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Background and MotivationBackground and Motivation



1)  Fast Approximate Solutions for Neighboring NLPs
2)  Extraction of Reduced Hessian Information 

- Covariance Analysis for Large-Scale Estimation

Background and MotivationBackground and Motivation

- This Talk: Reuse KKT Matrix

Full Space NLP Solvers

- Newton’s Method + Exact Derivatives

Sparse Factorization of Full KKT Matrix – Most Expensive Step

Large-Scale
NLP KKT Conditions

IPOPT Waechter, Biegler 2006

Fast Moving Horizon Estimation

KKT 
Matrix

Newton Step KKT Conditions

~100,000 Constraints, ~1000 Degrees of Freedom

K*
Already Factorized

- KKT Matrix Contains Information About Solution



NLP SensitivityNLP Sensitivity

Fast Approximate SolutionsFast Approximate Solutions



NLP SensitivityNLP Sensitivity

DataData

Solution Vector

- NLP Sensitivity - Existence and Differentiability of Solution Path - Fiacco, 1983

Already Factorized

- Fast Backsolve with Factorized KKT Matrix

Perturbed Newton Step

- KKT System at Nominal Solution

Nominal Solution

Neighboring Solution

- Approximation Error 

Solution Path



NLP SensitivityNLP Sensitivity
- Perturb Optimal Value of Internal Variables Z., Laird & Biegler, 2006

Already Factorized

Relax

Fix

- Augmented KKT System

- Reuse Factorization with Schur Complement Technique

Already Factorized

K*

K*

K*

- Approximation Error 



Reduced Hessian InformationReduced Hessian Information

Analysis of Second Order Conditions Analysis of Second Order Conditions 



Reduced HessianReduced Hessian
-KKT System at Solution

- Split Variables into Basic and Non-Basic (Degrees of Freedom)

- Z. & Biegler, 2007

- Reduced Hessian Can be Extracted Through Fast Backsolves

- Large-Scale Applications:
- Analysis Second Order Conditions
- Inference Parameter Estimation                                 Bard, 1974

Covariance 
Parameters

Full Hessian

Never Formed in IPOPT

- Reduced Hessian Full Hessian Projected onto the Null Space Matrix

K*



FASTFAST Moving Horizon EstimationMoving Horizon Estimation



Large State Dimensionality

Many Degrees of Freedom

Solution Time ~ Several Minutes
Highly Nonlinear, Ill-Posed

Moving Horizon EstimationMoving Horizon Estimation

Dynamic Model

Output ModelMeasurements

Current State
A Priori State

Knowledge

Measurements

A Priori Covariance

Deviation Costs



Computational Delay – Stability NMPC 
NLPs are Parametric

Solve Reference Problem Between Sampling Times
Fast On-Line Approximation with Sensitivity

NMPC ControllerNMPC Controller
InconsistentInconsistent

Fast Moving Horizon EstimationFast Moving Horizon Estimation



Fast Moving Horizon EstimationFast Moving Horizon Estimation
- Sensitivity-Based Shifting Strategy Z.; Laird & Biegler, 2007

1) Solve Extended Problem

Dummy Variable at Solution  = Output Model Extrapolation

Free Dummy Variable

Hold KKT System of              at



Fast Moving Horizon EstimationFast Moving Horizon Estimation

2) At              once we know True Measurement   

NLP Sensitivity Fix-Relax Strategy

Perturb Dummy Variable to True Measurement    

Fast 
On-line Computation

Accurate 
Approximation

- Sensitivity-Based Shifting Strategy Z.; Laird & Biegler, 2007



Fast Moving Horizon EstimationFast Moving Horizon Estimation
Extract Covariance of State Estimate

- Is Not Reduced Hessian but Can be Extracted with Reduced Hessian Tool

Large-Scale
MHE

- Normally Computed through Kalman Filter Recursion

IPOPT

Never Formed in IPOPT



Case Study Case Study -- CSTRCSTR



CSTRCSTR
Measurement Data Generated from NMPC Scenario



CSTRCSTR
95% Confidence Regions for 



CSTRCSTR

Performance of Fast MHE – Effect of NLP Sensitivity Errors



Case Study Case Study –– Industrial LowIndustrial Low--Density Polyethylene ProcessDensity Polyethylene Process



LDPE ProcessLDPE Process

Dynamic Model ~ 350 DAEs
Sampling Time = 6 min

Estimation Horizon N = 15

27,121 Constraints, 9330 Bounds
294 Degrees of Freedom +1 Dummy

NLP IPOPT

On-Line Cost
Fast MHE

On-Line Cost  
Standard MHE

Controls

Meas



LDPE ProcessLDPE Process

Measurement Profiles  Gaussian Noise 5% SD



LDPE ProcessLDPE Process

Measurement Profiles  Gaussian Noise 5% SD

On-line State Estimate in 1 Second
NLP Sensitivity Errors Negligible



Conclusions and Future WorkConclusions and Future Work



Conclusions and Future WorkConclusions and Future Work

- Reuse KKT Matrix at Solution
- NLP Sensitivity Calculations
- Reduced Hessian Information
- IPOPT

- Fast Moving Horizon Estimation 
- Industrial-Size MHE without On-Line Computational Delay

-Future Work 
- Fix-Relax to Convert KKT Matrix into Fast QP Active-Set Solver 
- Warm-Start for NLP Sequences: MINLP
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