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Summary. A common dilemma in many decision, design, and modeling problems
involving water resources is determining the level of simulation output to be passed to an
optimization solver. A pure black-box approach allows for the easiest interface between
the solver and the underlying simulator(s) but often requires a large number of simulation
evaluations. On the other hand, full knowledge of the underlying computations enables
the use of more specialized solvers but is labor-intensive, increases a solver’s overhead,
and can be intractable or unrealistic. We explore trade-offs occurring between these
two extremes on a groundwater problem based on the Lockwood Solvent Groundwater
Plume Site. We make explicit use of knowledge about the problem’s nonsmoothness and
additional outputs from the underlying simulator. We propose an augmented Lagrangian
framework to solve the resulting problem under three different levels of information. Our
results show both the benefit of working with richer output from the underlying simulator
and the trade-off between computational complexity and accuracy with this increase in
information.

1 INTRODUCTION

Many groundwater optimization problems are characterized by objective and constraint
functions depending on the evaluation of complex numerical simulations. Examples in-
clude the “community problems”3,10, groundwater bioremediation15, and the well-field
design problem8,9 considered in this paper. The underlying numerical simulations include
solvers for systems of partial or ordinary differential equations, nonlinear or nonsmooth
equations, and numerical integration. In each case, the problem was modeled as a black-
box optimization problem, where it is assumed that an optimization algorithm has access
only to the objective/cost function through an evaluation.

Optimization approaches for this class of problems include finite difference-based,
model-based, direct search, and heuristic methods. These methods belong to the field
of derivative-free optimization 1, which concerns the study of problems where the analytic
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expressions of derivatives of the objective/constraints with respect to the decision parame-
ters are unavailable. Gradient-based methods rely on finite-difference derivatives, whereas
model-based1 approaches and implicit filtering6 infer derivative values from generally
coarser sampling. Direct search techniques7 (such as pattern search and the Nelder-Mead
method) sample the decision space independently of such approximations. Heuristics such
as genetic algorithms tend to be population-based and balance stochastic exploration of
the space with refinement. A large study4 of some of these approaches on a class of
black-box groundwater problems provides further insight.

Practitioners often resort to purely black-box formulations because of the ease of use
and robustness of black-box solvers. Writing interfaces that pass additional details of
the simulation components making up the “black box” is often not straightforward and
can be error-prone. Furthermore, providing a richer set of simulation output can in fact
make the objective function evaluation more expensive, while still not providing the full
derivative information required by more efficient derivative-based optimization methods.

In this paper, we focus on the Lockwood problem8,9, to illustrate the benefit of working
with more than just aggregates of a set of black-box outputs. As detailed in Sec. 2, the
Lockwood problem concerns the minimal cost design of a well field to prevent contaminant
plumes expanding from a fixed region. The plume expansion is given by a set of simulation-
based, nonsmooth flux constraints. We propose exposing this source of nonsmoothness
and reformulating the problem in a more tractable, smooth version at the cost of adding
a larger set of black-box inequality constraints.

In Sec. 3 we propose a model-based augmented Lagrangian framework to solve the
resulting inequality constrained problem, as well as an inexact version that considers
only a subset of the inequality constraints. A Matlab implementation of the algorithm
is developed, and the problem is analyzed under different levels of information in Sec. 4.
We show that providing more information to the optimization algorithm benefits both the
number of simulation runs required and the quality of solution obtained. We also compare
the trade-off between computational complexity and the level of information provided.

2 ILLUSTRATIVE LOCKWOOD DESIGN PROBLEM

To illustrate our approach, we consider a black-box optimization problem8,9 based on
the Lockwood Solvent Groundwater Plume Site (LSGPS) near Billings, Montana. The site
consists of two chlorine plumes (A and B) that threaten to contaminate the neighboring
Yellowstone River. The basic version of the problem is to determine pumping rates
for six extraction wells in order to minimize the cost of operating the wells, subject to
two (steady-state) constraints on the flux that prevent the plumes’ migration. The cost
objective f is the sum of a fixed installation cost and variable operating costs. In this
case, the operating costs are a simple, linear function of the pumping rates, but the flux
constraints are evaluated by the simulators Ostrich and Bluebird2.

We let ri refer to the pumping rate of well i and take r to denote the resulting six

2



Aswin Kannan and Stefan M. Wild

decision parameters. Mathematically, the problem can be expressed as

min
r
{f(r) : ΦA(r) = 0; ΦB(r) = 0; 0 ≤ r ≤ u} , (1)

where the vector u denotes the maximum pumping rates and Φa and Φb represent the
flux from plumes A and B, respectively. In a purely black-box approach, the problem has
also been posed as the penalized, bound-constrained problem9

min
r
{f(r) + µ|ΦA(r)|+ µ|ΦB(r)| : 0 ≤ r ≤ u} . (2)

By moving the simulation-based constraints into the objective through the use of a penalty
parameter µ > 0, this formulation enables the use of a larger set of black-box solvers.
We refer to (1) and (2) as the problems with some information and no information,
respectively.

Richer Simulation Output: Given pumping rates and locations, Bluebird uses an-
alytic element methods5 to discretize the contaminant site and compute a flow field.
Plumes A and B are divided into 40 and 38 sections, respectively, across each of which
the total flux is computed. For any section η, Φtot

η =
∫ h
0
qηdl, where h is the saturated

thickness of the domain, qη is the specific discharge normal to a vertical plane through
the aquifer, l is the vertical direction, and Φtot

η is the total flux8. Computationally, this
flux is split into two directional components, the in-flux Φin

η and the out-flux Φout
η ,

Φtot
η = Φout

η − Φin
η , Φout

η =

∫ h

0

q+η dl, Φin
η =

∫ h

0

q−η dl,

where q+η = max(qη, 0) and q−η = max(−qη, 0).
A deeper inspection of the simulator reveals that the fluxes are numerically obtained

by discretizing each section η into 201 elements and that the desired constraint values are
given by the out-flux, so that

ΦA =
40∑
η=1

201∑
i=1

q+η,i, ΦB =
78∑

η=41

201∑
i=1

q+η,i.

Therefore, the original problem (1) can be equivalently formulated as

min
r
{f(r) : qη,i(r) ≤ 0, η = 1, . . . , 78, i ∈ A; 0 ≤ r ≤ u} , (3)

where A = {1, · · · , 201}. The major advantage with the formulation (3) is that it elimi-
nates the source of nonsmoothness arising from q+η in ΦA and ΦB. This approach requires
only that the necessary (new black-box) output, {qη,i}, be provided instead of the aggre-
gates Φa and Φb used by the problem with some information.
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However, the 15,678 black-box inequality constraints in (3) can pose significant chal-
lenges in terms of computational overhead and susceptibility to roundoff error. If qη,i is
linear in i, then the problem can be equivalently modeled such that qη,1, qη,201 ≤ 0,∀η ∈ N ,
thereby replacing 15,678 inequality constraints by 176. With this motivation, we propose
an inexact version of the above problem where we replace the index set A by Aie, a set
containing |Aie| < 201 equally spaced indices. For example, for |Aie| = 3 and |Aie| = 5,
we would consider Aie = {1, 101, 201} and Aie = {1, 51, 101, 151, 201}, respectively, and
solve the inexact problem

min
r
{f(r) : qη,i(r) ≤ 0, η = 1, . . . , 78, i ∈ Aie; 0 ≤ r ≤ u} . (4)

We refer to the inequality constrained problem, with both exact (3) and inexact (4) sets,
as the problem with more information.

3 FAMILY OF BLACK-BOX-BASED OPTIMIZATION ALGORITHMS

We now propose a model-based derivative-free approach to solve the black-box opti-
mization problems of interest. We begin by considering the inequality-constrained prob-
lem (4) where, for ease of notation, we denote the constraints by {cj : j ∈ J }, with
J = {1, · · · , 78|Aie|}. By adding slack variables s, (4) can be reformulated as

min
r,s
{f(r) : cj(r) + sj = 0, j ∈ J ; s ≥ 0; 0 ≤ r ≤ u} ,

and then solved with a bound-constrained augmented Lagrangian scheme. At every outer
iteration, for given estimates of the Lagrange multipliers and penalty parameter, (λ, µ),
the bound-constrained problem

min
r,s

{
h(r, s) = f(r)−

∑
j∈J

λj(cj(r) + sj) +
µ

2

∑
j∈J

(cj(r) + sj)
2 : s ≥ 0; 0 ≤ r ≤ u

}

is solved. A standard technique13 for solving such problems is to approximate the objective
function by a quadratic model based on gradient and Hessian information and then solve
a sequence of subproblems

min
d

{
dT∇h(r, s) +

1

2
dT∇2h(r, s)d : s+ ds ≥ 0, 0 ≤ r + dr ≤ u, ‖d‖∞ ≤ ∆

}
. (5)

In our case, however, the derivatives ∇h(r, s) and ∇2h(r, s) are not available because h
depends on the black-box quantities cj. Instead of using finite-difference approximations,
we propose to use models that interpolate known values of the cj to determine the coarse
approximations for the unknown gradient and Hessian terms. This approach has been
shown to be efficient for minimizing the number of simulation runs required1,11.
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Thus, at every inner iteration, quadratic surrogate models of f(r) and cj(r),

mf (rold + dr) = f(rold) + dTr g
f +

1

2
dTrH

fdr,

mcj(rold + dr) = cj(r
old) + dTr g

cj +
1

2
dTrH

cjdr, j ∈ J ,

are formed based on the output from prior simulation evaluations obtained in a neigh-
borhood of the current point rold. The model parameters (gf , Hf ) and {(gcj , Hcj)}j are

obtained by solving a multivariate interpolation problem14. We therefore use gf , Hf ,gcj ,
and Hcj in place of the unavailable derivatives ∇f(r),∇2f(r),∇cj(r), and ∇2cj(r), re-
spectively. The bound constrained quadratic problem (5) thus becomes

min
d

{
m(d) = dTg +

1

2
dTHd : 0 ≤ rold + dr ≤ u; sold + ds ≥ 0; ‖d‖∞ ≤ ∆

}
,

where d =

(
dr
ds

)
, H =

(
Hrr Hrs

HT
rs µI

)
, Hrs = µgc, and

g =

gf +
∑
j∈J

(µcj(r
old)− λj)gcj +Hrss

old

µc(rold)− λ+ µsold

 , Hrr = Hf +
∑
j∈J

(
(−λj + µcj(r

old) + µsold)Hcj + µgcj (gcj )T
)
.

We note that the derivatives with respect to the slack variables s are employed explic-
itly to ensure that the effective dimension of the black-box problem is not unnecessarily
increased. While beyond the scope of this paper, we note that it can be shown that the
model m can provide a sufficiently good local approximation of h under mathematical
assumptions on f(r) and c(r)1. Once the augmented Lagrangian subproblem (3) is ap-
proximately solved, the multipliers λ and penalty parameter µ are updated13. We then
proceed iteratively until the constraint violation drops below a user-set threshold.

A major advantage of this framework of separately modeling constraints and the objec-
tive is that evaluations from one iteration can be used in forming the interpolation models
for subsequent iterations. Furthermore, developing separate models for the objective and
constraint terms allows us to benefit from analytic derivatives where they are available
(such as in the simple cost function f in the Lockwood problem).

For the cases with some information and no information, the same scheme is employed
except without slack variables and two and no equality constraints, respectively.

4 NUMERICAL RESULTS

We developed a Matlab extension, using the model-based augmented Lagrangian frame-
work described in the previous section, of the POUNDERS solver in TAO12. For the pur-
poses of discussion, the call to Bluebird was modified so that double-precision (instead
of single-precision) black-box output was obtained. For cases with some information and
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Figure 1: Evaluation trajectories of operating cost
(above) and flux (below) for different levels of inex-
actness (more information).

Figure 2: Evaluation trajectories of operating cost
(above) and flux (below) for different penalty levels
(no information).

more information, the structure of the objective being linear was explicitly used, and
analytical derivatives were supplied. In all the numerical results presented, the constraint
violation plotted was calculated by using all 201 elements specified in the original problem
(and not just the possible subset in Aie modeled by the optimization algorithm). The six
pumping rates were set to 10,000 (ft3/day) to form the standard starting point r0.

We first focus on the problem with more information for different sizes of |Aie|. The
values of the operating cost, f(r) less a constant installation cost term, and the total flux
constraint violation, Φ(r) = |ΦA(r)| + |ΦB(r)|, obtained are shown as a function of the
number of simulation evaluations in Fig. 1. We see that for higher levels of exactness,
a solution is obtained in fewer evaluations. We note that the optimal operating cost
obtained in this framework is $22,739.67.

Figure 2 shows the trajectory for the problem with no information for different values
of the penalty parameter, µ. For sufficiently large µ, the constraints are not violated;
however, the objective function remains suboptimal because the solver is stuck at a point
of nonsmoothness. For µ = 104, the progress made by the algorithm is significantly slower
than the case with more information shown in Fig. 1.

For all subsequent plots, we report results with |Aie| = 2 as the level of inexactness
for the case with more information and µ = 104 for the case with no information. Fig-
ures 3 and 4 compare the approaches with different levels of information for two different
starting points, r0 and r1, where r1 is a randomly generated point. Nonsmoothness arising
from the flux constraint makes it difficult for the algorithm with no information to make
progress beyond a certain point. The algorithm with some information performs better
but can still be adversely affected by the nonsmoothness so that the flux appears to not
drop beyond a particular value. On the other hand, the flux vanishes in the case of the
algorithm with more information in fewer than 150 function evaluations.

Table 1 shows the overhead times for different levels of inexactness averaged across
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Figure 3: Trajectories of operating cost (above) and
flux (below) for different levels of information for
starting point r0.

Figure 4: Trajectories of operating cost (above) and
flux (below) for different levels of information for
starting point r1.

different starting points. The reported times correspond to all optimization algorithm
overhead occurring between evaluations and is seen to grow faster than linearly with
increasing levels of exactness. Although this overhead could be improved with a more
efficient, production version of our code, the results illustrate that using a high level
of inexactness for the Lockwood problem (where evaluation times ranged from 3 to 5
seconds) may not reduce the total time to solution. On the other hand, for more expensive
simulations, the additional cost of overhead may be negligible relative to the savings in
simulation time.

Some information |Aie| = 2 |Aie| = 3 |Aie| = 5 |Aie| = 8 |Aie| = 10
0.17s 0.57s 0.72s 1.10s 2.27s 3.48s

Table 1: Average computational overhead time per evaluation versus levels of information/inexactness.

5 CONCLUSIONS

This paper has illustrated how model-based derivative-free optimization algorithms can
solve groundwater problems in fewer simulation evaluations if the algorithm has access to
a greater level of information. On the Lockwood problem, our results show that this is the
case even though full derivative information remains unavailable, with performance gains
resulting simply by granting an algorithm access to both objective and constraint values.
We have shown that reformulations with smooth, black-box constraints can overcome
hurdles to obtaining high-quality solutions often found with penalized problems without
any explicit nonsmooth structure. The cost of reducing the number of simulations is
greater computational overhead. Hence, the level of inexactness and information employed
should be chosen based on the expense of the underlying simulation and the degree of
constraint violation permitted and the solution quality demanded.
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