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Abstract : Sensitivity-based strategies for on-line moving horizon estimation
(MHE) and nonlinear model predictive control (NMPC) are presented both from
a stability and computational perspective. These strategies make use of full-
space interior-point nonlinear programming (NLP) algorithms and NLP sensi-
tivity concepts. In particular, NLP sensitivity allows us to partition the solution
of the optimization problems into background and negligible on-line computa-
tions, thus avoiding the problem of computational delay even with large dynamic
models. We demonstrate these developments through a distributed polymeriza-
tion reactor model containing around 10,000 differential and algebraic equations
(DAEs).

1 Introduction

General model-based control frameworks based on MHE and NMPC represent
an attractive alternative for the operation of complex processes. These frame-
works allow the incorporation of highly sophisticated dynamic process models
and the direct handling of multivariable interactions and operational constraints.
In addition, the potential of incorporating detailed first-principles models allows
a closer interaction of the controller with traditional economic optimization lay-
ers such as real-time optimization (RTO). Crucial enabling developments for
this include: a) increased process understanding leading to highly-detailed first-
principles dynamic process models, b) enhanced formulations with stability and
robustness guarantees, c) advances in numerical strategies for DAE-constrained
optimization and NLP algorithms, and d) advances in computational resources
including the availability of parallel and multi-core technology.

In this work, special emphasis is made on the numerical solution aspects and
performance of combined MHE and NMPC strategies. In particular, a general
solution framework based on interior-point NLP solvers and sensitivity concepts
is considered. In the following section, we introduce some basic concepts and
notation and describe specific formulations of the MHE and NMPC nonlinear
programming problems. In Section 3 we discuss advantages of interior-point
NLP solvers and present some basic NLP sensitivity results. In Section 4 we
derive advanced-step approximation strategies for MHE and NMPC, based on
NLP sensitivity to reduce on-line computational time. We also discuss their
general stability and performance properties, especially when both are applied
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together. In Section 5, the potential of the combined MHE and NMPC solution
framework is demonstrated on a large-scale case study involving the simulta-
neous monitoring and control of a distributed low-density polyethylene tubular
reactor. The paper then closes with general conclusions and recommendations.

2 MHE and NMPC Formulations

We begin with a discrete-time dynamic model of an uncertain plant of the form,

Tpy1 = f(zp, ur) + &, Yht1 = X(Tht1) + Vrp1 (la)

where x;, € R"= is the true plant state at time instant ¢ and u; € R™ is the
implemented control action. The nonlinear dynamic model f(,-) : R=*" —
R"= is the nominal model and satisfies f(0,0) = 0. The observed output y; €
R™ with n, < n, isrelated to the state-space x;, through the nonlinear mapping
Xx(+) : R — R™. The true plant deviates from the nominal prediction due to
the process disturbance &, € R"* and measurement noise vy € R™v.

Assume that the plant is currently located at sampling time ¢;, with the out-
put and input measurements n,’c"he = {Yk—N, e, Yky Uk—N s -, Up—1 } distributed
over a horizon containing N steps. The output measurement covariance is given
by R € R *™ . The a priori estimate of the past state of the plant is denoted
as Zp—n~ and has an associated covariance Ilg x € "= *"=. Using this informa-
tion, we would like to compute an estimate Zj of the current state z;. In order
to do this, we solve the MHE problem,

N
M (nmhe) min l|lz0 — 53ka||§13}( + IZO: lyesi-n — x(20)llR-1  (2a)
s.t. 211 = f(zi, ugri—n), 1 =0,...N -1 (2b)
z1€X (2C)

mhe

All the MHE problem data can be summarized in the vector n;*"¢. Symbols
z1 € R"= are internal decision variables of the optimization problem. This
problem has n, degrees of freedom corresponding to zp. From the solution
trajectory, {23, ..., 2y }, we obtain the optimal estimate &, = z% with associated
estimation error ey := &, — ). Using this estimate, we define the problem data
npP¢ := &y, for the NMPC problem,

N-1

Pn") HEH U(zn) + Z (21, v1) (3a)
1=0

st.zi1 = fz,vy) 1=0,...N—1 (3b)

zo = Iy (3¢)

z1 € XuelU (3d)

where v; € R™ are internal decision variables. This problem has (N — 1) X n,
degrees of freedom corresponding to v;,l = 0,..., N — 1. Here, we assume that
the states and controls are restricted to the domains X and U, respectively. The
stage cost is defined by ¢(-,-) : R*=T" — R while the terminal cost is denoted
by ¥(:) : R=F" — R The control action is extracted from the trajectory
optimal trajectory {zg...z2x v, .-, Un_1} @S ur = v§ := h(&), and h(-) denotes
the feedback law. Note that this control action is inaccurate because the true
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state of the plant is z; and not the estimate Z;. That is, the estimation error
acts as an additional disturbance. At the next time, the plant will evolve as,

Thp1 = f(ar, b)) + &y Yrp1r = h(@pg1) + vp (4)

With this, we shift the measurement sequence one step forward to obtain
e = {Yk—N+1, - Ykt 1, Uk—N+1, ---, U }, and we solve the new MHE problem.
Having the new state estimate #p4+1 we solve the next NMPC problem.

Note that the above formulations are rather simplified. This makes them
convenient for the conceptual analysis in subsequent sections. In practical appli-
cations, both NMPC and MHE problems are solved as general continuous-time
DAE-constrained optimization problems. In this work, we assume that a full
discretization approach is used to derive the discrete-time NMPC and MHE
formulations. In this case, these NLP problems will be sparse. This is a crucial
property to be exploited in the following sections.

A problem that is normally encountered in model-based control frameworks
is that there exists a computational feedback delay equal to the solution time
of the MHE and NMPC problems. In large-scale applications (say n, ~ 100 —
10, 000), this computational delay might dominate the time constant of the plant
and destabilize the process. Therefore, we seek to derive strategies to reduce
the on-line computational time. The first crucial component of these strategies
is a fast NLP algorithm. In the next section, we discuss some of the advantages
that interior-point NLP solvers offer for the solution of very large problems.

3 Full-Space Interior-Point NLP Solvers

The NLP problems (2) and (3) can be posed in the general form,

) min F(x.) (52)
s.t.e(x,m) =0 (5b)
x>0 (5¢)

where x € R"= is variable vector containing all the states and controls and 7 is
the data vector.

Full-space interior-point solvers have become a popular choice for the solu-
tion of large-scale and sparse NLPs. In particular, the solvers LOQO, KNITRO
and IPOPT are widely used. In this work, we use IPOPT, an open-source NLP
solver originally developed in our research group [1]. In interior-point solvers,
the inequality constraints of problem (5) are handled implicitly by adding barrier
terms to the objective function,

min F(x,n) — e Zln(x(j)), st c(x,n) =0 (6)
j=1

where x() denotes the jth component of vector x. Solving (6) for a decaying
sequence of u; — 0, — oo results in an efficient strategy to solve the original
NLP (5). IPOPT solves the Karush-Kuhn-Tucker (KKT) conditions of this
sequence of barrier problems (6),

VXF(Xa 77) + VXC(Xa 77)/\ -v = 0 (73‘)

c(x,n) = 0 (7b)

X-Ve = e (7c)
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where X = diag(x),V = diag(v) and e € "= is a vector of ones. Symbols
A € R™ and v € R"™= are Lagrange multipliers for the equality constraints and
bounds, respectively. To solve this system of nonlinear equations we apply an ex-
act Newton method with the iteration sequence initialized at sI := [xI AT vT].
At the ith iteration, the search direction As; = s;41 — s; is computed by lin-
earization of the KKT conditions (7),

[ H% A, -1, -IIV AXl: ]_ _IVVXF(XQ);{C—AV\Z'—VZ']
[ %Z 8 )21 J[ ﬁiz J_ [ XiVi(ef,uée J ¥

where A; := Vxe(x;,n), H; € R"=*"= is the Hessian of the Lagrange function
L = F(x;,n) + Ale(xi,n) — v;Tx; and I, denotes the identity matrix.

We provide exact Hessian and Jacobian information through the modeling
platform AMPL. With this, Newton’s method guarantees fast local convergence
and is able to handle problems with many degrees of freedom without altering
these convergence properties. After solving a sequence of barrier problems for
we — 0, the solver returns the optimal solution triplet s = [xI AT vT] which
implicitly defines the active-set (set of variables satisfying x() = 0).

3.1 Computational Issues

Solving the KKT system (8) is the most computationally intensive step in
the solution of the NLP. A crucial advantage that interior-point solvers offer
over active-set solvers is that the structure of the KKT matrix in (8) does not
change between iterations. This facilitates the design of tailored linear algebra
strategies to exploit special structures. For instance, the KKT matrix arising
from DAE-constrained optimization problems has a natural forward structure
(almost-block-diagonal) in time and classical Riccati-like recursions and con-
densing techniques are often applied, where the complexity of these solution
strategies scales linearly with the horizon length N, but cubically with the
number of states n, and controls n,. On the other hand, specialized strategies
have been developed that reduce the cubic computational complexity and also
preserve numerical stability in the face of unstable dynamics [3, 4].

In IPOPT, we use a symmetric indefinite factorization of the KKT matrix
(with Ay; eliminated). With this, we exploit only the sparsity pattern of the
KKT matrix. The computational complexity of this strategy is in general very
favorable, scaling nearly linearly and at most quadratically with the overall di-
mensions of the NLP (e.g. length of prediction horizon, number of states and
number of degrees of freedom). This general approach also remains stable in the
face of unstable dynamics. However, significant fill-in and computer memory
bottlenecks might arise during the factorization step if the sparsity pattern is
not properly exploited. In order to factorize the KKT matrix, we use the linear
solver MA57 from the Harwell library [5]. Since the structure of the KKT matrix
does not change between iterations, the linear solver needs to analyze the spar-
sity pattern only once. During this analysis phase, the linear solver permutes the
matrix to reduce fill-in and computer memory requirements in the factorization
phase. Two reordering strategies are normally used in MA57. The first is an
approximate minimum degree (AMD) ordering algorithm while the second is a
nested dissection algorithm based on the multi-level graph partitioning strategy,
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implemented in Metis [6]. For very large-scale problems, these nested dissection
techniques excel at identifying high-level (coarse-grained) structures and thus
play a crucial role in the factorization time and reliability of the linear solver.
This notable advances in numerical linear algebra can dramatically expand the
application scope of NMPC and MHE.

IPOPT also applies a regularization scheme to the KKT matrix in order to
account for directions of negative curvature and rank-deficient Jacobians which
are commonly encountered in highly nonlinear NLPs and/or ill-posed formu-
lations. Directions of negative curvature are detected implicitly through the
linear solver, which returns the so-called inertia of the KKT matrix (number of
positive, negative and zero eigenvalues). If the inertia is correct at the solution,
no regularization is necessary and we can guarantee that the optimal point is a
well-defined minimum satisfying strong second order conditions (SSOC) and the
linear independence qualification of the constraints (LICQ) [7]. In the context of
NMPC and MHE, checking for SSOC is important since this is directly related
to properties of the dynamic system such as controllability and observability.
Consequently, checking for SSOC through the inertial properties of the KKT
matrix is another important advantage of using a general factorization strategy,
as opposed to other tailored linear algebra strategies.

3.2 NLP Sensitivity and Warm-Starts

Problem (5) is parametric in the data n and the optimal primal and dual vari-
ables can be treated as implicit functions of . For a sufficiently small pg, the
KKT conditions (7) of the barrier problem (6) can be expressed as ¢(s(n),n) =0
and we define K. (no) as the KKT matrix in (8).

We are interested in computing fast approximate solutions for neighboring
problems around an already available nominal solution s.(rg). In order to do
this, we make use of the following classical results,

Theorem 1 (NLP Sensitivity) [7, 8]. If F(-) and c(-) of the parametric prob-
lem N'(n) are twice continuously differentiable in a neighborhood of the nominal
solution s.(no) and this solution satisfies LICQ and SSOC, then s.(no) is an
isolated local minimizer of N'(n9) and the associated Lagrange multipliers are
unique. Moreover, for n in a neighborhood of ng there exists a unique, con-
tinuous and differentiable vector function s.«(n, N) which is a local minimizer
satisfying SSOC and LICQ for N'(n). Finally, there exists a positive Lipschitz
constant L such that ||s«(n, N) — s«(no, N)|| < L||n — nol|| along with a posi-
tive Lipschitz constant Ly such that the optimal values F(n) and F(no) satisfy

I1F'(m) = F(mo)ll < Lrlln —noll-
Under these results, a step As(n) computed from,

Ki(mo)As(n) = —(¢(s«(m0),n) — ¢(54(10),m0))
).

= —p(s«(m0),n 9)

with As(n) = 3(n) — s«(n0), is a Newton step taken from s.(ny) towards the
solution of a neighboring problem A/ (n). Consequently, 5(n) satisfies,

[15(n) = sl < Ls]ln = nol|? (10)
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with Lg > 0. Furthermore, since the KKT matrix K. (no) is already available
from the solution of the nominal problem A (1y), computing this step requires
only a single backsolve which can be performed orders of magnitude faster than
the factorization of the KKT matrix.

Since the approximate solution §(n) is accurate to first order, we can use
it as the initial guess s,(n) to warm-start the NLP A(n). For instance, if the
perturbation (7 — 70) does not induce an active-set change, we can fix p to a
small value (e.g. say 1 x 107%) and reuse the KKT matrix K, (1) to perform
fast fixed-point iterations on the system,

K. (m0)Asi(n) = —p(si(n),n) (11)

with s, = s.(10). With this, we can reduce the primal and dual infeasibility
of the perturbed problem AN'(n) until no further progress can be made with
the fixed KKT matrix. For sufficiently small perturbations, these fast fixed-
point iterations can converge to the solution of the perturbed problem s,(7).
However, for large perturbations, the KKT matrix needs to be reevaluated and
refactorized.

When the perturbation n —ny induces an active-set change, the linearization
of the complementarity relaxation (7c) contained in the nominal KKT matrix
K. (no) will drive the first Newton iteration outside of the feasible region and
the sensitivity approximation is inconsistent. To compute a fast sensitivity
approximation, one could reuse the factorization of the KKT matrix through
a Schur complement scheme to correct the active-set (e.g. add slack variables
and constraints to drop and fix variables and bound multipliers) [9]. This is
equivalent to an active-set sequential quadratic programming (SQP) iteration.
Fixed-point iterations can also be performed in this way.

In the context of the proposed MHE and NMPC formulations, we define the
optimal solutions,

S?\/IHE = {267---72?\(—172}%7 Ia---a)‘}‘V—la/\*N} (12&)

* — * * * * * * * * *
SmMpc T {Z07'--7ZN—17ZN71)07---7UN—27UN—15A07---7/\N—17/\N}' (12b)

The associated sensitivity approximations are denoted as Sygr and Sypc,
respectively, and the corresponding warm-start vectors as s4,;pp and s§;pc-
Notice that we have not included the bound multipliers in order to simplify the
presentation.

4 Advanced-Step MHE and NMPC Strategies

It is possible to minimize the on-line time required to solve the MHE problem
and then the NMPC problem to two fast backsolves using an advanced-step
framework [2, 10]. Imagine that at time ¢; we know the control action uy and
we would like to obtain an estimate of the future state x4 but we don’t know
the future measurement yj1. Nevertheless, we can use the current estimate &y,
and control uj, to predict the future state and associated measurement,

Tp1 = f(Tp,ur), Urt1 = X(Trt1) (13)

to complete the problem data ﬁ,ﬁ"f = {Yk+1=N) <oy Tkt-1, Uk—Ns ---, Uf, } and start
the solution of the predicted problem M(ﬁ,’c”ff). Simultaneously, we can use the
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predicted state to define 7] := Zx41 and start the solution of the predicted
problem P(ﬁ,znff). Note that both problems are decoupled so this can be done
simultaneously and thus reduce the sampling time. At the solution of these
problems, we hold the corresponding KKT matrices K™"¢ and K]'7°.

Once the true measurement y; 1 becomes available, we compute a fast back-
solve with K¢ to obtain an approzimate state estimate 733 which differs from
the optimal state estimate Zr+1 and the true state x;41. Using the approximate
state estimate we perform a fast backsolve with K" to obtain the approxi-
mate control action ugy1 = h**(2{%,). Of course, this also differs from the ideal
NMPC control h(Zgy1)-

To warm-start the background problems at the next sampling time, we use
the approximate solutions §y,gp and §jpo to generate the shifted warm-start
sequences for the next problems M(7jys) and P(i;'f5) [11],

shpp = {Z1 0 AN, FERL wet1), A2, o, A, 0} (14a)

S?\/IPC = {271’---agN,«gN;f)la---aﬁN—laf)N—la/\la---,/\N;/\N}- (14b)

from which we update the KKT matrices in between sampling times. Note that
the approximate solutions §y/gg and Syrpo can also be refined in background
using fixed-point iterations with K™"¢ and KJ'P° before using them to gener-
ate the warm-start sequences. We summarize the proposed framework for the
advanced-step MHE and NMPC strategies, asMHE and asNMPC, respectively,
as follows:

In background, between t;, and t;41:

1. Use current estimate Z{° and control uy, to predict the future state z;41 =
f(Z¢°,ur) and corresponding output measurement gxi1 = X(Zg+1).

2. Define the data ﬁ,’enff = {Ykt1-N--Yk> Tkt 1, Ukt1_N, -, U} and ﬁ,’;:_pf =

Zr4+1. Use the available warm-start points 4,55 and s$;p to solve the
predicted problems My (74%) and Py (7).

3. Hold the KKT matrices K™"¢ and KI'*°.
On-line, at tj4q:

1. Obtain the true measurement yi1 and define the true MHE data n,’enff.

Reuse factorization of K¢ to quickly compute 3yrgp from (9) and ex-

S
tract Tpoq-

2. Use 5, to define the true NMPC problem data ,";. Reuse factorization
of K" to quickly compute 537 pc from (9) and extract w1 = h** (5, ).

3. If necessary, refine Syrgp and Sy pe. Generate the warm-starts s$,yg
and 59, pc, set k= k + 1, and return to background.

4.1 Stability Issues

It is clear that both the state estimate and the associated control action are
suboptimal due to the presence of NLP approximation errors. Here, we are
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interested in assessing the impact of these errors in the stability of the closed-
loop system. From the controller point of view, we are interested in finding
sufficient conditions under which the closed-loop remains stable in the face of
disturbances and NLP sensitivity errors. Due to space limitations we outline
the main results here and refer the interested reader to [2] for more details.

To start the discussion, we first note that solving the predicted problem
P(Zr41) in the asNMPC controller is equivalent to solving the extended problem,

N-1
Pr1(ng™)  min U(zn) + Pk, ur) + Y ¥(zi,v)  (15a)

1=0
st.zip1 = f(z,wm) 1=0,...N—-1 (15b)
zo = f(zg,ur) (15¢)
2 € Xuel (15d)
with fixed zp, up = h(zy) and n,"*" = {x4,h(z;)}. For the optimal or ideal
NMPC controller (instantaneous optimal solutions), we consider the neighbor-
ing costs of the extended problems with perfect state information J;},S“) =
JIN+1(xk, h(zg)) and Jf,ffr’f+l) := JN+1(Trt1, h(xk41)) as reference points. As

observed by Muske and Rawlings [12], since the implemented control action is
based on the state estimate Zj, coming from MHE and not on the true state zy,
we consider this as an additional disturbance to the closed-loop system through
the cost J;}fi’;“) where Zy11 = f(zg, h(Zk)) + & . From Lipschitz continuity of
the cost function we have,
ROk )| < Ly Ly Ly |, — Fll

Explicit bounds and convergence properties on the estimator error ||z — Z|| can
be established for the MHE formulation (2) [15]. Moreover, we can also treat
this error as another disturbance & and define Zj := ) + &. This allows us to
restate the following robustness result for the combined asMHFE and asNMPC
strategies.

Theorem 2 (Theorem 6 in [2] ) Assume that the NLPs for (2) and (3) can be
solved within one sampling time. Assume also that nominal and robust stabil-
ity assumptions for ideal NMPC hold (see [2]), then there exist bounds on the
noise £ and v for which the cost function Jyi1(x), obtained from the combined
asMHE-asNMPC strategy, is an input to state stable (ISS) Lyapunov function,
and the resulting closed-loop system is ISS stable.

5 Case Study

We demonstrate the performance of the proposed advanced-step framework on
a low-density polyethylene (LDPE) tubular reactor process. A schematic rep-
resentation of a typical multi-zone LDPE reactor is presented in Figure 1. In
these reactors, high-pressure (2000-3000 atm) ethylene polymerizes through a
free-radical mechanism in the presence of peroxide initiators, which are fed
at multiple zones in order to start and stop the polymerization. The large
amounts of heat produced by polymerization are removed at each zone using
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Figure 1: Schematic representation of multi-zone LDPE tubular reactor.

cooling water, along with multiple feeds of ethylene that cool the ethylene-
polymer reacting mixture flowing inside the reactor core. Initiator flow rates,
ethylene side-streams flow rates and temperatures, and the cooling water inlet
temperatures and flow rates can be manipulated to achieve an axial reactor
temperature profile that produces a desired polymer grade. A common prob-
lem in these reactors is that polymer accumulates (i.e., fouls) on the reactor
walls. The resulting fouling layer blocks heat flow to the jacket cooling water
and can be seen as a persistent dynamic disturbance. In the absence of a suit-
able control system, this fouling layer will eventually lead to thermal runaway.
A centralized model-based control strategy based on a first-principles reactor
model can deal effectively with fouling monitoring, zone control decoupling and
direct optimization of the overall process economics (e.g. maximize production,
minimize energy consumption). Nevertheless, LDPE reactor models consist of
very large sets of PDAEs that describe the evolution of the reactor mixture and
of the cooling water temperature along the axial and time dimension. After
axial discretization, a typical LDPE reactor model can easily contain more than
10,000 DAEs.

An MHE estimator and an NMPC controller based on first-principles LDPE
reactor models have been reported in [13, 14]. While these reports stress the ben-
efits of these strategies for the LDPE process, little emphasis has been placed on
the computational limitations associated to their on-line solution. Here, we con-
sider these issues through the proposed advanced-step control framework where
we effectively minimize the on-line computation with negligible approximation
errors. We simulate the scenario in which the reactor is fouled and cleaned
over time, by ramping the reactor heat-transfer coefficients (HTCs) down and
up. Because this effect is directly reflected through HTCs in the LDPE reactor
model, we do not estimate the process disturbance &, and instead use the MHE
estimator to estimate the HTCs and the unmeasured model states (e.g. wall
temperature profile) at each time step. For the MHE estimator, y, consists of
multiple measurements of the reactor core temperature and the output jacket
temperatures in each zone. The objective of the NMPC controller is to use
the estimated reactor state Z}° to drive the axial reactor temperature profile to
the specified target profile. In order to do this, the NMPC controller uses the
multiple inputs distributed along the reactor to obtain u; = h®*(Z{°). In this
simulated scenario, we generate the plant response zj from the model with the
true HTCs. In addition, the plant is initialized at a different state from that
of the NMPC controller. Finally, we corrupt the output measurements with
Gaussian noise.

Since the plant response differs from that of the NMPC controller prediction
and we introduce noise, the asMHE estimator will see a difference between the
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Figure 2: Performance of advanced-step MHE and NMPC in LDPE case study.

measured and the predicted outputs (see top graph of Figure 2) and will correct
on-line using NLP sensitivity. We have found that the approximation errors are
negligible and the asMHFE estimator has almost identical convergence properties
to that of the ideal MHE estimator. In the middle graph of Figure 2, we see
that while the estimate of the reactor wall profile is inaccurate at ty, the dashed
and solid lines coincide by t19, and the asMHE estimator converges to the true
reactor wall profile (and the one obtained from ideal MHE) using reactor core
measurements in about 10 time steps. Using the estimated states and HTCs,
the asNMPC controller then updates the predicted state on-line. In the bottom
graph of Figure 2 we present the closed-loop response of one of the jacket water
inlet temperatures for the asNMPC controller and its ideal NMPC counterpart.
As can be seen, both control actions are identical. In this graph we can also
appreciate how the HTC cycles influence the controller response.

In the top graph of Figure 3 we present the total wall-clock time required
to refine the perturbed solution, generate the warm-start point and solve the
background NMPC problem. This time also includes some overhead coming
from I/O communication tasks and from AMPL, which requires some time to
generate the derivative information before calling the NLP solver. A prediction
horizon of N = 10 time steps (20 minutes) and sampling times of 2 minutes have
been used. The NMPC problem consists of an NLP with 80,950 constraints and
370 degrees of freedom. As can be seen, the overall background time is around
60 seconds and is well below the specified sampling time. A single factorization
of the KKT matrix takes 15.34 seconds, a single fixed-point iteration requires 0.1
seconds, and an average of 5 fixed point iterations are required to solve the NLP.
In the middle graph of Figure 3, we present total background times for the MHE
estimator. The estimator is initialized in batch mode (accumulate measurements
until an estimator horizon of N time steps is filled). Once the estimation horizon
is complete, the background tasks take around 70 seconds to be completed. The
MHE problem consists of an NLP with 80,300 constraints and 648 degrees of
freedom. One fixed-point iteration requires 0.12 seconds and an average of 10
fixed point iterations solve the NLP. In the bottom graph of Figure 3, we present
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Figure 3: Computational results. Background tasks NMPC (top). Background
tasks MHE (middle). Scale-up of NMPC problem (bottom).

scale-up results of the solution time for the NMPC problem with increasing
horizon length. We compare the impact of AMD and nested dissection sparse
matrix reordering on the solution time of the background NLP problem (without
refinement or overhead). The multi-level nested dissection strategy is more
efficient here and achieves a linear scale-up. Using this strategy, a N = 30
NMPC problem with 242,850 constraints and 1,110 degrees of freedom is solved
in around 2 minutes, the factorization of the KKT matrix takes 32.31 seconds
and a fixed-point iteration requires 0.33 seconds. The AMD strategy shows
quadratic scale-up and the largest problem requires 4 minutes. This difference
can be attributed to the fact that the Metis nested dissection algorithm is much
more efficient in identifying coarse-grained structures in the NMPC problem
(LDPE multi-zone model, DAE forward structure, etc.), while AMD tends to
focus on fine-grained structures. All calculations were obtained using a quad-
core Intel processor running Linux at 2.4 GHz.

6 Conclusions

In this work, we present computational strategies for MHE and NMPC prob-
lems. In particular, a general solution framework based on interior-point NLP
solvers and sensitivity concepts is considered. We emphasize that exploiting
the overall sparsity pattern of the KKT matrix arising in NMPC and MHE
problems leads to a computationally efficient and stable strategy to compute
the Newton step. We analyze the impact of different reordering techniques of
the KKT matrix on the factorization time and computer memory limitations.
In particular, we present NLP sensitivity-based strategies for MHE and NMPC
that reduce the on-line computation time to only two fast backsolves. This neg-
ligible computation effectively removes the problem of computational delay even
for very large NLP models. Finally, we discuss stability issues of the NMPC
controller in the face of sensitivity errors and demonstrate the developments in
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a distributed polymerization reactor process, where highly accurate solutions
can be obtained in a negligible amount of time.
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