π̄, respectively. Finally,
it is assumed that all bounds and inequalities can
be incorporated in the objective function using
appropriate barrier terms.

Once the current state z` has been estimated
from problem (1), it is used for the solution of
the NMPC problem. The system then evolves to
the next sampling time. At this point, having a
new measurement ȳ`+1, the oldest measurement
ȳ`−N is dropped and the following MHE problem
M(` + 1) is solved over a shifted horizon. Notice
that, in practical applications, the solution of
M(` + 1) cannot be obtained instantaneously.
Therefore, if the solution process is started until
the new measurement becomes available, a delay
would be introduced and propagated over the
solution of the NMPC problem, leading to a long
feedback delay. To address this issue, a fast MHE
algorithm based on a real-time iteration approach
is presented; at time t`, a nominal problem M(`) is
solved during a preparation or background phase
without considering future measurements at t`+1.
Once the measurements become available, a first-
order correction is performed around the nominal
problem to obtain a fast approximate solution to
the neighboring problem M(` + 1).

3. FAST MHE ALGORITHM

In order to develop the fast computational frame-
work, we first consider methods for the solution
of the MHE problem resulting from simultaneous
collocation-based formulations. This gives rise to
a large-scale but sparse representation of NLP
(1) that can be solved using full-space NLP algo-
rithms with exact derivative information. A care-
ful analysis in (Zavala et al., 2006) has shown
that the approach enjoys favorable computational
complexity when compared against competing ap-
proaches (scales better with problem size and
number of degrees of freedom). This makes it
attractive for large-scale parameter and state es-
timation problems. On the other hand, it heavily
relies on the use of efficient and reliable NLP
algorithms.

3.1 NLP Algorithm and Sensitivity

MHE problem (1) can be posed in the general
form:

min
x f(x, p)

s.t. c(x, p) = 0

x ≥ 0 (2)

where x includes all the variables in problem (1)
and symbol p denotes a general parameter vec-
tor. In the context of MHE, problem (2) is usu-
ally a large-scale, nonconvex NLP problem with
many inequalities and degrees of freedom. For the
solution of problems with these characteristics,



interior-point methods have been recently shown
to be robust and reliable (Forsgren et al., 2002).
In this work, the IPOPT algorithm (Wächter and
Biegler, 2006) is used for the solution of NLP (2).
The algorithm follows a barrier approach, where
the bound constraints are replaced by logarithmic
barrier terms and added to the objective function
to give:

min
x f(x, p)− µ

n∑
i=1

ln(x(i))

s.t. c(x, p) = 0 (3)

with a barrier parameter µ > 0. Here, x(i) denotes
the i-th component of the vector x. The degree of
influence of the barrier is determined by the size
of µ, and under mild conditions x∗(µ) converges
to a local solution x∗ of the original problem (2)
as µ → 0. Consequently, a strategy for solving
the original NLP is to solve a sequence of barrier
problems (3), with index l, for decreasing values
of µl.

IPOPT follows a full-space, primal-dual barrier
approach and applies a Newton method to the
KKT conditions derived from (3), leading to the
solution of the following sparse KKT system at
iteration j: Wj Aj −I

AT
j 0 0

Vj 0 Xj

 ∆x
∆λ
∆ν

= −
∇f(xj , p)+Ajλj−νj

c(xj , p)
XjVje− µle

(4)

where X = diag(x), V = diag(ν), Wj is the
Hessian of the Lagrangian function∇xx(f(xj , p)+
c(xj , p)T λj), and Aj = ∇xc(xj , p). The factor-
ization of the KKT matrix in the above linear
system represents the most expensive step in the
algorithm. Exact first and second derivatives for
this method can be evaluated in a number of ways,
including automatically through modeling plat-
forms. As a result, local convergence of Newton’s
method is fast and global convergence is promoted
by a novel filter line search strategy.

The KKT system (4) can be represented in com-
pact form as K∆v = ϕ(v, µl, p) where vT =
[xT λT νT ]. Assume that problem (2) has been
solved for a nominal parameter vector p0. There-
fore, at the solution ϕ(v∗, µl, p0) = 0. If v∗ is a
KKT point satisfying strong second order con-
ditions it can be shown that, for a sufficiently
small µl, the solution of K∆v = ϕ(v∗, µl, p) pro-
vides a first-order approximation to the solution
of (2) with p = p0 + ∆p (Fiacco, 1983). Since
exact derivative information is used in this case,
the approximation can be shown to be O(||p −
p0||2) + O(||µl||) which allows to establish a rig-
orous bound on the loss of optimality. Addition-
ally, K is already factorized at the solution of
the nominal problem. Therefore, these sensitivity

calculations are very cheap and thus represent
an essential component of the fast computational
framework.

Notice that in the context of parameter and state
estimation, second order conditions may not hold
at the solution. This will occur if the parameters
or the state of the system are not observable
given the available data. In this case, the KKT
matrix will be said to have wrong inertia (number
of positive, negative and zero eigenvalues) at the
solution (Zavala and Biegler, 2006). On the other
hand, if the inertia is correct, this gives the impor-
tant result that the parameters and/or the state
of the system are observable. Since most of the
modern direct linear solvers provide the inertia
of the KKT matrix as an outcome of the factor-
ization procedure, checking for the observability
condition comes at no additional expense even for
large-scale estimation problems.

3.2 Shifting Strategy

At time t` we obtain the current measurements
{ȳ`−N , ȳ`−N+1, . . . , ȳ`} to formulate the MHE
problem M(`). Having the solution of M(`) it
is desired to obtain a fast approximation to the
solution of M(`+m), where m denotes the number
of sampling times required to obtain the exact so-
lution of M(`) (background or preparation tasks).
In order to account for the yet unknown future
measurements {ȳ`+1, ..., ȳ`+m}, the MHE problem
(1) is modified as,

min

z0, π, ŷk
1
2
(‖z0 − z̄0‖2Wz

+ ‖π − π̄‖2Wπ
)

+
N∑

k=0

1
2
‖yk − ȳk+`−N‖2Wy

+
N+m∑

k=N+1

1
2
‖yk − ŷk‖2Wy

s.t. zk+1 = zk + Bwk, k=0,...,N+m−1

h(zk, wk, uk, π) = 0, k=0,...,N+m−1

yk − g(zk) = 0, k=0,...,N+m (5)

where the estimation horizon has been extended
using m additional sampling times. Notice the
introduction of dummy variables ŷk ∈ <ny , k =
N + 1, . . . , N + m and that, since these dummy
measurements are set free, they will exactly match
the model predictions over the future sampling
times (ŷ∗k = y∗k holds at the solution of this prob-
lem). Therefore, the proposed modifications do
not alter the solution of the problem. Also notice
that, in order to formulate M(`) at t`, we assume
that the future control sequence {uN , . . . , uN+m}
is known as an outcome of the NMPC problem
and given by {u`, . . . , u`+m}. Figure 2 presents a



Fig. 1. Schematic representation of estimation horizon for nominal problem M(`).

schematic representation of the prediction horizon
of the nominal problem.

Having the solution of M(`) at time t`+m, we ob-
tain a fast approximation to the solution of M(`+
m) without altering the structure of the nomi-
nal problem. Preserving the structure of M(`) is
required in order to reuse the already computed
factors of the KKT matrix K` available at the
solution of M(`). For this, it is necessary to derive
a suitable sensitivity approach. The derivation of
the proposed approach starts by recalling that
the Lagrange function associated to the new aug-
mented problem M(`) in (5) is given by,

L =

N∑
k=0

(
1

2
‖yk − ȳk+`−N‖2Wy

+ γT
k (yk − g(zk))

)
+

N+m∑
k=N+1

(
1

2
‖yk − ŷk‖2Wy

+ γT
k (yk − g(zk))

)
+

N+m−1∑
k=0

(
λT

k+1(zk+1 − zk −Bwk) + ηT
k h(zk, wk, uk, π)

)
+

1

2

(
‖z0 − z̄0‖2Wz

+ ‖π − π̄‖2Wπ

)
(6)

and we obtain the desired sensitivity equations
upon linearization of the first-order optimality
conditions around the solution of M(`),

z0 : (Wz + H0
zz −G0

zz)∆z0 + H0
zw∆w0 −∆λ1

+∇zh0∆η0 −∇zg0∆γ0 + H0
zπ∆π = 0 (7)

zk : ∆λk −∆λk+1 + (Hk
zz −Gk

zz)∆zk + Hk
zw∆wk

+∇zhk∆ηk −∇zgk∆γk + Hk
zπ∆π = 0 (8)

k = 1, . . . , N + m− 1

wk : Hk
wz∆zk + Hk

ww∆wk +∇whk∆ηk

+Hk
wπ∆π −BT ∆λk+1 = 0 (9)

λk : ∆zk+1 −∆zk −B∆wk = 0 (10)

ηk : ∇zhT
k ∆zk +∇whT

k ∆wk +∇πhT
k ∆π = 0 (11)

γk : ∆yk −∇zgT
k ∆zk = 0 (12)

k = 0, . . . , N + m− 1

yk : Wy∆yk + ∆γk = 0 (13)

k = 1, . . . , N

zN+m : ∆λN+m −∇zgN+m∆γN+m

+Gzz∆zN+m = 0 (14)

γN+m : ∆yN+m −∇zgN+m∆zN+m = 0 (15)

π : Wπ∆π +

N+m−1∑
k=0

(∇πhk∆ηk + Hk
πz∆zk)

+

N+m−1∑
k=0

(Hk
πw∆wk + Hk

ππ∆π) = 0 (16)

yk : Wy(∆yk −∆ŷk) + ∆γk = 0 (17)

ŷk : Wy(∆yk −∆ŷk) = 0 (18)

k = N + 1, . . . , N + m

where Gk
zz = ∇zz(gT

k γk) and Hk
zz = ∇zz(hT

k ηk),
etc. To estimate a solution for problem M(` + 1)
at the next sampling time, it is assumed that the
term ‖y0−ȳ`−N‖2Wy

contributes to the arrival cost
in the next horizon. Also, at sampling times t`+m

the addition of m new measurements is consid-
ered. For this, the definition of ŷk is modified by
adding the equations:

∆ŷk = ȳk+`−N − ŷ∗k

k = N + 1, . . . , N + m (19)

where ŷ∗k is obtained from the solution of M(`).
In order to capture the effect of this perturbation,
condition (18) needs to be relaxed by adding new
extra slack variables σk−N , i.e.:

Wy(∆yk −∆ŷk) + σk−N = 0

k = N + 1, . . . , N + m (20)

where notice that these extra variables play the
role of Lagrange multipliers. Adding the new
equations (19) and variables in (20) leads to



an augmented set of NLP sensitivity equations,
which, in terms of the general problem (2) can be
expressed in the condensed form:[

K`

ET
m

∣∣∣∣ Es,m

0

] [
∆v
∆p

]
=

[
0
rm

]
(21)

where ∆v represents the deviation from the so-
lution v∗` of M(`) generated by the perturbation
∆p. The perturbed right-hand sides are given by,

rT
m = [(ȳ`+1 − ŷ∗N+1)T , . . . , (ȳ`+m − ŷ∗N+m)T ] (22)

The extra variables are condensed in vector,

∆pT = [∆σT
1 , . . . ,∆σT

m]. (23)

In other words, ∆p represents the perturbation re-
quired in problem M(`) to force the dummy vari-
ables ŷk to match the plant measurements. Matrix
ET

s,m = [0 . . . Im×ny . . . 0] places the extra slack
variables in the constraints of problem (2) cor-
responding to (20) and ET

m = [0 . . . Im×ny
. . . 0]

extracts the dummy variables ŷk from the primal-
dual vector v of problem (2) to generate the ad-
ditional constraints (19).

The previous factorization of K` from M(`) is
used to shift to problem M(` + m) by solving for
the perturbation ∆p. To reuse the factorization
of K`, this system could be solved with a Schur
complement approach, i.e.,

S` ∆p = −(ET
mK−1

` Es,m)∆p = rm. (24)

The construction of the Schur complement S` ∈
<(m×ny)×(m×ny) requires m× ny backsolves with
K` in background. Although these backsolves
are easily parallelized, this calculation may be
expensive for systems with many outputs. On
the other hand, since the Schur complement is a
relatively small dense matrix, it can be factorized
efficiently using standard dense linear solvers (i.e.,
from the LAPACK library).

Once ∆p has been found, an approximation to the
solution v∗`+m of problem M(` + m) is obtained
from the perturbed KKT system,

K`∆v = −ET
s,m∆p (25)

where v∗`+m ≈ v∗` + ∆v contains the current
state estimate z`+m = z∗N+m. Figure 2 presents
a schematic representation of the fast MHE al-
gorithm for the case m = 1. Notice how the
background computational tasks are delayed by
m = 1 sampling times so that the state z`+1 is
estimated instantaneously on-line from the sensi-
tivity approach around the previous solution v∗` .
With this, we obtain the fast MHE algorithm
summarized below.

Algorithm 1 - Fast MHE Algorithm
Start clock variable θ = 0.
while θ > 0 do

for j = 1, ...,m do
if θ = t` then

On-line: Obtain ȳ` from plant.
if j = m then

On-line: Retrieve solution v∗`−m, fac-
torization of K`−m and S`−m from the
solution of M(`−m) in background.
On-line: Obtain approximate solu-
tion v∗` from shifting approach.
1) Define

rT
m = [(ȳ`−m+1−ŷ∗N+1)T , . . . , (ȳ`−ŷ∗N+m)T ]

2) Solve

S`−m∆p = −rm

3) Compute

K`−m∆v = −ET
s,m∆p

4) Set v∗` ≈ v∗`−m + ∆v and extract
current estimate z` for NMPC prob-
lem.

Background: Start solution of M(`)
using the approximate solution v∗` as
warm-start. Upon convergence,

1) Store factors of K`

2) Construct S` = −(ET
mK−1

` Es,m)
using the factorization of K`.

3) Factorize S`

end if
end if
`← ` + 1

end for
end while

Remark 1: Consider the case where the solution
of M(`) in background requires m > 1 steps to
be completed. Here, the proposed MHE algorithm
allows only to provide an instantaneous estimate
at time t`+m with no action taken at intermediate
times t`+j , j = 1, ...,m − 1. In other words, this
would be equivalent to have a longer sampling
time and set m = 1. In order to avoid this
and keep short sampling times, it is possible to
solve M(`) using 2m− 1 additional time steps in
order to accommodate the future measurements
at t`+j , j = 1, ...,m, ..., 2m−1. With this, once the
solution is available at t`+m, it would be possible
to provide instantaneous estimates at t`+j , j =
m, ..., 2m − 1 while a new problem M(` + m) is
initialized and solved over this time frame. This
scenario is illustrated in Figure (3) for the case



Fig. 2. Schedule of on-line and background computional tasks (Case m = 1).

Fig. 3. Alternative schedule of on-line and background computional tasks (Case m = 2).

where m = 2. Here, notice that the solution
of M(`), v∗` is used to provide instantaneous
estimates at t`+2 and t`+3.

Finally, if the addition of 2m − 1 extra time
steps makes the background problem expensive
to solve, it is also possible to accommodate m
parallel background solutions of the set of prob-
lems M(` + j), j = 0, . . . ,m, where the solution
of each M(` + j) is started at t`+j using the mea-
surement sequence {ȳ`+j−N , . . . , ȳ`+j} to provide
the state estimate z`+j . Notice that by doing so,
the most recent information is always used. In ad-
dition, this would allow to update the covariance
matrices at each sampling time which is crucial to
obtain good performance of the estimator.

Remark 2: Due to noisy operation or inaccu-
racy of the model, strong perturbations (ȳ`+j −
ŷ∗N+j)

T , j = 1, . . . ,m can be encountered. In
this case, a single iteration might not be suffi-
cient to obtain a sufficiently accurate approximate
solution. In order to improve the quality of the
approximation v∗`+m, it is possible to perform fast
fixed-point iterations on the system,

[
K`

ET
m

∣∣∣∣ Es,m

0

] [
∆vi

∆pi

]
=

[
ϕ(vi, µl)

rm

]
(26)

where ϕ(vi, µl) are the nonlinear KKT conditions
of the nominal problem and i is an iteration

counter with v0 = v∗` . In this case, the quality of
the approximation can be monitored through the
residual ||ϕ(vi, µl) − ET

s,m∆pi|| ≤ ε where ε is a
predefined tolerance. Here, the Schur complement
is only formed and factorized at i = 0 so that
these fixed-point iterations come at a small extra
expense.

Remark 3: In order to reduce the number of back-
ground backsolves for the shifted variant, an iter-
ative algorithm can also be applied to select ∆p
directly to match the dummy variables with the
corresponding measurements. This can be done
with a number of iterative methods, including
quasi-Newton (e.g., Broyden) or a preconditioned
Krylov method, such as GMRES, where the stored
factors of a previous Schur complement can be
used as preconditioner; each iteration requires a
single backsolve with K`.

4. CASE STUDY

The fast computational framework is demon-
strated on a simulated MHE scenario arising on
a full-scale low-density polyethylene (LDPE) pro-
cess. A simplified flowsheet of a typical LDPE
plant is depicted in Figure 4. For a more detailed
explanation of the process, please refer to (Zavala
and Biegler, 2006) and the references therein. In
this process, ethylene is polymerized in a long
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Fig. 4. Simplified flowsheet of a typical high-pressure LDPE tubular reactor process.

tubular reactor at high pressures (2000-3000 atm)
and temperatures (150-300 oC) through a free-
radical mechanism. Due to these extreme condi-
tions, a large number of compression stages are re-
quired. The final product is recovered by flash sep-
aration. The process presents a difficult dynamic
system with long time delays due to the recycle
loops. In addition, the only available measure-
ments are the reactor temperature profile and the
gas concentration leaving the hyper-compressor.
This concentration can in turn be related to the
concentration in the recycle loops. In this sce-
nario, the reactor is treated as a simple black-
box conversion model. Consequently, the objective
is to estimate the remaining differential states
corresponding to the concentrations of ethylene,
butane, methane and impurities throughout the
plant units. The dynamic evolution of these states
can be described by material balances around each
plant unit,

d (Vk · ρk · wk,j)
dt

= Fk win
k,j − Fkwk,j

wk,j(0) = w0
k,j

k = 1, ..., NU , j = 1, ..., NC (27)

where NC , number of gaseous components in the
process; NU , number of plant units; Fk, mass
flow rate (kg/h); Vk, equipment volume (m3);
t, time (s); ρk, gas density (kg/m3); win

k,j , inlet
weight component of j-th component to the k-
th unit; wk,j , outlet weight component of j-th
component from the k-th unit. The gas density
at the extreme conditions is calculated through
nonlinear thermodynamic relations. Most of the

complexity of the dynamic model is caused by
the presence of time delays. For simplicity, these
delays are lumped into NT = 6 overall locations
along the process and are directly incorporated
into the model by considering each one as a
tube of length L where a plug flow is assumed.
The resulting component material balances are
given by the following set of partial differential
equations:

∂wi,j

∂t
+

1
τi

∂wi,j

∂z
= 0(

∂wi,j

∂z

)
L

= 0 wi,j(z, 0) = w0
i,j (28)

where τi represents the i-th time delay in the
process with i = 1, ..., NT . The PDEs are trans-
formed to ordinary differential equations by ap-
plying a spatial finite difference scheme with 10
intervals. The resulting large-scale DAE model
contains 294 differential and 64 algebraic state
variables. The concentration of butane in the re-
cycle loop yC4 is used as the only output variable
that is measured. The output measurements were
obtained by simulation of the dynamic model us-
ing fixed control profiles over a long horizon of 5.6
hours divided into 60 sampling points. The profiles
for the feed butane FC4 and purge FPu flow rates
are presented in Figure 5. The predicted output
profile is then corrupted using Gaussian noise
with a 5% standard deviation (σ). Following this
reasoning, the least-squares objective function,



min (z0 − z̄0)T Wz(z0 − z̄0)

+
N∑

k=1

1
σ2

(yC4(tk)− ȳk
C4

)2 (29)

and the model equations (27)-(28) are used for the
formulation of the estimation problem. Here, ȳk

C4

is the measured concentration of butane in the
recycle loop at sampling time tk, vector z0 ∈ <294

contains the initial conditions for all the states
with a given a priori estimate z̄0 obtained from
simulation. Finally, Wz ∈ <294×294 is a diagonal
matrix with entries set to 1

0.1 and we impose lower
and upper bounds on all the states.

Following the simultaneous collocation-based ap-
proach, a total of 15 finite elements and 3 colloca-
tion points are used for the time discretization of
the dynamic model. The finite elements are placed
in order to match the sampling times along the
horizon (N = 15). The resulting NLP contains
27,121 constraints, 9330 lower bounds, 9330 upper
bounds and 295 degrees of freedom corresponding
to the initial conditions for the states and an extra
dummy variable (m=1). Since the dynamics of the
system are slow, a prediction time of 1.4 hours is
used with sampling times (t`+1 − t`) = 5.6 min.

Table 1. Average computational times
associated to the background solution of
the MHE problem (3.0 GHz Pentium IV

processor, 1 Gb RAM).

Algorithmic Step CPU Time (s)

Full Solution (6 iterations) 202.64

Single Factorization of KKT Matrix 33.77
Step Computation (single backsolve) 0.9-1.0

Rest of Steps 0.936

Computational results associated to the back-
ground solution of the NLP using IPOPT are
presented in Table (1). In all our numerical ex-
periments a monotone barrier parameter µ update
with an initial value of 1x10−6 is used, while the
rest of the algorithmic parameters were specified
with their default values. It is clear that the vast
majority of the total CPU time is devoted for the
factorization of the KKT matrix. Note also that
the NLP can be solved reliably under the allotted
sampling time. In addition, the inertia of the KKT
matrix was correct at the solution of these prob-
lems. Therefore, it is possible to conclude that the
state of the system is observable given the limited
measurement data.

Figure 6 presents the measured, estimated and
true profiles of the output variable along 60 sam-
pling times. Notice that, despite the large noise,
the algorithm is able to estimate accurately the
true output variable. The background computa-
tional performance of IPOPT is depicted in Figure
7. Here, the shifted approximate solutions are
used to warm-start the algorithm for the solution

of the nominal problem at every sampling time.
By doing so, the algorithm is able to converge
the nominal problem in 3-5 iterations. In this
case, the noise perturbations do not induce drastic
changes between neighboring problems. As a con-
sequence, a single iteration is required to obtain
instantaneous (0.9-1.0 seconds) and accurate state
estimates. Although the analyzed MHE scenario
has been rather simplified, the approach is general
and can be applied to more complicated models
and MHE formulations including, for example,
process, state and input noise.

5. CONCLUSIONS

A fast and efficient moving horizon estimation al-
gorithm is presented in this work. The framework
follows a real-time iteration strategy, exploits the
advantages of simultaneous collocation-based for-
mulations and makes use of large-scale NLP al-
gorithms and sensitivity concepts. The approach
is demonstrated on a full-scale polymer process
where the algorithm is able to track accurately
the 294 states in the process. Moreover, on-line
calculation times are reduced by over two orders of
magnitude. The results obtained in this work are
encouraging and will be extended to larger scale
applications. In addition, future work will focus on
a detailed stability analysis of the proposed MHE
approach based on conditions established in pre-
vious reports (Michalska and Mayne, 1995; Rao et
al., 2003).
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Wächter, A. and L.T. Biegler (2006). On the im-
plementation of a primal-dual interior point
filter line search algorithm for large-scale
nonlinear programming. Math. Program. 106
(1), 25–57.

Zavala, V. M., C. D. Laird and L. T. Biegler
(2006). Fast solvers and rigorous models: Can
both be accomodated in NMPC?. Submitted
for Publication.

Zavala, V.M. and L.T. Biegler (2006). Large-
scale parameter estimation in low-density
polyethylene tubular reactors. Ind. Eng.
Chem. Res. 45, 7867–7881.


