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Overall MotivationOverall Motivation
NMPC for Chemical Process Operations

- Challenge (This Work):
Computationally Intensive Optimization Problems, Time-Critical Solutions
Sampling Times: 1-10 Minutes,  Dynamic Models: 1,000 – 10,000 DAEs 

NMPC
Maximize Future Profit

s.t. Dynamic First-Principles
Set-Point

Controls

Linear MPC
Minimize Transition Time
s.t. Dynamic Data-Driven

Real-Time Optimization
Maximize Current Profit

s.t. Steady-State First-Principles

Raw Materials and Energy Costs

Data Reconciliation
Estimation

Measurements
PID Control and Process



Industrial Polyethylene ProcessIndustrial Polyethylene Process
First-Principles Model for MHE-NMPC Framework
Large-Scale PDE-Constrained Optimization

Computational FrameworkComputational Framework
Full-Discretization + Interior-Point Optimizers
Numerical Linear Algebra

Advanced Step MHEAdvanced Step MHE--NMPCNMPC
Fast Feedback in Large Applications

Results Polyethylene Process Results Polyethylene Process 
NMPC to Improve Process Profitability

Conclusions and Future WorkConclusions and Future Work
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Industrial Polyethylene ProcessIndustrial Polyethylene Process



LDPE

LowLow--Density Polyethylene (LDPE) ProcessDensity Polyethylene (LDPE) Process

Flowrate

Reactor
Temperatures

Jacket
Temperatures

Ethylene
Inlet Temperatures

Recycle and Separation

Low-Pressure Recycle

High-Pressure Recycle

Polymer Melt Index

Initiators Initiators Initiators Initiators

Ethylene Cold-Shots

Chain-Transfer Agent

- Exothermic Polymerization at High Pressures (2000 atm)
- Multi-Product Operations (Wide Operating Window)
- Production Strongly Affected by Aging Disturbances -Fouling-

Potential Benefits of  1% More Production = + 4,500,000 $/yr
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Chain-Transfer Agent

LDPE

Flowrate Ethylene
Inlet Temperatures

Low-Pressure Recycle

Hyper-Pressure Recycle

Ethylene Cold-Shots

Framework Objectives:
- Capture Multivariable Coupling Between Zones
- Monitor and Reject Aging Disturbances

Initiators Initiators Initiators Initiators

MHE-NMPC 
Framework

LowLow--Density Polyethylene (LDPE) ProcessDensity Polyethylene (LDPE) Process

Recycle and Separation



LDPE Dynamic ModelLDPE Dynamic Model
Cw Cw
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Ethylene

Initiator(s) Initiator(s)

Reaction Cooling Reaction

LDPE

Conservation

Physical Properties

Boundary 
Conditions

- Large Set of PDEs ~ 9,000 DAEs, 50 Controls, 30 Parameters, 100 Measured Outputs
+ Sparse and Highly Structured

Initial Conditions

Output MappingMeasured 
Outputs

States Controls Parameters (Heat Transfer)

Temperatures



Off-Line Prediction of Core Temperature Profile

LDPE Dynamic ModelLDPE Dynamic Model
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Good Off-Line Predictions but Aging Phenomena Needs to be Estimated On-line



MHE/NMPC 
Objective

s.t. PDE Model

NMPC

Estimator

Plant

Model Constraints

Model Constraints

Objective

Objective

MHE
Unmeasured States, Parameters

Controls

Output
Measurements

Feedback Delay =  Solution Time MHE + NMPC
Is MHE-NMPC Framework Feasible?

MHEMHE--NMPC ApplicationNMPC Application



Computational FrameworkComputational Framework



PDEs Algebraic Equations

Optimization

FullFull--Discretization ApproachDiscretization Approach

Discretized
PDE Model

Nonlinear Programming 
(NLP)

+ Avoid Repetitive Simulations of Large PDE Model
+ Cheap Exact Derivatives (Favorable Convergence Properties)

Efficient NLP Solvers Required

PDE-Constrained Optimization (MHE,NMPC)
(Economic, Least-Squares Objectives)

Space

Time



InteriorInterior--Point SolversPoint Solvers
Knitro, LOQO, IPOPT Wächter, Biegler 2006

Newton’s Method

Solve Barrier Subproblems with

NLP Barrier Subproblem

Karush-Kuhn-Tucker (KKT) Conditions
KKT Matrix 

Newton Step

- Decomposition (Factorization) Time of KKT Matrix Feedback Delay
+ KKT Matrix Inherits Sparsity and Structure of Dynamic Model

Tailored Riccati Decomposition General Direct Sparse Factorization

States DOF 
(Initial States, Controls)

Horizon



Factorization of KKT MatrixFactorization of KKT Matrix

- General Sparse Linear Solvers -MA57 from Harwell-
Phase I:  Reordering to Preserve Sparsity       Phase II: Numerical Factorization

KKT Matrix

Original Reordered

Phase II

- Nested Dissection Reordering Highly Efficient for Structured Matrices Gould, 2004, Karypis, 1999

- Eigenvalues of        are Eigenvalues of          (Sylvester’s Law) Nocedal & Wright 1999

Phase I

Strong Minimum
Saddle-Point 

Check for Sufficient Second-Order Conditions (SSOC)
-e.g. Observability, Ill-Posed NMPC Formulations-



Continuity of Solution Manifold - Fiacco, 1983

NLP SensitivityNLP Sensitivity

Moving Data MHE/NMPC

+ Fast Approximate Solutions (Active-Set Changes -- Schur Update Strategy)

Tangential Predictor

IPOPT KKT System at Nominal Solution

Nominal Solution -SSOC-

Neighboring Solution

+ Bounded Approximation Error

Manifold

On-Line Factorization Time Will Always be a Bottleneck - Reuse Factorizations!

Already 
Factorized

Solution is Implicit Function



AdvancedAdvanced--Step NMPC and MHEStep NMPC and MHE
Separate Background and On-line Computation Tasks Diehl, et. al. 2001

Full Discretization + NLP Sensitivity to Eliminate Feedback Delay



Having        and          I Can Predict Process Will Go To     

1) Solve Predicted Problem To Optimality  and Hold KKT System

Contains Predicted State

AdvancedAdvanced--Step NMPCStep NMPC

Predicted Problem

Current State

Controls
-Manipulated-

Advanced-Step NMPC Z.  & Biegler 2007



2) Once True/Estimated  State               Is Obtained

Current State

Controls
-Manipulated-

Fast On-Line Correction of KKT System

Approximation Error ~ Uncertainty Bound  

Approximate 
Solution

Optimal Solution

AdvancedAdvanced--Step NMPCStep NMPC
Advanced-Step NMPC Z.  & Biegler 2007

Full Background Solutions Establish Nominal and Robust Stability Conditions

True StatePredicted State

Uncertainty



AdvancedAdvanced--Step MHEStep MHE
Advanced-Step MHE Z. Laird & Biegler, 2007

1) Solve Predicted Problem                     with Measurement

Model Extrapolation

2) At              Get True Measurement               and Perturb KKT System   

- Strongly Observable                                      Approximation Error Small

- Weakly Observable                                       Approximation Error Large

Approximation Error ~ Uncertainty

Correction Step
States Covariance



NMPC

Estimator

Plant

MHE

NMPC Objective
s.t. PDE Model

MHE Objective
s.t. PDE Model

Advanced-Step Formulation Decouples Background Problems Findeisen, et.al. 2002

+ On-Line Cost = 2 Sequential Backsolves

- However, MHE Approximation Error Propagates to NMPC

AdvancedAdvanced--Step MHE+NMPCStep MHE+NMPC



Results Industrial LDPE ProcessResults Industrial LDPE Process



Chain-Transfer Agent

MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE

LDPE

Flowrate Ethylene
Inlet Temperatures

Low-Pressure Recycle

Hyper-Pressure Recycle

Ethylene Cold-Shots

MHE-NMPC Framework with PDE Reactor Model
- Perturb Heat-Transfer Coefficients to Simulate Fouling Disturbances
- MHE to Infer Fouling Layer and States (e.g. Wall Axial Profile)
- NMPC to Stabilize Temperature Profile

Initiators Initiators Initiators Initiators

Recycle and Separation

Jacket
Measured

Core
Measured

Wall
Not Measured



MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE
MHE  – Scenario Description

Time

Time

Cleaning

Fouling

Measured
Core

Temperature

Measured
Jacket

Temperature



MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE

Time

Initial Guess

Wall 
Temperature

MHE  – Convergence

Estimator Recovers Quickly from Poor Initial Guesses and Disturbances

Distributed Temperature Measurements Make Reactor Strongly Observable

Analysis of Covariance Matrix of Wall Temperature Profile

Uncertainty 
Levels

Reconstruction of Wall Temperature Profile



Reference Profile

NMPC Stabilizes Profile but Needs to Drop Production as Fouling Advances

NMPC  – Tracking Objective

MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE

Core 
Temperature

Overall
Production

Fouling

LDPE Reactors Have a Large Number of Degrees of Freedom
-Not Fully Exploited with Tracking NMPC-

Minimize Transition Time



3% More Production

MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE
NMPC  – Economic Objective

Maximize Production

Reference Profile

Economic-NMPC Moves Away from Suboptimal Reference Profile

Distributes Production Along Pipe Efficiently
Purely Economic Objective Leads to Ill-Posedness Huesman, et.al. 2007

Minimize Transition Time

Core 
Temperature

Overall
Production

Economics-Oriented
Tracking



MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE
NMPC – Computational Performance

- Full-Discretization + IPOPT (MA57)
- NLP ~ 80,000 Constraints, 370 Degrees of Freedom (DOF)     

Sampling Time = 2 min

- Scale-Up and Effect of KKT Matrix Reordering

NLP with 350,000 Constraints and 1,000 DOF Solved in ~ 2 Minutes

Nested Dissection
Standard Ordering



MHEMHE--NMPC Scenario LDPENMPC Scenario LDPE
Feedback Delay MHE+NMPC ~ 4 min, Sampling Time = 4 min

- Advanced-Step to Overcome Delays and Reduce Sampling Time    

Advanced-Step
MHE

Advanced-Step
NMPC

+ Approximation Errors (In General) Negligible 
+ Feedback Delay ~ 0.2 CPUs, Sampling Time = 2 min

Reference Profile



Conclusions and Future WorkConclusions and Future Work



Chemical Process OperationsChemical Process Operations
First-Principles Models for On-Line Decision-Making
Large-Scale On-Line Optimization

Computational FrameworkComputational Framework
Full-Discretization for Fast Background Solutions
Reuse KKT Matrix for Fast On-Line Calculations

Industrial Polyethylene ProcessIndustrial Polyethylene Process
Complex PDE Model, Significant Benefits in Profit

Future WorkFuture Work
Faster Factorizations of KKT Matrix

Better Reorderings, Exploit Intuitive and Non-Intuitive Structures Gondzio, et.al. 2003

Emphasize on General Linear Solvers
Exploit Multi-Core Computer Technology Gill, et.al. 2007

Conclusions and Future WorkConclusions and Future Work
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