Argonne°

NATIONAL LABORATORY

Proposed Fault Tolerance for MPI-4

Wesley Bland
February 10, 2014

Lawrence Livermore National Laboratory

Some slides courtesy of Aurélien Bouteiller, UTK

(@) ENERGY

Outline

Motivation
Foundation
Proposal
Examples
Wrapup/QA

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Motivation

» Allow a wide range of fault tolerance techniques
Checkpoint/Restart, Transactions, Roll-forward recovery, Drop failed processes, etc.
» Don’t pick a particular technique as better or worse than others

Encourage library developers to add libraries on top of this work to make it easy to use
for applications

» Introduce minimal changes to MPI

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.

In-place restart {i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures

EEE

Uncoordinated Checkpoint/Restart,
Transactional FT, Migration,
Replication, etc.

ULFM makes these approaches portable across MPI implementations ULFM allows for the deployment
of ultra-scalable, algorithm
specific FT techniques.

ULFM MPI

Specification

S%00|(UOOA0I

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Failure Model

» Fail-stop process failure
Transient failures should be masked as if they were fail-stop

» Silent (memory) errors are outside of the scope

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov

Failure Detector

» No explicit failure detector is specified in this chapter
» Failure detectors are specific to the system on which they are run

Some systems have hardware support for monitoring
All systems can fall back to arbitrary/configurable timeouts if necessary

» Only requirement is that failures are eventually reported if they prevent correct
completion of an operation

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov

v

TL;DR

» 5(ish) new functions (some non-blocking, RMA, and I/0 equivalents)
MPI_COMM_FAILURE_ACK / MPI_COMM_FAILURE_GET_ACKED

Provide information about who has failed

MPI_COMM_REVOKE

Provides a way to propagate failure knowledge to all processes in a communicator

MPI_COMM_SHRINK

Creates a new communicator without failures from a communicator with failures

MPI_COMM_AGREE

Agreement algorithm to determine application completion, collective success, etc.

» 3 new error classes
MPI_ERR_PROC_FAILED
A process has failed somewhere in the communicator
MPI_ERR_REVOKED
The communicator has been revoked

MPI_ERR_PROC_FAILED _PENDING
A failure somewhere prevents the request from completing, but it is still valid

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov

v

Minimal Set of Tools for FT

Failure Notification
Failure Propagation
Failure Recovery

Fault Tolerant Consensus

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov

Failure Notification

Failure notification is local.
Notification of a failure for one process does not mean that all other processes in a
communicator have also been notified.

If a process failure prevents an MPI function from returning correctly, it must
return MPI_ERR_PROC_FAILED.

If the operation can return without an error, it should (i.e. point-to-point with non-failed
processes.

Collectives might have inconsistent return codes across the ranks (i.e. MPI_REDUCE)
Some operations will always have to return an error:

MPI_ANY_SOURCE

MPI_ALLREDUCE / MPI_ALLGATHER / etc.
Special return code for MPI_ANY_SOURCE

MPI_ERR_PROC_FAILED_PENDING

Request is still valid and can be completed later (after acknowledgement on next slide)

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Failure Notification

» To find out which processes have failed, use the two-phase functions:

« MPI_Comm_failure_ack(MPI_Comm comm)
Internally “marks” the group of processes which are currently locally know to have failed
Useful for MPI_COMM _AGREE later

Re-enables MPI_ANY_SOURCE operations on a communicator now that the user knows about
the failures

Could be continuing old MPI_ANY_SOURCE requests or starting new ones
« MPI_Comm_failure_get_acked(MPI_Comm comm, MPI_Group *failed_grp)

Returns an MPI_GROUP with the processes which were marked by the previous call to
MPI_COMM_FAILURE_ACK

Will always return the same set of processes until FAILURE_ACK is called again

Must be careful to check that wildcards should continue before starting/restarting
an operation
- Don’t enter a deadlock because the failed process was supposed to send a message

Future MPI_ANY_SOURCE operations will not return errors unless a new failure
occurs.

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov

Recovery with Only Notification

Master/Worker Example

Post work to multiple processes

MPI_Recv returns error due to Master Wo1rker Wo;ker Wo:;ker

failure
MPI_ERR_PROC_FAILED if named
MP|_ERR_PROC_FAILED_PENDING
if wildcard

Master discovers which process has

failed with ACK/GET_ACKED

Master reassigns work to worker 2

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Failure Propagation

» When necessary, manual propagation is available.

« MPI_Comm_revoke(MPl_Comm comm)
Interrupts all non-local MPI calls on all processes in comm.
Once revoked, all non-local MPI calls on all processes in comm will return MPI_ERR_REVOKED.
Exceptions are MPI_COMM _SHRINK and MPI_COMM _AGREE (later)

« Necessary for deadlock prevention

» Often unnecessary
- Let the application discover the error as it impacts correct completion of an operation.

Recv(1) =Pl Revoke

Revoked
JRevoked Revoked

Wesley Bland - wbland@mcs.anl.gov ReCV(O) Send(2)

mailto:wbland@mcs.anl.gov

Failure Recovery

Some applications will not need recovery.
« Point-to-point applications can keep working and ignore the failed processes.

If collective communications are required, a new communicator must be created.
« MPI_Comm_shrink(MPl_Comm *comm, MPI_Comm *newcomm)

Creates a new communicator from the old communicator excluding failed processes
If a failure occurs during the shrink, it is also excluded.
No requirement that comm has a failure. In this case, it will act identically to MPI_Comm_dup.

Can also be used to validate knowledge of all failures in a communicator.

« Shrink the communicator, compare the new group to the old one, free the new
communicator (if not needed).

- Same cost as querying all processes to learn about all failures

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Recovery with Revoke/Shrink

ABFT Example

ABFT Style application
Iterations with reductions

After failure, revoke communicator

Remaining processes shrink to form
new communicator

Continue with fewer processes after
repairing data

Shrink

N

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Fault Tolerant Consensus

Sometimes it is necessary to decide if an algorithm is done.

MPI_Comm_agree(MPl_comm comm, int *flag);
Performs fault tolerant agreement over boolean flag
Non-acknowledged, failed processes cause MPI_ERR_PROC_FAILED.
Will work correctly over a revoked communicator.

Expensive operation. Should be used sparingly.
Can also pair with collectives to provide global return codes if necessary.

Can also be used as a global failure detector
Very expensive way of doing this, but possible.

Also includes a non-blocking version

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

One-sided

MPI_WIN_REVOKE

Provides same functionality as MPI_COMM _REVOKE
The state of memory targeted by any process in an epoch in which operations
raised an error related to process failure is undefined.

Local memory targeted by remote read operations is still valid.

It’s possible that an implementation can provide stronger semantics.

If so, it should do so and provide a description.

We may revisit this in the future if a portable solution emerges.
MPI_WIN_FREE has the same semantics as MPI_COMM _FREE

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov

File 1/0

» When an error is returned, the file pointer associated with the call is undefined.

Local file pointers can be set manually
Application can use MPI_COMM _AGREE to determine the position of the pointer

Shared file pointers are broken

» MPI_FILE_REVOKE
Provides same functionality as MPI_COMM _REVOKE

» MPI_FILE_CLOSE has similar to semantics to MPI_COMM _FREE

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Minimal Additions to Encourage Libraries

» 5 Functions & 2 Error Classes

Not designed to promote a specific
recovery model.

Application
Encourages libraries to provide FT on
top of MPI.

In line with original MPI purpose
» Libraries can combine ULFM & PMPI
to provide lots of FT models
Transactions

GCheckpomty, Unmirornm
Restart @eollectives

Transparent FT

Uniform Collectives FAILUREZACK l REVOKE |

Checkpoint/Restart SHRINK | AGREE

ABFT
Etc.

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Implementation Status

» Branch of Open MPI (branched in Jan 2012)

Feature complete
Available at http://www.fault-tolerance.org

Not available in mainline Open MPI

» MPICH Implementation
Not completed
Targeting March '14

Wesley Bland - wbland@mcs.anl.gov

mailto:wbland@mcs.anl.gov
http://www.fault-tolerance.org

User activities

ORNL: Molecular Dynamic simulation

« Employs coordinated user-level C/R, in place
restart with Shrink

UAB: transactional FT programming model

Tsukuba: Phalanx Master-worker
framework

Georgia University: Wang Landau Polymer
Freezing and Collapse

* Employs two-level communication scheme
with group checkpoints

Upon failure, the tightly coupled group

Others...

mean of rho at t=0.06

restarts from checkpoint, the other distant : :
groups continue undisturbed : :
Sandia: Sparse solver « |
o« 7?77 ﬁ j

(a) failure-free (b) few failures

Cray: CREST miniapps, PDE solver Schwartz,
PPStee (Mesh, automotive), HemelB (Lattice
Boltzmann)

UTK: FTLA (dense Linear Algebra)

« Employs ABFT

* FTQR returns an error to the app, App calls new
BLACS repair constructs (spawn new processes
with MPI_COMM_SPAWN), and re-enters FTQR to
resume (ABFT recovery embedded)

ETH Zurich: Monte-Carlo

* Upon failure, shrink the global communicator
(that contains spares) to recreate the same
domain decomposition, restart MC with same
rank mapping as before

mean of rho at t=0.06

(c) many failures

Figure 5. Results of the FI-MLMC implementation for three different failure scenarios.

Credits: ETH Zurich

mailto:wbland@mcs.anl.gov

Questions?

» More examples next from UTK

Wesley Bland - wbland@mcs.anl.gov

v

mailto:wbland@mcs.anl.gov

Creating Communicators, safely

int MPIX_Comm_split_safe(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

{
int rc;
int flag;

rc = MPI_Comm_split(comm, color, key, newcomm);
flag = (MPI_SUCCESS==rc);
MPI_Comm_agree(comm, &flag);
if(!flag) {
if(rc == MPI_Success) {
MPI_Comm_free(newcomm);
rc = MPI_ERR_PROC_FAILED;

}
}

return rc;

Communicator creation functions are collective

Like all other collective, they may succeed or raise ERR_PROC_FAILED differently at different ranks
Therefore, caution is needed before using the new communicator: is the context valid at the peer?
This code snippet solves this uncertainty and makes it simple to create comms again

Can be embedded into wrapper routines that look like normal MPI (except for communication cost!)

mailto:wbland@mcs.anl.gov

Creating Communicators, safely

int APP_Create_grid2d_comms(grid2d_t* flag = (MPI_SUCCESS==rcr)
grid2d, MPI_Comm comm, MPI_Comm && (MPI_SUCCESS==rcc);
*rowcomm, MPI_Comm *colcomm) { MPI_Comm_agree(comm, &flag);
int rc, rcr, rcc; if(!flag) {
int flag; if(MPI_Success == rcr) {
int rank; MPI_Comm_free(rowcomm);
MPI_Comm_rank(comm, &rank); }
int myrow = rank%grid2d->nprows; if(MPI_Success == rcc) {
int mycol rank%grid2d->npcols; MPI_Comm_free(colcomm);
b
rcr = MPI_Comm_split(comm, myrow, return MPI_ERR_PROC_FAILED;
rank, rowcomm) ; }
rcc = MPI_Comm_split(comm, mycol, return MPI_SUCCESS;
rank, colcomm) ; }

* The cost of one MPI_Comm_agree is amortized when it renders
consistent multiple operations at once

« Amortization cannot be achieved in “transparent” wrappers, the
application has to control when agree is used to benefit from reduced
cost

mailto:wbland@mcs.anl.gov

When one needs Revoke 1/2

void multiple_comm_collectives(grid2d, comm,..) {
APP_Create_grid2d_comms (grid2d, comm, rowcomm, colcomm);
rc = MPI_Allgather (.., rowcomm) ;
if(MPI_SUCCESS != rc) {
MPI_Comm_revoke (colcomm) ;

return;

}
rc = MPI_Allgather (.., colcomm);

if(MPI_SUCCESS != rc) return;
compute();

If failure is in rowcomm, chances are nobody is dead in colcomm

A process that raises an exception on rowcomm may not want to participate
to the next collective in colcomm

yet it is not dead, so it has to match its operations, otherwise it is incorrect
user code)

Therefore, this process needs to call Revoke, so that the Allgather doesn’t
keep waiting on its participation

mailto:wbland@mcs.anl.gov

When one needs Revoke 2/2

void one_comm_p2p_transitive_stencil_1d(MPI_Comm comm,..) {
int rcl=MPI_SUCCESS, rcr=MPI_SUCCESS;
int leftrank=myrank-1;
int rightrank=myrank+1;

for(i=0; i<50; i++) {
if(-1!=leftrank) rcl= MPI_Sendrecv(.., leftrank, .., leftrank,

,comm) ;
if(np!=rightrank) rcr= MPI_Sendrecv(.., rightrank, .., rightrank,

,comm) ;
if(MPI_SUCCESS!=rcl || MPI_SUCCESS!=rcr) {

MPI_Comm_revoke (comm) ;
return;

¥
dither(); // computation only

}
If Sendrecv(left=2) fails at rank 3, nobody but rank 1 knows (through sendrecv(right=2))

A process that raises an exception may not want to continue the dither loop. yet it is not dead, so it has

to match its operations, otherwise it is incorrect user code
This process needs to call Revoke, so that the MPI_Sendrecv(left=3) doesn’t keep waiting on its

participation

mailto:wbland@mcs.anl.gov

P2P continues across errors

void one_comm_p2p_transitive_stencil_1d_norevoke (MPI_Comm comm,..) {
int rcl=MPI_SUCCESS, rcr=MPI_SUCCESS;
int leftrank=myrank-1; limax=-1; MPI_Status lstatus;
int rightrank=myrank+1l; rimax=-1; MPI_Status rstatus;

for(i=0; i<50; 1i++) {
if(-1!=leftrank && limax<i) //skip over failed +iterations
rcl= MPI_Sendrecv(.., leftrank, sendtag=i, ..,
leftrank, MPI_ANY_TAG,
comm, MPI_STATUS_IGNORE) ;
if(np!=rightrank && rimax<i)
rcr= MPI_Sendrecv(.., rightrank, sendtag=i, ..,
rightrank, MPI_ANY_TAG,
comm, MPI_STATUS_IGNORE) ;
while(MPI_SUCCESS!=rcl) {
leftrank--;
if(-1!=1leftrank) {
rcl= MPI_Sendrecv(.. , leftrank, sendtag=i, ..,
leftrank, MPI_ANY_TAG,
comm, &lstatus);
}

}
limax=1lstatus.MPI_TAG;

// (omitted: same stitching for right neighbor)
dither();

If process on the left
fails, stich the chain
with next process on
the left (some left
iteration skipping may
happen)

When a new left
neighbor has been
found, the normal
sendrecv with right will
be matched,
Communication pattern
with right neighbor is
unchanged

Therefore, no need to
revoke, dead processes
are ignored, algorithm
continues on the same
comm w/o propagating
error condition further

mailto:wbland@mcs.anl.gov

Detecting errors (consistently)

void MPIX_Comm_failures_allget(MPI_Comm comm, MPI_Group * grp) {
MPI_Comm s; MPI_Group c_grp, S_grp;
MPI_Comm_shrink(comm, &s);
MPI_Comm_group(c, &c_grp); MPI_Comm_group(s, &s_grp);
MPI_Group_diff(c_grp, s_grp, grp);
MPI_Group_free(&c_grp); MPI_Group_free(&s_grp);
MPI_Comm_free(&s);

 Rationale for not standardizing Failures_allget:

« agreeing on all failures is as expensive as shrinking the comm (computing a
new cid while making the failed group agreement is trivial and negligible)

« Can be written in 4 lines, with the only mild annoyance of having an
intermediate comm object to free.

« Somewhat, to discourage users to use it when unnecessary (it is expensive,
making it easy to spot by having a call to a “recovery” function is good)

mailto:wbland@mcs.anl.gov

Spawning replacement ranks 1/2

int MPIX_Comm_replace(MPI_Comm comm, MPI_Comm *newcomm) {
MPI_Comm shrinked, spawned, merged;
int rc, flag, flagr, nc, ns;

redo:
MPI_Comm_shrink(comm, &shrinked);
MPI_Comm_size(comm, &nc); MPI_Comm_size(shrinked, &ns);
rc = MPI_Comm_spawn(.., nc-ns, .., 0, shrinked, &spawned, ..);
flag = MPI_SUCCESS==rc;
MPI_Comm_agree(shrinked, &flag);
if(!flag) {

if (MPI_SUCCESS == rc) MPI_Comm_free(&spawned) ;
MPI_Comm_free(&shrinked) ;
goto redo;

b
rc = MPI_Intercomm_merge(spawned, 0, &merged);
flagr = flag = MPI_SUCCESS==rc;
MPI_Comm_agree(shrinked, &flag);
MPI_Comm_agree(spawned, &flagr);
if(!flag || !flagr) {
if (MPI_SUCCESS == rc) MPI_Comm_free(&merged);
MPI_Comm_free(&spawned) ;
MPI_Comm_free(&shrinked) ;
goto redo;

mailto:wbland@mcs.anl.gov

Spawning replacement ranks 2/2

int MPIX_Comm_replace(MPI_Comm comm, MPI_Comm *newcomm) {

/* merged contains a replacement for comm, ranks are not ordered properly */
int c_rank, s_rank;
MPI_Comm_rank(comm, &c_rank);
MPI_Comm_rank(shrinked, &s_rank);
if(© == s_rank) {
MPI_Comm_grp c_grp, s_grp, f_grp; int nf;
MPI_Comm_group(comm, &c_grp); MPI_Comm_group(shrinked, s_grp);
MPI_Group_difference(c_grp, s_grp, &f_grp);
MPI_Group_size(f_grp, &nf);
for(int r_rank=0; r_rank<nf; r_rank++) {
int f_rank;
MPI_Group_translate_ranks(f_grp, 1, &r_rank, c_grp, f_rank);
MPI_Send(&f_rank, 1, MPI_INT, r_rank, 0, spawned);
}
}
rc = MPI_Comm_split(merged, 0, c_rank, newcomm) ;
flag = (MPI_SUCCESS==rc);
MPI_Comm_agree(merged, &flag);
if(!flag) { goto redo; } // (removed the Free clutter here)

mailto:wbland@mcs.anl.gov

Example: in-memory C/R

int checkpoint_restart(MPI_Comm *comm) {
int rc, flag;
checkpoint_in_memory(); // store a local copy of my checkpoint
rc = checkpoint_to(*comm, (myrank+1)%np); //store a copy on myrank+1l
flag = (MPI_SUCCESS==rc); MPI_Comm_agree(*comm, &flag);
if(!'flag) { // if checkpoint fails, we need restart!
MPI_Comm newcomm; int f_rank; int nf;
MPI_Group c_grp, n_grp, f_grp;
redo:
MPIX_Comm_replace(*comm, &newcomm) ;

MPI_Comm_group(*comm, &c_grp); MPI_Comm_group(newgroup, &n_grp);
MPI_Comm_difference(c_grp, n_grp, &f_grp);
MPI_Group_size(f_grp, &nf);
for(int i=0; i<nf; i++) {
MPI_Group_translate_ranks(f_grp, 1, &i, c_grp, &f_rank);
if((myrank+np-1)%np == f_rank) {
serve_checkpoint_to(newcomm, f_rank);

}
}
MPI_Group_free(&n_grp); MPI_Group_free(&c_grp); MPI_Group_free(&f_grp);
rc = MPI_Barrier (newcomm);
flag=(MPI_SUCCESS==rc); MPI_Comm_agree(*comm, &flag);
if(!flag) goto redo; // again, all free clutter not shown
restart_from_memory(); // rollback from local memory
MPI_Comm_free(comm) ;
*comm = newcomm;

mailto:wbland@mcs.anl.gov

Creating Communicators, variant 2

Communicator creation
functions are collective

Like all other collective,
they may succeed or
raise
ERR_PROC_FAILED
differently at different
ranks

Therefore, users need
extra caution when
using the resultant
communicator: is
context valid at the
target peer?

This code snippet
solves this uncertainty
and makes it simple to
create comms again.

int MPIX_Comm_split_safe(MPI_Comm comm, 1int
color, int key, MPI_Comm *newcomm) {
int rcl, rc2;
int flag;
rcl = MPI_Comm_split(comm, color, key,
newcomm) ;
rc2 = MPI_Barrier(comm);
if(MPI_SUCCESS != rc2) {
i (MPI_SUCCESS == rcl {
MPI_Comm_revoke (newcomm) ;
}
}
/* MPI_SUCCESS == rc2 => MPI_SUCCESS == rcl*/
/* note: when MPI_SUCCES!=rc2, we may revoke
* a fully working newcomm, but it is safer */
return rc2;

mailto:wbland@mcs.anl.gov

