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t : Sensitivity-based strategies for on-line moving horizon estimation(MHE) and nonlinear model predi
tive 
ontrol (NMPC) are presented both froma stability and 
omputational perspe
tive. These strategies make use of full-spa
e interior-point nonlinear programming (NLP) algorithms and NLP sensi-tivity 
on
epts. In parti
ular, NLP sensitivity allows us to partition the solutionof the optimization problems into ba
kground and negligible on-line 
omputa-tions, thus avoiding the problem of 
omputational delay even with large dynami
models. We demonstrate these developments through a distributed polymeriza-tion rea
tor model 
ontaining around 10,000 di�erential and algebrai
 equations(DAEs).1 Introdu
tionGeneral model-based 
ontrol frameworks based on MHE and NMPC representan attra
tive alternative for the operation of 
omplex pro
esses. These frame-works allow the in
orporation of highly sophisti
ated dynami
 pro
ess modelsand the dire
t handling of multivariable intera
tions and operational 
onstraints.In addition, the potential of in
orporating detailed �rst-prin
iples models allowsa 
loser intera
tion of the 
ontroller with traditional e
onomi
 optimization lay-ers su
h as real-time optimization (RTO). Cru
ial enabling developments forthis in
lude: a) in
reased pro
ess understanding leading to highly-detailed �rst-prin
iples dynami
 pro
ess models, b) enhan
ed formulations with stability androbustness guarantees, 
) advan
es in numeri
al strategies for DAE-
onstrainedoptimization and NLP algorithms, and d) advan
es in 
omputational resour
esin
luding the availability of parallel and multi-
ore te
hnology.In this work, spe
ial emphasis is made on the numeri
al solution aspe
ts andperforman
e of 
ombined MHE and NMPC strategies. In parti
ular, a generalsolution framework based on interior-point NLP solvers and sensitivity 
on
eptsis 
onsidered. In the following se
tion, we introdu
e some basi
 
on
epts andnotation and des
ribe spe
i�
 formulations of the MHE and NMPC nonlinearprogramming problems. In Se
tion 3 we dis
uss advantages of interior-pointNLP solvers and present some basi
 NLP sensitivity results. In Se
tion 4 wederive advan
ed-step approximation strategies for MHE and NMPC, based onNLP sensitivity to redu
e on-line 
omputational time. We also dis
uss theirgeneral stability and performan
e properties, espe
ially when both are appliedInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008



Invited Papertogether. In Se
tion 5, the potential of the 
ombined MHE and NMPC solutionframework is demonstrated on a large-s
ale 
ase study involving the simulta-neous monitoring and 
ontrol of a distributed low-density polyethylene tubularrea
tor. The paper then 
loses with general 
on
lusions and re
ommendations.2 MHE and NMPC FormulationsWe begin with a dis
rete-time dynami
 model of an un
ertain plant of the form,xk+1 = f(xk; uk) + �k; yk+1 = �(xk+1) + vk+1 (1a)where xk 2 <nx is the true plant state at time instant tk and uk 2 <nu is theimplemented 
ontrol a
tion. The nonlinear dynami
 model f(�; �) : <nx+nu !<nx is the nominal model and satis�es f(0; 0) = 0. The observed output yk 2<ny with ny � nx is related to the state-spa
e xk through the nonlinear mapping�(�) : <nx ! <ny . The true plant deviates from the nominal predi
tion due tothe pro
ess disturban
e �k 2 <nx and measurement noise vk 2 <ny .Assume that the plant is 
urrently lo
ated at sampling time tk with the out-put and input measurements �mhek := fyk�N ; :::; yk; uk�N ; :::; uk�1g distributedover a horizon 
ontaining N steps. The output measurement 
ovarian
e is givenby R 2 <ny�ny . The a priori estimate of the past state of the plant is denotedas �xk�N and has an asso
iated 
ovarian
e �0;k 2 <nx�nx . Using this informa-tion, we would like to 
ompute an estimate ~xk of the 
urrent state xk. In orderto do this, we solve the MHE problem,M(�mhek ) minz0 kz0 � �xk�Nk2��10;k + NXl=0 kyk+l�N � �(zl)k2R�1 (2a)s.t. zl+1 = f(zl; uk+l�N ); l = 0; :::; N � 1 (2b)zl 2 X (2
)All the MHE problem data 
an be summarized in the ve
tor �mhek . Symbolszl 2 <nx are internal de
ision variables of the optimization problem. Thisproblem has nx degrees of freedom 
orresponding to z0. From the solutiontraje
tory, fz�0 ; :::; z�Ng, we obtain the optimal estimate ~xk = z�N with asso
iatedestimation error ek := ~xk�xk. Using this estimate, we de�ne the problem data�mp
k := ~xk for the NMPC problem,P(�mp
k ) minvl 	(zN) + N�1Xl=0  (zl; vl) (3a)s.t. zl+1 = f(zl; vl) l = 0; : : :N � 1 (3b)z0 = ~xk (3
)zl 2 X; vl 2 U (3d)where vl 2 <nu are internal de
ision variables. This problem has (N � 1)� nudegrees of freedom 
orresponding to vl; l = 0; :::; N � 1. Here, we assume thatthe states and 
ontrols are restri
ted to the domains X and U, respe
tively. Thestage 
ost is de�ned by  (�; �) : <nx+nu ! <, while the terminal 
ost is denotedby 	(�) : <nx+nu ! <. The 
ontrol a
tion is extra
ted from the traje
toryoptimal traje
tory fz�0 :::z�N v�0 ; :::; v�N�1g as uk = v�0 := h(~xk), and h(�) denotesthe feedba
k law. Note that this 
ontrol a
tion is ina

urate be
ause the trueInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 2



Invited Paperstate of the plant is xk and not the estimate ~xk. That is, the estimation errora
ts as an additional disturban
e. At the next time, the plant will evolve as,xk+1 = f(xk; h(~xk)) + �k; yk+1 = h(xk+1) + vk+1 (4)With this, we shift the measurement sequen
e one step forward to obtain�mhek+1 := fyk�N+1; :::; yk+1; uk�N+1; :::; ukg, and we solve the new MHE problem.Having the new state estimate ~xk+1 we solve the next NMPC problem.Note that the above formulations are rather simpli�ed. This makes them
onvenient for the 
on
eptual analysis in subsequent se
tions. In pra
ti
al appli-
ations, both NMPC and MHE problems are solved as general 
ontinuous-timeDAE-
onstrained optimization problems. In this work, we assume that a fulldis
retization approa
h is used to derive the dis
rete-time NMPC and MHEformulations. In this 
ase, these NLP problems will be sparse. This is a 
ru
ialproperty to be exploited in the following se
tions.A problem that is normally en
ountered in model-based 
ontrol frameworksis that there exists a 
omputational feedba
k delay equal to the solution timeof the MHE and NMPC problems. In large-s
ale appli
ations (say nx � 100�10; 000), this 
omputational delay might dominate the time 
onstant of the plantand destabilize the pro
ess. Therefore, we seek to derive strategies to redu
ethe on-line 
omputational time. The �rst 
ru
ial 
omponent of these strategiesis a fast NLP algorithm. In the next se
tion, we dis
uss some of the advantagesthat interior-point NLP solvers o�er for the solution of very large problems.3 Full-Spa
e Interior-Point NLP SolversThe NLP problems (2) and (3) 
an be posed in the general form,N (�) minx F (x; �) (5a)s:t: 
(x; �) = 0 (5b)x � 0 (5
)where x 2 <nx is variable ve
tor 
ontaining all the states and 
ontrols and � isthe data ve
tor.Full-spa
e interior-point solvers have be
ome a popular 
hoi
e for the solu-tion of large-s
ale and sparse NLPs. In parti
ular, the solvers LOQO, KNITROand IPOPT are widely used. In this work, we use IPOPT, an open-sour
e NLPsolver originally developed in our resear
h group [1℄. In interior-point solvers,the inequality 
onstraints of problem (5) are handled impli
itly by adding barrierterms to the obje
tive fun
tion,minx F (x; �)� �` nxXj=1 ln(x(j)); s.t. 
(x; �) = 0 (6)where x(j) denotes the jth 
omponent of ve
tor x. Solving (6) for a de
ayingsequen
e of �` ! 0; ` ! 1 results in an eÆ
ient strategy to solve the originalNLP (5). IPOPT solves the Karush-Kuhn-Tu
ker (KKT) 
onditions of thissequen
e of barrier problems (6),rxF (x; �) +rx
(x; �)� � � = 0 (7a)
(x; �) = 0 (7b)X �V e = �`e (7
)Int. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 3



Invited Paperwhere X = diag(x);V = diag(�) and e 2 <nx is a ve
tor of ones. Symbols� 2 <n� and � 2 <nx are Lagrange multipliers for the equality 
onstraints andbounds, respe
tively. To solve this system of nonlinear equations we apply an ex-a
t Newton method with the iteration sequen
e initialized at sTo := [xTo �To �To ℄.At the ith iteration, the sear
h dire
tion �si = si+1 � si is 
omputed by lin-earization of the KKT 
onditions (7),24 Hi Ai �InxAiT 0 0Vi 0 Xi 3524 �xi��i��i 35= �24rxF (xi)+Ai�i��i
(xi)XiVie� �`e 35 (8)where Ai := rx
(xi; �), Hi 2 <nx�nx is the Hessian of the Lagrange fun
tionL = F (xi; �) + �Ti 
(xi; �)� �iTxi and Inx denotes the identity matrix.We provide exa
t Hessian and Ja
obian information through the modelingplatform AMPL. With this, Newton's method guarantees fast lo
al 
onvergen
eand is able to handle problems with many degrees of freedom without alteringthese 
onvergen
e properties. After solving a sequen
e of barrier problems for�` ! 0, the solver returns the optimal solution triplet sT� = [xT� �T� �T� ℄ whi
himpli
itly de�nes the a
tive-set (set of variables satisfying x(j) = 0).3.1 Computational IssuesSolving the KKT system (8) is the most 
omputationally intensive step inthe solution of the NLP. A 
ru
ial advantage that interior-point solvers o�erover a
tive-set solvers is that the stru
ture of the KKT matrix in (8) does not
hange between iterations. This fa
ilitates the design of tailored linear algebrastrategies to exploit spe
ial stru
tures. For instan
e, the KKT matrix arisingfrom DAE-
onstrained optimization problems has a natural forward stru
ture(almost-blo
k-diagonal) in time and 
lassi
al Ri

ati-like re
ursions and 
on-densing te
hniques are often applied, where the 
omplexity of these solutionstrategies s
ales linearly with the horizon length N , but 
ubi
ally with thenumber of states nx and 
ontrols nu. On the other hand, spe
ialized strategieshave been developed that redu
e the 
ubi
 
omputational 
omplexity and alsopreserve numeri
al stability in the fa
e of unstable dynami
s [3, 4℄.In IPOPT, we use a symmetri
 inde�nite fa
torization of the KKT matrix(with ��i eliminated). With this, we exploit only the sparsity pattern of theKKT matrix. The 
omputational 
omplexity of this strategy is in general veryfavorable, s
aling nearly linearly and at most quadrati
ally with the overall di-mensions of the NLP (e.g. length of predi
tion horizon, number of states andnumber of degrees of freedom). This general approa
h also remains stable in thefa
e of unstable dynami
s. However, signi�
ant �ll-in and 
omputer memorybottlene
ks might arise during the fa
torization step if the sparsity pattern isnot properly exploited. In order to fa
torize the KKT matrix, we use the linearsolver MA57 from the Harwell library [5℄. Sin
e the stru
ture of the KKT matrixdoes not 
hange between iterations, the linear solver needs to analyze the spar-sity pattern only on
e. During this analysis phase, the linear solver permutes thematrix to redu
e �ll-in and 
omputer memory requirements in the fa
torizationphase. Two reordering strategies are normally used in MA57. The �rst is anapproximate minimum degree (AMD) ordering algorithm while the se
ond is anested disse
tion algorithm based on the multi-level graph partitioning strategy,Int. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 4



Invited Paperimplemented in Metis [6℄. For very large-s
ale problems, these nested disse
tionte
hniques ex
el at identifying high-level (
oarse-grained) stru
tures and thusplay a 
ru
ial role in the fa
torization time and reliability of the linear solver.This notable advan
es in numeri
al linear algebra 
an dramati
ally expand theappli
ation s
ope of NMPC and MHE.IPOPT also applies a regularization s
heme to the KKT matrix in order toa

ount for dire
tions of negative 
urvature and rank-de�
ient Ja
obians whi
hare 
ommonly en
ountered in highly nonlinear NLPs and/or ill-posed formu-lations. Dire
tions of negative 
urvature are dete
ted impli
itly through thelinear solver, whi
h returns the so-
alled inertia of the KKT matrix (number ofpositive, negative and zero eigenvalues). If the inertia is 
orre
t at the solution,no regularization is ne
essary and we 
an guarantee that the optimal point is awell-de�ned minimum satisfying strong se
ond order 
onditions (SSOC) and thelinear independen
e quali�
ation of the 
onstraints (LICQ) [7℄. In the 
ontext ofNMPC and MHE, 
he
king for SSOC is important sin
e this is dire
tly relatedto properties of the dynami
 system su
h as 
ontrollability and observability.Consequently, 
he
king for SSOC through the inertial properties of the KKTmatrix is another important advantage of using a general fa
torization strategy,as opposed to other tailored linear algebra strategies.3.2 NLP Sensitivity and Warm-StartsProblem (5) is parametri
 in the data � and the optimal primal and dual vari-ables 
an be treated as impli
it fun
tions of �. For a suÆ
iently small �`, theKKT 
onditions (7) of the barrier problem (6) 
an be expressed as '(s(�); �) = 0and we de�ne K�(�0) as the KKT matrix in (8).We are interested in 
omputing fast approximate solutions for neighboringproblems around an already available nominal solution s�(�0). In order to dothis, we make use of the following 
lassi
al results,Theorem 1 (NLP Sensitivity) [7, 8℄. If F (�) and 
(�) of the parametri
 prob-lem N (�) are twi
e 
ontinuously di�erentiable in a neighborhood of the nominalsolution s�(�0) and this solution satis�es LICQ and SSOC, then s�(�0) is anisolated lo
al minimizer of N (�0) and the asso
iated Lagrange multipliers areunique. Moreover, for � in a neighborhood of �0 there exists a unique, 
on-tinuous and di�erentiable ve
tor fun
tion s�(�;N) whi
h is a lo
al minimizersatisfying SSOC and LICQ for N (�). Finally, there exists a positive Lips
hitz
onstant L su
h that ks�(�;N) � s�(�0; N)k � Lk� � �0k along with a posi-tive Lips
hitz 
onstant LF su
h that the optimal values F (�) and F (�0) satisfykF (�)� F (�0)k � LFk� � �0k.Under these results, a step �s(�) 
omputed from,K�(�0)�s(�) = � ('(s�(�0); �)� '(s�(�0); �0))= �'(s�(�0); �): (9)with �s(�) = ~s(�) � s�(�0), is a Newton step taken from s�(�0) towards thesolution of a neighboring problem N (�). Consequently, ~s(�) satis�es,k~s(�)� s�(�)k � Lsk� � �0k2 (10)Int. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 5



Invited Paperwith Ls > 0. Furthermore, sin
e the KKT matrix K�(�0) is already availablefrom the solution of the nominal problem N (�0), 
omputing this step requiresonly a single ba
ksolve whi
h 
an be performed orders of magnitude faster thanthe fa
torization of the KKT matrix.Sin
e the approximate solution ~s(�) is a

urate to �rst order, we 
an useit as the initial guess so(�) to warm-start the NLP N (�). For instan
e, if theperturbation (� � �0) does not indu
e an a
tive-set 
hange, we 
an �x � to asmall value (e.g. say 1 � 10�6) and reuse the KKT matrix K�(�0) to performfast �xed-point iterations on the system,K�(�0)�si(�) = �'(si(�); �) (11)with so = s�(�0). With this, we 
an redu
e the primal and dual infeasibilityof the perturbed problem N (�) until no further progress 
an be made withthe �xed KKT matrix. For suÆ
iently small perturbations, these fast �xed-point iterations 
an 
onverge to the solution of the perturbed problem s�(�).However, for large perturbations, the KKT matrix needs to be reevaluated andrefa
torized.When the perturbation ���0 indu
es an a
tive-set 
hange, the linearizationof the 
omplementarity relaxation (7
) 
ontained in the nominal KKT matrixK�(�0) will drive the �rst Newton iteration outside of the feasible region andthe sensitivity approximation is in
onsistent. To 
ompute a fast sensitivityapproximation, one 
ould reuse the fa
torization of the KKT matrix througha S
hur 
omplement s
heme to 
orre
t the a
tive-set (e.g. add sla
k variablesand 
onstraints to drop and �x variables and bound multipliers) [9℄. This isequivalent to an a
tive-set sequential quadrati
 programming (SQP) iteration.Fixed-point iterations 
an also be performed in this way.In the 
ontext of the proposed MHE and NMPC formulations, we de�ne theoptimal solutions,s�MHE := fz�0 ; :::; z�N�1; z�N ; ��1; :::; ��N�1; ��Ng (12a)s�MPC := fz�0 ; :::; z�N�1; z�N ; v�0 ; :::; v�N�2; v�N�1; ��0; :::; ��N�1; ��Ng: (12b)The asso
iated sensitivity approximations are denoted as ~sMHE and ~sMPC ,respe
tively, and the 
orresponding warm-start ve
tors as soMHE and soMPC .Noti
e that we have not in
luded the bound multipliers in order to simplify thepresentation.4 Advan
ed-Step MHE and NMPC StrategiesIt is possible to minimize the on-line time required to solve the MHE problemand then the NMPC problem to two fast ba
ksolves using an advan
ed-stepframework [2, 10℄. Imagine that at time tk we know the 
ontrol a
tion uk andwe would like to obtain an estimate of the future state xk+1 but we don't knowthe future measurement yk+1. Nevertheless, we 
an use the 
urrent estimate ~xkand 
ontrol uk to predi
t the future state and asso
iated measurement,�xk+1 = f(~xk ; uk); �yk+1 = �(�xk+1) (13)to 
omplete the problem data ��mhek+1 := fyk+1�N ; :::; �yk+1; uk�N ; :::; ukg and startthe solution of the predi
ted problemM(��mhek+1 ). Simultaneously, we 
an use theInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 6



Invited Paperpredi
ted state to de�ne ��mp
k+1 := �xk+1 and start the solution of the predi
tedproblem P(��mp
k+1 ). Note that both problems are de
oupled so this 
an be donesimultaneously and thus redu
e the sampling time. At the solution of theseproblems, we hold the 
orresponding KKT matri
es Kmhe� and Kmp
� .On
e the true measurement yk+1 be
omes available, we 
ompute a fast ba
k-solve withKmhe� to obtain an approximate state estimate ~xask+1 whi
h di�ers fromthe optimal state estimate ~xk+1 and the true state xk+1. Using the approximatestate estimate we perform a fast ba
ksolve with Kmp
� to obtain the approxi-mate 
ontrol a
tion uk+1 = has(~xask+1). Of 
ourse, this also di�ers from the idealNMPC 
ontrol h(~xk+1).To warm-start the ba
kground problems at the next sampling time, we usethe approximate solutions ~sMHE and ~sMPC to generate the shifted warm-startsequen
es for the next problems M(��mhek+2 ) and P(��mp
k+2 ) [11℄,soMHE := f~z1; :::; ~zN ; f(~xask+1; uk+1); ~�2; :::; ~�N ; 0g (14a)soMPC := f ~z1; :::; ~zN ; ~zN ; ~v1; :::; ~vN�1; ~vN�1; ~�1; :::; ~�N ; ~�Ng: (14b)from whi
h we update the KKT matri
es in between sampling times. Note thatthe approximate solutions ~sMHE and ~sMPC 
an also be re�ned in ba
kgroundusing �xed-point iterations with Kmhe� and Kmp
� before using them to gener-ate the warm-start sequen
es. We summarize the proposed framework for theadvan
ed-step MHE and NMPC strategies, asMHE and asNMPC, respe
tively,as follows:In ba
kground, between tk and tk+1:1. Use 
urrent estimate ~xask and 
ontrol uk to predi
t the future state �xk+1 =f(~xask ; uk) and 
orresponding output measurement �yk+1 = �(�xk+1).2. De�ne the data ��mhek+1 = fyk+1�N :::yk; �yk+1; uk+1�N ; :::; ukg and ��mp
k+1 =�xk+1. Use the available warm-start points soMHE and soMPC to solve thepredi
ted problems MN(��mhek+1 ) and PN(��mhek+1 ).3. Hold the KKT matri
es Kmhe� and Kmp
� .On-line, at tk+1:1. Obtain the true measurement yk+1 and de�ne the true MHE data �mhek+1 .Reuse fa
torization of Kmhe� to qui
kly 
ompute ~sMHE from (9) and ex-tra
t ~xask+1.2. Use ~xask+1 to de�ne the true NMPC problem data �mp
k+1 . Reuse fa
torizationofKmp
� to qui
kly 
ompute ~sMPC from (9) and extra
t uk+1 = has(~xask+1).3. If ne
essary, re�ne ~sMHE and ~sMPC . Generate the warm-starts soMHEand soMPC , set k := k + 1, and return to ba
kground.4.1 Stability IssuesIt is 
lear that both the state estimate and the asso
iated 
ontrol a
tion aresuboptimal due to the presen
e of NLP approximation errors. Here, we areInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 7



Invited Paperinterested in assessing the impa
t of these errors in the stability of the 
losed-loop system. From the 
ontroller point of view, we are interested in �ndingsuÆ
ient 
onditions under whi
h the 
losed-loop remains stable in the fa
e ofdisturban
es and NLP sensitivity errors. Due to spa
e limitations we outlinethe main results here and refer the interested reader to [2℄ for more details.To start the dis
ussion, we �rst note that solving the predi
ted problemP(�xk+1) in the asNMPC 
ontroller is equivalent to solving the extended problem,PN+1(�mp
k ) minvl 	(zN) +  (xk; uk) + N�1Xl=0  (zl; vl) (15a)s.t. zl+1 = f(zl; vl) l = 0; : : :N � 1 (15b)z0 = f(xk; uk) (15
)zl 2 X; vl 2 U (15d)with �xed xk, uk = h(xk) and �mp
k = fxk; h(xk)g. For the optimal or idealNMPC 
ontroller (instantaneous optimal solutions), we 
onsider the neighbor-ing 
osts of the extended problems with perfe
t state information Jh(xk)xk :=JN+1(xk; h(xk)) and Jh(xk+1)xk+1 := JN+1(xk+1; h(xk+1)) as referen
e points. Asobserved by Muske and Rawlings [12℄, sin
e the implemented 
ontrol a
tion isbased on the state estimate ~xk 
oming from MHE and not on the true state xk,we 
onsider this as an additional disturban
e to the 
losed-loop system throughthe 
ost Jh(x̂k+1)x̂k+1 where x̂k+1 = f(xk; h(~xk)) + �k. From Lips
hitz 
ontinuity ofthe 
ost fun
tion we have,jJh(x̂k+1)x̂k+1 � Jh(xk+1)xk+1 j � LJLfLhkxk � ~xkk:Expli
it bounds and 
onvergen
e properties on the estimator error kxk�~xkk 
anbe established for the MHE formulation (2) [15℄. Moreover, we 
an also treatthis error as another disturban
e �k and de�ne ~xk := xk + �k. This allows us torestate the following robustness result for the 
ombined asMHE and asNMPCstrategies.Theorem 2 (Theorem 6 in [2℄ ) Assume that the NLPs for (2) and (3) 
an besolved within one sampling time. Assume also that nominal and robust stabil-ity assumptions for ideal NMPC hold (see [2℄), then there exist bounds on thenoise � and v for whi
h the 
ost fun
tion JN+1(x), obtained from the 
ombinedasMHE-asNMPC strategy, is an input to state stable (ISS) Lyapunov fun
tion,and the resulting 
losed-loop system is ISS stable.5 Case StudyWe demonstrate the performan
e of the proposed advan
ed-step framework ona low-density polyethylene (LDPE) tubular rea
tor pro
ess. A s
hemati
 rep-resentation of a typi
al multi-zone LDPE rea
tor is presented in Figure 1. Inthese rea
tors, high-pressure (2000-3000 atm) ethylene polymerizes through afree-radi
al me
hanism in the presen
e of peroxide initiators, whi
h are fedat multiple zones in order to start and stop the polymerization. The largeamounts of heat produ
ed by polymerization are removed at ea
h zone usingInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 8
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Zone 1 Zone 2 Zone N-1 Zone N

Cooling 

Water

Cold Side Streams Thermocouple

Figure 1: S
hemati
 representation of multi-zone LDPE tubular rea
tor.
ooling water, along with multiple feeds of ethylene that 
ool the ethylene-polymer rea
ting mixture 
owing inside the rea
tor 
ore. Initiator 
ow rates,ethylene side-streams 
ow rates and temperatures, and the 
ooling water inlettemperatures and 
ow rates 
an be manipulated to a
hieve an axial rea
tortemperature pro�le that produ
es a desired polymer grade. A 
ommon prob-lem in these rea
tors is that polymer a

umulates (i.e., fouls) on the rea
torwalls. The resulting fouling layer blo
ks heat 
ow to the ja
ket 
ooling waterand 
an be seen as a persistent dynami
 disturban
e. In the absen
e of a suit-able 
ontrol system, this fouling layer will eventually lead to thermal runaway.A 
entralized model-based 
ontrol strategy based on a �rst-prin
iples rea
tormodel 
an deal e�e
tively with fouling monitoring, zone 
ontrol de
oupling anddire
t optimization of the overall pro
ess e
onomi
s (e.g. maximize produ
tion,minimize energy 
onsumption). Nevertheless, LDPE rea
tor models 
onsist ofvery large sets of PDAEs that des
ribe the evolution of the rea
tor mixture andof the 
ooling water temperature along the axial and time dimension. Afteraxial dis
retization, a typi
al LDPE rea
tor model 
an easily 
ontain more than10,000 DAEs.An MHE estimator and an NMPC 
ontroller based on �rst-prin
iples LDPErea
tor models have been reported in [13, 14℄. While these reports stress the ben-e�ts of these strategies for the LDPE pro
ess, little emphasis has been pla
ed onthe 
omputational limitations asso
iated to their on-line solution. Here, we 
on-sider these issues through the proposed advan
ed-step 
ontrol framework wherewe e�e
tively minimize the on-line 
omputation with negligible approximationerrors. We simulate the s
enario in whi
h the rea
tor is fouled and 
leanedover time, by ramping the rea
tor heat-transfer 
oeÆ
ients (HTCs) down andup. Be
ause this e�e
t is dire
tly re
e
ted through HTCs in the LDPE rea
tormodel, we do not estimate the pro
ess disturban
e �k, and instead use the MHEestimator to estimate the HTCs and the unmeasured model states (e.g. walltemperature pro�le) at ea
h time step. For the MHE estimator, yk 
onsists ofmultiple measurements of the rea
tor 
ore temperature and the output ja
kettemperatures in ea
h zone. The obje
tive of the NMPC 
ontroller is to usethe estimated rea
tor state ~xask to drive the axial rea
tor temperature pro�le tothe spe
i�ed target pro�le. In order to do this, the NMPC 
ontroller uses themultiple inputs distributed along the rea
tor to obtain uk = has(~xask ). In thissimulated s
enario, we generate the plant response xk from the model with thetrue HTCs. In addition, the plant is initialized at a di�erent state from thatof the NMPC 
ontroller. Finally, we 
orrupt the output measurements withGaussian noise.Sin
e the plant response di�ers from that of the NMPC 
ontroller predi
tionand we introdu
e noise, the asMHE estimator will see a di�eren
e between theInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 9
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Optimal Control
Sensitivity ControlFigure 2: Performan
e of advan
ed-step MHE and NMPC in LDPE 
ase study.measured and the predi
ted outputs (see top graph of Figure 2) and will 
orre
ton-line using NLP sensitivity. We have found that the approximation errors arenegligible and the asMHE estimator has almost identi
al 
onvergen
e propertiesto that of the ideal MHE estimator. In the middle graph of Figure 2, we seethat while the estimate of the rea
tor wall pro�le is ina

urate at t0, the dashedand solid lines 
oin
ide by t10, and the asMHE estimator 
onverges to the truerea
tor wall pro�le (and the one obtained from ideal MHE) using rea
tor 
oremeasurements in about 10 time steps. Using the estimated states and HTCs,the asNMPC 
ontroller then updates the predi
ted state on-line. In the bottomgraph of Figure 2 we present the 
losed-loop response of one of the ja
ket waterinlet temperatures for the asNMPC 
ontroller and its ideal NMPC 
ounterpart.As 
an be seen, both 
ontrol a
tions are identi
al. In this graph we 
an alsoappre
iate how the HTC 
y
les in
uen
e the 
ontroller response.In the top graph of Figure 3 we present the total wall-
lo
k time requiredto re�ne the perturbed solution, generate the warm-start point and solve theba
kground NMPC problem. This time also in
ludes some overhead 
omingfrom I/O 
ommuni
ation tasks and from AMPL, whi
h requires some time togenerate the derivative information before 
alling the NLP solver. A predi
tionhorizon of N = 10 time steps (20 minutes) and sampling times of 2 minutes havebeen used. The NMPC problem 
onsists of an NLP with 80,950 
onstraints and370 degrees of freedom. As 
an be seen, the overall ba
kground time is around60 se
onds and is well below the spe
i�ed sampling time. A single fa
torizationof the KKTmatrix takes 15.34 se
onds, a single �xed-point iteration requires 0.1se
onds, and an average of 5 �xed point iterations are required to solve the NLP.In the middle graph of Figure 3, we present total ba
kground times for the MHEestimator. The estimator is initialized in bat
h mode (a

umulate measurementsuntil an estimator horizon ofN time steps is �lled). On
e the estimation horizonis 
omplete, the ba
kground tasks take around 70 se
onds to be 
ompleted. TheMHE problem 
onsists of an NLP with 80,300 
onstraints and 648 degrees offreedom. One �xed-point iteration requires 0.12 se
onds and an average of 10�xed point iterations solve the NLP. In the bottom graph of Figure 3, we presentInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 10
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Nested Dissection
AMD

Figure 3: Computational results. Ba
kground tasks NMPC (top). Ba
kgroundtasks MHE (middle). S
ale-up of NMPC problem (bottom).s
ale-up results of the solution time for the NMPC problem with in
reasinghorizon length. We 
ompare the impa
t of AMD and nested disse
tion sparsematrix reordering on the solution time of the ba
kground NLP problem (withoutre�nement or overhead). The multi-level nested disse
tion strategy is moreeÆ
ient here and a
hieves a linear s
ale-up. Using this strategy, a N = 30NMPC problem with 242,850 
onstraints and 1,110 degrees of freedom is solvedin around 2 minutes, the fa
torization of the KKT matrix takes 32.31 se
ondsand a �xed-point iteration requires 0.33 se
onds. The AMD strategy showsquadrati
 s
ale-up and the largest problem requires 4 minutes. This di�eren
e
an be attributed to the fa
t that the Metis nested disse
tion algorithm is mu
hmore eÆ
ient in identifying 
oarse-grained stru
tures in the NMPC problem(LDPE multi-zone model, DAE forward stru
ture, et
.), while AMD tends tofo
us on �ne-grained stru
tures. All 
al
ulations were obtained using a quad-
ore Intel pro
essor running Linux at 2.4 GHz.6 Con
lusionsIn this work, we present 
omputational strategies for MHE and NMPC prob-lems. In parti
ular, a general solution framework based on interior-point NLPsolvers and sensitivity 
on
epts is 
onsidered. We emphasize that exploitingthe overall sparsity pattern of the KKT matrix arising in NMPC and MHEproblems leads to a 
omputationally eÆ
ient and stable strategy to 
omputethe Newton step. We analyze the impa
t of di�erent reordering te
hniques ofthe KKT matrix on the fa
torization time and 
omputer memory limitations.In parti
ular, we present NLP sensitivity-based strategies for MHE and NMPCthat redu
e the on-line 
omputation time to only two fast ba
ksolves. This neg-ligible 
omputation e�e
tively removes the problem of 
omputational delay evenfor very large NLP models. Finally, we dis
uss stability issues of the NMPC
ontroller in the fa
e of sensitivity errors and demonstrate the developments inInt. Workshop on Assessment and Future Dire
tions of NMPCPavia, Italy, September 5-9, 2008 11
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