
Virtual System Environments

Geoffroy Vallée, Thomas Naughton, Hong Ong, Anand Tikotekar,
Christian Engelmann, Wesley Bland, Ferrol Aderholdt, and Stephen L. Scott�

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{valleegr,naughtont,hongong,tikotekaraa,engelmannc,blandwb,

aderholtwf,scottsl}@ornl.gov
http://www.ornl.gov

Abstract. Distributed and parallel systems are typically managed with “static”
settings: the operating system (OS) and the runtime environment (RTE) are spec-
ified at a given time and cannot be changed to fit an application’s needs. This
means that every time application developers want to use their application on a
new execution platform, the application has to be ported to this new environment,
which may be expensive in terms of application modifications and developer time.
However, the science resides in the applications and not in the OS or the RTE.
Therefore, it should be beneficial to adapt the OS and the RTE to the application
instead of adapting the applications to the OS and the RTE.

This document presents the concept of Virtual System Environments (VSE),
which enables application developers to specify and create a virtual environment
that properly fits their application’s needs. For that four challenges have to be ad-
dressed: (i) definition of the VSE itself by the application developers, (ii) deploy-
ment of the VSE, (iii) system administration for the platform, and (iv) protection
of the platform from the running VSE. We therefore present an integrated tool for
the definition and deployment of VSEs on top of traditional and virtual (i.e., using
system-level virtualization) execution platforms. This tool provides the capability
to choose the degree of delegation for system administration tasks and the degree
of protection from the application (e.g., using virtual machines).

To summarize, the VSE concept enables the customization of the OS/RTE
used for the execution of application by users without compromising local system
administration rules and execution platform protection constraints.

1 Introduction

The architecture for modern distributed and parallel execution platforms differ from
single head node/multiple compute nodes Beowulf clusters to distributed Grids and
large-scale system with specialized nodes (e.g., I/O nodes). Several tools are available
for the management of such platforms [6,8,10,11].

Furthermore, as different system solutions emerge on top of traditional computing
platforms, such as system-level virtualization, system management tools have also been
extended [15]. While these enhancements allow for the deployment of environments on

� ORNL’s research sponsored by the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. De-
partment of Energy under Contract No. DE-AC05-00OR22725.

L. Boursas et al. (Eds.): SVM 2008, CCIS 18, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ornl.gov

Virtual System Environments 73

new platforms like virtual machines, they are lacking in terms of customizability –
specifically from the perspective of application developers.

Because of that, with current system management solutions, application developers
do not gain any flexibility. Applications still have to be ported every time developers
want to use a new execution platform. However, the science resides in the applications,
not in the system software for the execution platforms. Based on this contrast, it is
critical to provide a solution that allows application developers to customize their ex-
ecution environment that will then be deployed on top of the execution platforms. In
other words, the operating system (OS) and the runtime environment (RTE) have to be
adapted to the application and not the application adapted to the OS and the RTE of a
specific platform.

To address this issue we propose the concept of a virtual system environment (VSE),
which decomposes these challenges into two different aspects: (i) the definition of the
environment needed to run the application, both according to application developers and
system administrators perspective – this high-level description is actually very agnostic
about the system configuration of the target system for application execution, and (ii)
the deployment of a defined VSE on a target environment. We currently support disk-
full/disk-less and physical/virtual systems; and also system partitioning (e.g., I/O nodes
versus login nodes versus compute nodes).

The remainder of this paper is organized as follows: Section 2 presents how a VSE
can be defined by both application developers and system administrators. Section 3
presents a tool for the deployment of VSEs on top of various system configurations
(i.e., physical/virtual, disk-less/disk-full). Section 4 presents VSE benefits for system
administration. Section 5 presents the effect of the VSE concept on system protection.
Section 7 concludes.

2 Virtual System Environment Definition

An application is typically designed to be executed with a specific version of an OS and
RTE. For instance, an MPI application can be designed to run on top of RedHat Enter-
prise Linux 4.0 with LAM/MPI 7.1.3. This kind of information is decided by developers
in order to simplify development. It also means that every time another environment has
to be used, most likely the application will have to be modified, ported.

On the other hand, computing centers today provide different execution platforms:
clusters, shared memory systems, or even large-scale high-performance systems such as
Cray XT or IBM BlueGene systems. Each of these systems typically provide a different
execution environment and applications have to be “adapted” to each of them. However,
the science resides in the applications and therefore application developers should not
have to deal with such porting issues, and should be able to focus on the science.

It is important to decouple the definition of the application’s needs in term of RTE
and what components system administrators want to have in each environment used by
applications.

System-level virtualization provides a first step in that direction, decoupling the en-
vironment used for the execution of the applications and the environment used on top
of the hardware (virtual machines versus host OS). For instance, it is possible to create

74 G. Vallée et al.

a virtual appliance, i.e., a specialized virtual machine for the execution of a given appli-
cation. However, the concept of appliance does not ease the definition of the application
environment; the system within the VM still need to be more or less manually installed.
Furthermore, because of the lack of meta-data defining what the application environ-
ment is, it is not possible to deploy an existing virtual appliance on top of a standard
system (i.e., disk-less or disk-full system).

Additionally, as discussed in Section 6, system management tools have been ex-
tended to support virtual environments but suffer from some significant limitation.
OSCAR-V [15] is such a tool, managing virtual machines and creating images for vir-
tual machines with a minimal system footprint (only needed software is included into
the image), but it is not possible for administrators and users to easily express their def-
inition of execution environments (OSCAR-V recognizes only Beowulf clusters [14],
and not Grids or large-scale systems) and it is still difficult for users & application
developers to define their execution environment1.

The VSE concept aims to address these challenges and has been implemented as an
extension of the OSCAR-V prototype: (i) the VSE fits application needs, no unneces-
sary system footprint in included; (ii) the OS type & version and the RTE are chosen
by application developers and not by system administrators; (iii) system administrators
can check the VSE before deployment; (iv) application developers can define their VSE
off-line from the execution platform; and (v) the VSE can be deployed automatically by
system administrators. Because the VSE implementation is actually a non-intrusive ex-
tension of OSCAR-V, performance for VSE creation and deployment is actually similar
to OSCAR-V performance. Thus, we do not present performance results in this docu-
ment, only the VSE architecture and implementation is described in details. Application
developers define their RTE needs using a high-level language based on XML, which
describes a set of software packages (Package Sets). A package is an abstraction for
the local management of software that aims at easing the installation, configuration and
removal of software in a given local system. More details are presented in Section 2.2.
In mathematical terms, our notion of sets follows the Zermelo-Fraenkel set theory, with
the axiom of choice (ZFC). It means that a collection of “operations” are available for
the package set mechanism. From the usage point of view, only a subset of “operations”
are important: it is possible to combine package sets and get the intersection of pack-
age sets. These operations provide a very flexible method for the definition of complex
VSEs.

2.1 Package Sets Definition

Package Set Combination. It is possible to combine package sets together:

PackageSetA ∪ PackageSetB

This enables the combination of VSE definitions from application developers and sys-
tem administrators (see Figure 1).

1 This may lead to conflicts between applications’ needs and system administrators’ needs; we
do not provide an automatic solution to manage these conflicts since most of the time there are
policy issues.

Virtual System Environments 75

Fig. 1. VSE Definition and Management

For instance, if system administrators, based on local policy, want to include the
Moab software [9] in all VSEs because it is the chosen workload manager used by the
computing center, they can create a VSE definition that will be combined with an appli-
cation’s developers definition. The resulting specification incorporates the constraints
from both the application and system administrators.

Package Set Intersection. It is also possible to define the intersection of package sets:

PackageSetA ∩ PackageSetB

The intersection operation is more suitable for advanced capabilities rather than the
strict definition of a new VSE. For instance, the intersection operation can be used to
identify common software components between several VSEs. That can be used later
on by system administrators in order to identify current needs of application developers
in term of settings of the execution environment, and therefore try to address more
efficiently present needs and anticipate future needs.

Package Set Validation. The package set mechanisms also include basic validation ca-
pabilities in order to ensure that package sets can be correctly combined. This validation
tool is based on a versioning mechanisms (comparison of software version), and a de-
pendency mechanism (set A depends on set B but conflicts with set C).

If users combine several package sets together the system also checks that the Linux
distribution from the different package sets are the same.

Versioning. Users can specify the version of each package within a package set. This
allows for fine grain software management. For instance, application developers can
specify that their application needs a specific version of a library. We provide standard
operators to deal with versioning: equal (eq), superior to (gt), inferior to (lt), superior
or equal to (gte), and inferior or equal to (lte).

76 G. Vallée et al.

2.2 Package Sets Usage

Package sets define a VSE and are used to create a “golden image” which is agnostic of
the target platform execution configuration. The current VSE implementation relies on
OSCAR [10], a system management software.

The package sets implementation actually directly relies on OSCAR Packages (OP-
KGs) which allow one to define a software package for software installation in dis-
tributed or parallel systems, including information such as a list of binary packages,
configuration scripts and versioning information. It typically extends the standard no-
tion of binary packages, adding information about what has to be done to have the
software setup at the global level of the distributed or parallel systems. Note that we
assume application developers provide their application via an OSCAR package.2

The current implementation supports the definition of single package sets and the
combination of package sets. The package set intersection operation has not yet been
implemented.

Package Set Analysis. In order to ease system administration tasks and to track modifi-
cations, information about package sets are stored in a database, the OSCAR Database
(ODA).

The first step for the creation of a VSE is therefore the parsing of the VSE’s XML
file, its validation via XML tools and the update of the OSCAR database. We will see
later that information in the database is used to update a basic image, which ultimately
results in a golden image that matches the VSE definition.

The validation is composed of two phases: (i) the basic validation of the XML file
using standard XML tools, (ii) the validation of the list of OPKGs from the pack-
age set. OSCAR provides a tool (OSCAR Package Downloader - OPD) for managing
OPKG repositories, which can be used to download OPKGs. OPD2, especially devel-
oped for the VSE support, allows us to get the list of all the available OPKGs, for
all supported Linux distributions. OPD2 also saves information about OPKGs into the
database. Based on this list, it is possible to validate package sets (e.g., checking if
OPKGs are available).

Creation of a Basic Golden Image. Based on package sets, a “golden image” [2,10] can
be created and used for the actual deployment of a given VSE. For that, we (i) analyze
the package set(s), (ii) create a basic golden image for the target Linux distribution, and
(iii) install the different OPKGs based on the package set definition.

The creation of basic golden image relies on the OSCAR version of the SystemInst-
aller software [2]. The creation of the basic image is based on the Linux distribution and
the architecture specified in the package set(s). During the image creation, the OSCAR
database (ODA) is updated in order to initialize information about the new image.

Once the basic image is created, and based on information about the package set
from ODA, it is possible to finalize the golden image installing the OPKGs associated
to the package set.

2 OSCAR packages are based on binary packages (e.g., RPMs or Debian packages), the creation
of new OSCAR packages is fairly simple if application developers already provide binary
packages for their application.

Virtual System Environments 77

OSCAR did not have a stand alone tool for OPKG management, initially all OPKGs
were installed directly into the image, using SystemInstaller, without using information
in ODA. We therefore implemented the OSCAR Package Manager (OPM) tool. This
tool queries the database to know the exact status of images, OPKGs and nodes. Based
on this information, OPM installs OPKGs into images but also on remote nodes if nodes
have already been deployed. The image is then ready to be deployed and the database
up-to-date for management purpose.

3 Virtual System Environment Deployment

We target three different platform architectures: (i) Beowulf clusters, (ii) disk-less clus-
ters, and (iii) large-scale systems (i.e., platforms with specialized nodes).

We saw in Section 2 that it is possible to have an XML file which describes the VSE
that has to be deployed and to create the associated golden image. Because we do not
want to have to recreate the image every time we deploy it (for instance to have image
persistence), we take care to separate tools for image creation and mechanisms to de-
ploy them. In other words, the VSE’s XML description is used to generate a “golden
image” on the management node. Then, this golden image is “adapted” to fit the plat-
form architecture. This adaptation is based on the description of the target platform.

3.1 Machine Sets

In order to express the topology of the target system, we introduced the notion of node
sets (also called node groups). This concept, like the package sets concept, follows the
Zermelo-Fraenkel set theory, with the axiom of choice (ZFC). This includes the support
of union and intersection operations on machine sets:

MachineSetA ∪ MachineSetB

MachineSetA ∩ MachineSetB

A key characteristic of node sets is the need to express dependencies between the ma-
chines in the set. To address this issue, we assume that all relationships between nodes
can be expressed as server/client dependencies, i.e., more precisely as a one-to-one de-
pendency (set A is dependent upon set B). For instance, for I/O nodes where three types
of nodes are used (meta-data server, data storage server and compute nodes), two dif-
ferent node sets can be defined: (i) a set for the meta-data server and the data storage
server where the meta-data implements the notion of server for the machine set, the data
storage server being the client; and (ii) a set for the data server (both meta-data and data
storage server) and the compute nodes. To define complex systems (e.g., a large-scale
system composed of login nodes, compute nodes, and I/O nodes), different machine
sets can be defined, one for each type of nodes.

3.2 Image Deployment

Figure 2 shows the overall architecture for VSE deployment mechanism for the support
of Beowulf clusters, disk-less systems and large-scale systems. Note that the figure
includes the relationship with the mechanism for the creation of the golden image.

78 G. Vallée et al.

Fig. 2. Overall Architecture for the Deployment of VSEs

Beowulf Clusters. Beowulf clusters are still the standard architecture for clustering: a
headnode provides all clustering services and compute nodes do the application com-
putation using services from the headnode. This is a standard client/server architecture.

To describe this architecture only two node sets are needed: (i) the headnode, and (ii)
the compute nodes.

Disk-less Clusters. Disk-less clusters may be deployed in many different ways. Cur-
rently, we use the standard NFS-ROOT [3] or RAMFS solutions, which is sufficient for
small to medium sized clusters (we assume that for large-scale systems, the standard
design for such systems is used).

In this case, the system may be categorized into two groups, like for Beowulf clus-
ters: (i) the headnode, or server; (ii) the compute nodes.

The difference with Beowulf clusters is that the image is not “deployed”: the image
is copied on the headnode, making the difference between shared data and modified
data. Then compute nodes are booted and use their own image.

OSCAR did not initially support disk-less clusters. We developed an extension of
OSCAR for the support of NFS-ROOT and RAMFS based disk-less support. This sup-
port is based on the tuning of images on the headnode. A golden image is divided into
two parts: (i) a shared image for the part of the file system that can be shared between
nodes (read-only), and (ii) a private image for the part of the file that needs to be in
read/write mode. It is also possible to fall back to a disk-full solution (logically merg-
ing the two images for deployment).

Large-Scale Systems. For large-scale systems, the situation is different because this
kind of architecture is no longer based on the idea of one single server and many com-
pute nodes. Typically, for this kind of architecture, nodes are grouped into different sets:
compute nodes, “service nodes” (e.g., for the parallel file system), and “login nodes”.

It is possible to describe a server/client dependency relationship between the differ-
ent nodes involved in a single service (for instance the I/O subsystem), combining node
groups together. For instance, PVFS [12] has three kinds of nodes in order to implement
the parallel file system: meta-data server, storage nodes and clients. It is possible to say
that the meta-data server has a server/client dependency and then combine these two

Virtual System Environments 79

into a single node group and create a dependency between this group and the compute
nodes.

The current implementation allows one to describe different node groups and to com-
bine them together. Based on this mechanism and the assignment of one specific image
to a group of nodes, it is possible to deploy complex large-scale systems.

Virtual Systems. Another solution for the deployment of VSEs is the usage of virtual
machines. In this context, the VSE can be instantiated via virtual appliances that can
be viewed as a minimal system configuration specialized for the execution of a given
application. Thus, VSEs can be considered as a specification tool for virtual appliances.

We previously extended OSCAR, creating OSCAR-V [15], to support system-level
virtualization. One of the benefits of OSCAR-V is the ability to support several system-
level virtualization systems via the V2M abstraction layer. This allows one to switch
between virtualization solutions without re-deploying virtual machines.

Combining the concept of VSEs and features from OSCAR-V, users can take full ad-
vantage of virtualization, simplifying the management of virtual systems and improving
the customizability of execution environments.

4 System Management

The administration of computing systems must strike a balance between the required
system aspects and those which are strictly end-user specific. The ultimate goal being to
support users and their computational needs. However, the responsibility of maintaining
the system typically does not lie in the hands of the individual(s) most familiar with the
applications using the resources.

VSEs offer an interesting means by which system administration tasks can be dele-
gated to the end-user who is most aware of the application’s needs. The extent to which
these system administration tasks are delegated may differ based on the approach used
for implementing the VSE, e.g., node partitions, disk-less nodes, virtual machines. The
extent of delegation must be commensurate with the selected protection scheme. For
example, the VSE might be a common system image that users customize and deploy
on a set of disk-less nodes or could be entirely user generated based upon virtual ma-
chine platform specifications. In either case, the proper level of privileges is matched
with the degree of customization by the system administrator.

This provides a basis to use VSEs to improve user control for specialization, which
can be used for systems research testbeds or to simply provide a consistent platform
environment for scientists. A VSE also provides a good basis to empower user expertise,
which is commonly found on large scientific systems. In many situations these users
may require older libraries/compilers or even operating system kernels, which are easily
supported through the use of a VSE.

As presented in Section 2, both the system administrators and the users can define
their own package set and machine sets. These sets are then merged to describe both the
system environment and the hardware partitioning that fits both system administrators
and users needs. In summary, the VSE concept allows more flexible management of the
environment used by applications without compromising the local system administra-
tion policies.

80 G. Vallée et al.

5 Protection

Because the VSE concept enables the customization of different types of systems (e.g.,
disk-full & disk-less Beowulf clusters, virtualized systems), we provide a sliding scale
of protection. In other words, based on the system configuration described via package
sets and machine sets, it is possible to increase or decrease the degree of protection
for both the user and system administrator: (i) system administrators can protect the
execution platform from malicious applications or trust application and give them direct
access to the hardware for performance purpose; and (ii) the application developers can
choose to run the application directly on top of the bare hardware, with the risk to have
to modify the application, or to run in a virtual environment in order to ensure a similar
execution environment on all the VSE enabled platforms.

The protection mechanism is typically tied to the degree of customization supported
by the system, i.e., the more you can change/customize the more likely you may want
to dial the protection level up, ultimately using virtual environments for maximum
isolation (see Table 1).

Table 1. System Characterization According to Protection and System Administration Delegation
Capabilities

System Type Protection Level System Administration Type
Disk-full Beowulf Cluster Low Central system administration
Disk-less Beowulf Cluster Medium Central system administration
Virtual System High Delegation possible

6 Related Work

The HARNESS project [5] studies the launch of a virtual environment at job start,
this virtual environment being installed by the runtime environment for a particular
application. This capability enables the deployment of virtual RTEs that fit application’s
needs. However, this study suffers of limitations in term of flexibility for the creation
of a complete virtual RTE, especially in term of “virtual hardware” (it is not possible
to support solutions based on system-level solutions) and HARNESS does not provide
integrated tools for system deployment.

The Modules system provide environment customization at the level of a user’s com-
mand interpreter (shell) [4]. The Modules system is responsible for managing the dif-
ferences between command shells, e.g., bash, csh. A system administrator provides the
available software and configuration setting via a Tcl file that may be loaded at shell in-
vocation. The users customize their execution environment by loading the appropriate
“modules”, e.g., module load mpi/lam-7.0.6. These command can be made
persistent using a higher level tool like Env-Switcher [10]. While the Modules system
is widely used and quite useful, it is limited to changes that can be made at the command
interpreter level. Therefore, alternate kernel versions or entirely different operating sys-
tems are not an option with this approach.

Virtual System Environments 81

VMPlants [8] is a solution for the management of virtual execution environments in a
grid context. A virtual execution environment is defined by a graph which allows users
to customize their virtual execution that can be then deployed within virtual machines
(using VMWare [16] or User Mode Linux [7,1]). However, VMPlants assumes that a
system already exists on each machine the user will use. VMPlants does not provide any
solution for the management of this system but also does not provide tools and methods
for the interaction between the site system administrator and the application’s users.
It is therefore not possible to enforce the use of specific software within the virtual
machine (for instance the use of a checkpoint/restart solution); it is not possible to
check if the virtual environment defined by the application users is compliant with local
system usage policies, and the management flexibility offered to users is not available
to system administrators. Finally, it is not possible to deploy various type of execution
platforms based on VMPlants, the use of virtual machines is mandatory.

The Collective project [13] is based on the idea of virtual appliances, which are
application specific bundles that an author (vendor) maintains and end-users use with
limited or no administration responsibilities. They employ a virtual machine monitor
(VMM) to provide a trusted computing base and effectively a hardware abstraction
layer (HAL) to ease appliance portability. An appliance is a specialized single purpose
system, e.g., word-processing-appliance, that a user may use but does not maintain (ad-
ministration is done by the appliance author). This concept is similar to that of a VSE,
but differs in scope and how composition is achieved. The VSE is primarily targeted at
HPC environments, whereas the virtual appliances are focused on general purpose desk-
top environments. The appliances are not extended or changed by the user to build up
their environment, instead a collection of separate appliances are used in concert (each
administered independently). Both approaches use virtualization to assist with portabil-
ity and enhance usability. However, the Collective assumes multiple appliances (virtual
machines) could be run simultaneously where the VSE would typically encompass a
single virtual machine.

7 Conclusion

This document presents the concept of a Virtual System Environment (VSE), which has
been implemented via extensions and/or modifications of the OSCAR and OSCAR-V
system management suites. A VSE decouples the definition of the execution environ-
ment from the actual deployment method. Users can therefore define application needs
and constraints in a generic way. On their side, system administrators, depending on the
degree of trust and local management policies, can deploy the VSE into various sys-
tem types (e.g., disk-less versus disk-full systems, physical versus virtual systems) on
specific system partitions. Therefore, VSEs introduce a high degree of customization
for application developers, end-users and system administrators. For that, we introduce
the notion of package sets and machine sets which provide a flexible way to define the
execution environment and the hardware topology, respectively.

To summarize, through the VSE concept, it is possible to revisit the traditional sys-
tem administration rules without compromising the platform protection or increasing

82 G. Vallée et al.

the number of administration tasks. In fact, the system protection can even be increased
when using virtual environments, which can be done without a great deal of man-
agement effort (system-level virtualization is natively supported by OSCAR-V). Sys-
tem administration tasks can also be decreased, delegating some tasks to application
developers.

This is especially useful for virtual systems: the system administrator can define what
is the host OS, without paying attention to the system-level virtualization solution; and
application developers can focus on the definition of the VSE that will be deployed into
the virtual machines.

References

1. Brockmeier, J.: The Definitive Guide to User Mode Linux. APress (2004)
2. Dague, S.: System Installation Suite Massive Installation for Linux. In: The 4th Annual Ot-

tawa Linux Symposium (OLS 2002), Ottawa, Canada, June 26-29 (2002)
3. de Goede, H.: Root over nfs clients & server howto,

http://www.clusterresources.com/pages/products/moab-cluster-
suite/workload-manager.php

4. Furlani, J.L., Osel, P.W.: Abstract Yourself With Modules. In: Proceedings of the 10th Large
Installation Systems Administration Conference (LISA 1996), Chicago, IL, September 29–
October 4, pp. 193–204 (1996)

5. Geist, G.A., Kohl, J.A., Scott, S.L., Papadopoulos, P.M.: HARNESS: Adaptable virtual ma-
chine environment for heterogeneous clusters. Parallel Processing Letters 9(2), 253–273
(1999)

6. Georgiou, Y., Leduc, J., Videau, B., Peyrard, J., Richard, O.: A tool for environment deploy-
ment in clusters and light grids. In: Second Workshop on System Management Tools for
Large-Scale Parallel Systems (SMTPS 2006), Rhodes Island, Greece (April 2006)

7. jorg, H., Oxer, H., Hoxer, H., Buchacker, K., Sieh, V.: Implementing a user mode linux with
minimal changes from original kernel (2002)

8. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: Vmplants: Providing and
managing virtual machine execution environments for grid computing. In: SC 2004: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, Washington, DC, USA.
IEEE Computer Society, Los Alamitos (2004)

9. Moab workload manager,
http://www.clusterresources.com/pages/products/moab-cluster-
suite/workload-manager.php

10. Mugler, J., Naughton, T., Scott, S.L., Barrett, B., Lumsdaine, A., Squyres, J.M., des Ligneris,
B., Giraldeau, F., Leangsuksun, C.: OSCAR Clusters. In: Proceedings of the 5th Annual
Ottawa Linux Symposium (OLS 2003), Ottawa, Canada, July 23-26 (2003)

11. Papadopoulos, P.M., Katz, M.J., Bruno, G.: Npaci rocks: tools and techniques for easily
deploying manageable linux clusters. Concurrency and Computation: Practice and Experi-
ence 15(7-8), 707–725 (2003)

12. PVFS: Parallel virtual file system, http://www.parl.clemson.edu/pvfs
13. Sapuntzakis, C., Lam, M.S.: Virtual Appliances in the Collective: A Road to Hassle-free

Computing. In: Proceedings of HotOS 2003: 9th Workshop on Hot Topics in Operating Sys-
tems. USENIX (2003)

http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.parl.clemson.edu/pvfs

Virtual System Environments 83

14. Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranawake, U.A., Packer, C.V.: BE-
OWULF: A parallel workstation for scientific computation. In: Proceedings of the 24th In-
ternational Conference on Parallel Processing, Oconomowoc, WI, pp. I:11–14 (1995)

15. Vallée, G., Naughton, T., Scott, S.L.: System management software for virtual environments.
In: Proceedings of ACM Conference on Computing Frontiers 2007, Ischia, Italy, May 7-9
(2007)

16. VMware, Inc, http://www.vmware.com

http://www.vmware.com

	Virtual System Environments
	Introduction
	Virtual System Environment Definition
	Package Sets Definition
	Package Sets Usage

	Virtual System Environment Deployment
	Machine Sets
	Image Deployment

	System Management
	Protection
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

