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Abstract

This document provides some details on the implementation and solution of the primal-dual system in

IPOPT [1]. The document is expected to be a quick reference for the development and implementation of

large-scale computational strategies.

Consider the nonlinear programming problem of the form,

min f(x)

gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU (1)

where x ∈ <n are the primal variables with lower and upper bounds xL ∈ <n, xU ∈ <n. The inequality

constraints g : <n → <m are bounded by gL ∈ <m and gU ∈ <m.

After this problem has been communicated to IPOPT, the solver makes an explicit distinction between the

equality (defined with gL = gU ) and inequality constraints to give,

min f(x)

s.t. c(x) = 0

dL ≤ d(x) ≤ dU

xL ≤ x ≤ xU (2)

The equality constraints are represented by c : <n → <mc and d : <n → <md denotes the inequality constraints

with bounds dL ∈ <md and dU ∈ <md and m = mc + md. Having done this, the current implementation of

IPOPT reformulates the general inequality constraints by adding slack variables and their corresponding bounds,

min f(x)

s.t. c(x) = 0

d(x)− s = 0

x− xL ≥ 0, xU − x ≥ 0

s− dL ≥ 0, dU − s ≥ 0 (3)

with s ∈ <nd . As required by IPOPT, if a variable bound does not exist, the user sets the corresponding value

to a large number (−∞ or ∞). Nevertheless, for efficiency reasons, the solver ensures that only the relevant

specified bounds (xL, dL > −∞ and xU , dU <∞) are actually taken into account. This is done by reformulating

the problem to,

min f(x)

s.t. c(x) = 0

d(x)− s = 0

(PL
x )T x− xL ≥ 0, xU − (PU

x )T x ≥ 0

(PL
d )T d(x)− dL ≥ 0, dU − (PU

d )T d(x) ≥ 0 (4)
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where PL
x ∈ <n×nxL , PU

x ∈ <n×nxU , PL
d ∈ <md×ndL and PU

d ∈ <md×ndU are projection or permutation matrices

between variables x and the inequalities d(x) and their corresponding bounds. Symbols nxL, nxU , ndL and ndU

represent the number of valid bounds. Accordingly, notice that the dimensions of xL, xU , dL and dU are also

reduced.

In order to derive the primal-dual system, we define the Lagrange function of the reformulated NLP (4) as,

L = f(x) + yT
c c(x) + yT

d (d(x)− s)− zT
L

(
(PL

x )T x− xL

)
− zT

U

(
xU − (PU

x )T x
)

−νT
L

(
(PL

d )T d(x)− dL

)
− νT

U

(
dU − (PU

d )T d(x)
)

(5)

where yc ∈ <mc and yd ∈ <md are the Lagrange multipliers for the equality and inequality constraints, re-

spectively; zL ∈ <nxL and zU ∈ <nxU are multipliers for the lower and upper bounds of the x variables; and

νL ∈ <ndL and νU ∈ <ndU are the bound multipliers corresponding to the slack variables (multipliers of inequality

constraints).

After eliminating the bounds by adding a logarithmic barrier term to the objective function, the primal-dual

optimality conditions of problem (4) are given by:

∇xL = ∇xf(x) + Jc(x)T yc + Jd(x)T yd − PL
x zL + PU

x zU = 0

∇sL = −yd − PL
d νL + PU

d νU = 0

SlLx ZLe− µe = 0

SlUx ZUe− µe = 0

SlLd VLe− µe = 0

SlUd VUe− µe = 0

c(x) = 0

d(x)− s = 0 (6)

where JT
c ∈ <n×mc and JT

d ∈ <n×md are the Jacobian matrices of the equality and inequality constraints and

the diagonal matrices,

ZL = diag(zL)

SlLx = diag
(
(PL

x )T x− xL

)
ZU = diag(zU )

SlUx = diag
(
xU − (PU

x )T x
)

VL = diag(νL)

SlLd = diag
(
(PL

d )T d(x)− dL

)
VU = diag(νU )

SlUd = diag
(
dU − (PU

d )T d(x)
)

(7)

have appropriate dimensions.

The optimality conditions (6) can be viewed as a set of nonlinear equations parameterized in the scalar

parameter µ. For the solution of this system, we can derive a sequence of Newton steps obtained from the

linearization of the above expressions,

W∆x + JT
c ∆yc + JT

d ∆yd − PL
x ∆zL + PU

x ∆zU = −∇xL
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−∆yd − PL
d ∆νL + PU

d ∆νU = −∇sL

ZL(PL
x )T ∆x + SlLx ∆zL = −(SlLx ZLe− µe)

−ZU (PU
x )T ∆x + SlUx ∆zU = −(SlUx ZUe− µe)

VL(PL
d )T ∆s + SlLd ∆νL = −(SlLd VLe− µe)

−VU (PU
d )T ∆s + SlUd ∆νU = −(SlUd VUe− µe)

Jc∆x = −c(x)

Jd∆x−∆s = −(d(x)− s) (8)

where W ∈ <n×n is the Hessian matrix. The system of linear equations (8) has the following structure,



W 0 JT
c JT

d −P L
x P U

x 0 0

0 0 0 −I 0 0 −P L
d P U

d

Jc 0 0 0 0 0 0 0

Jd −I 0 0 0 0 0 0

ZL(P L
x )T 0 0 0 SlxL 0 0 0

−ZU (P U
x )T 0 0 0 0 SlxU 0 0

0 VL(P L
d )T 0 0 0 0 SlsL 0

0 −VU (P U
d )T 0 0 0 0 0 SlsU





∆x

∆s

∆yc

∆yd

∆zL

∆zU

∆vL

∆vU


= −



∇xL
∇sL
c(x)

d(x)− s

SlLx ZLe− µe

SlUx ZUe− µe

SlLd VLe− µe

SlUd VUe− µe


(9)

we will refer to this set of linear equations as the primal-dual system. The solution of this system is usually
the most expensive step in the algorithm. In the current implementation of IPOPT, the primal-dual system is
decomposed by eliminating the bound multipliers leading to the augmented linear system,

W + Dx 0 JT
c JT

d

0 Ds 0 −I

Jc 0 0 0

Jd −I 0 0




∆x

∆s

∆yc

∆yd

 = −


∇xL̄
∇sL̄
c(x)

d(x)− s

 (10)

where,

∇xL̄ = ∇xf(x) + JT
c yc + JT

d yd + PU
x (SlUx )−1µe− PL

x (SlLx )−1µe

∇sL̄ = −yd + PU
d (SlUd )−1µe− PL

d (SlLd )−1µe

Dx = PL
x (SlLx )−1ZL(PL

x )T − PU
x (SlUx )−1ZU (PU

x )T

Ds = PL
d (SlLd )−1VL(PL

d )T − PU
d (SlUd )−1VU (PU

d )T .

Once the augmented linear system is solved, we can obtain step directions for the bound multipliers from,

∆zL = −zL + (SlLx )−1
(
µe− ZL(PL

x )T ∆x
)

∆zU = zU + (SlUx )−1
(
µe− ZU (PU

x )T ∆x
)

∆νL = −νL + (SlLd )−1
(
µe− VL(PL

d )T ∆s
)

∆νU = νU + (SlUd )−1
(
µe− VU (PU

d )T ∆s
)

(11)
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[1] Wächter, A. and Biegler, L.T. On The Implementation of an Interior-Point Filter Line-Search Algorithm

for Large-Scale Nonlinear Programming. Math. Programm., 2006, 106, 25-57.

3


