
Experimental Study of

Global and Local Search Algorithms

in Empirical Performance Tuning

Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439

{pbalapra,wild,hovland}@mcs.anl.gov

Abstract. The increasing complexity, heterogeneity, and rapid evolu-
tion of modern computer architectures present obstacles for achieving
high performance of scientific codes on different machines. Empirical
performance tuning is a viable approach to obtain high-performing code
variants based on their measured performance on the target machine. In
previous work, we formulated the search for the best code variant as a
numerical optimization problem. Two classes of algorithms are available
to tackle this problem: global and local algorithms. We present an exper-
imental study of some global and local search algorithms on a number
of problems from the recently introduced SPAPT test suite. We show
that local search algorithms are particularly attractive, where finding
high-preforming code variants in a short computation time is crucial.

1 Introduction

The rapid rate of innovations in computing architectures has widened the gap
between the theoretical peak and the achievable performance of scientific codes
[1]. Often, scientific application programmers address this issue by manually
rewriting the code for the target machine, but this approach is neither scalable
nor portable. Empirical performance tuning or automatic performance tuning (in
short, autotuning) is a promising approach to address the limitations of manual
tuning. This approach consists of identifying relevant code optimization tech-
niques (such as loop unrolling, register tiling, and loop vectorization), assigning
a range of parameter values using hardware expertise and application-specific
knowledge, and then either enumerating or searching this parameter space to
find the high performing parameter configurations for the given machine. Using
this approach, several researchers have achieved considerable success in tuning
scientific kernels for both serial and multicore processors [1].

In large-scale empirical performance tuning, the computation time needed to
enumerate all parameter configurations in a large decision space is prohibitively
expensive. Hence, effective global and/or local search algorithms that examine
a tiny subset of the possible configurations are required. Typically, global algo-
rithms can be characterized by their dynamic balance between exploration of

the search space and exploitation of the accumulated search history. They are
theoretically guaranteed to find the globally best configuration at the expense
of a long search time. In practice, however, they are run until user-defined stop-
ping criteria are met. Examples include branch and bound, simulated annealing,
genetic algorithms, and particle swarm optimization. In contrast, local search
algorithms do not emphasize exploration and instead repeatedly try to move
from a current configuration to a nearby improving configuration. Typically, the
neighborhood of a given configuration is problem-specific and defined by the user
or algorithm. These algorithms terminate when a current configuration does not
have any improving neighbor and hence is locally optimal. Examples include
the Nelder-Mead simplex, orthogonal search, variable neighborhood search, and
trust region methods. The disadvantage of local search algorithms is that, de-
pending on the search space and initial configuration, they can terminate with a
locally optimal configuration that performs much worse than a globally optimal
configuration.

Search problems in empirical performance tuning are defined by a specific
combination of a kernel, an input size, a set of tunable decision parameters,
a set of feasible parameter values, and a default/initial configuration of these
parameters for use by search algorithms [2]. Several global and local search al-
gorithms have been deployed for empirical performance tuning. Seymour et al.
[9] performed an experimental comparison of several global (random search, a
genetic algorithm, simulated annealing, particle swarm) and local (Nelder-Mead
and orthogonal search) optimization algorithms. Similarly, Kisuki et al. [6] com-
pared random search, a genetic algorithm, and simulated annealing with pyramid
search and window search. In both these studies, the experimental results showed
that the random search was more effective than the other algorithms tested. A
reason is that in the tuning tasks considered, the number of high-performing
parameter configurations is large and hence it is easy to find one of them. More-
over, we suspect that the adopted local search algorithms were less effective
because they were not customized. Although Norris et al. [7] implemented the
Nelder-Mead simplex method, simulated annealing, and a genetic algorithm in
the empirical performance tuning framework Orio, the authors did not conduct
an experimental comparison. A number of works deploy local search algorithms
for empirical performance tuning. Examples include orthogonal search in AT-
LAS [11], pattern search in loop optimization [8], and a modified Nelder-Mead
simplex algorithm in Active Harmony [10]. However, a comparison with global
search algorithms was not available. From the literature, it is not clear whether
local search or global search is best suited for empirical performance tuning and,
in particular, under what conditions one class may be better than another.

In this paper, we focus on a setting where the available computation time
for tuning is highly limited. Our hypothesis is that appropriately modified local
search algorithms can find high-performing code variants in short computation
times. This is based on the rationale that the exploration component of global
search algorithms is less beneficial in empirical performance-tuning problems
where finding high-performing configurations in short computation time is more

important than finding the optimal configuration. We conduct an experimental
study of some global and local search algorithms on a number of problems from
the SPAPT test suite [3]. The main contribution of the paper is empirical evi-
dence for the effectiveness of the local search algorithms under short computation
times.

2 Search algorithms

For global search algorithms, we consider random search, a genetic algorithm,
and simulated annealing. For local search algorithms, we use the Nelder-Mead
simplex method and a surrogate-based search.

Random search has been shown to be effective on a number of performance-
tuning tasks. The parameter configurations are sampled uniformly at random
from the feasible domain D without replacement. At iteration k, each x ∈ D not
already sampled has probability 1

|D|−k+1 of being selected as the point x(k). In

the absence of other criteria, the algorithm terminates after |D| iterations with
the global minimum.

Genetic algorithms are among the most widely used global search algo-
rithms. These algorithms follow a common framework that consists of iteratively
modifying a population of configurations by applying a set of evolutionary op-
erations such as reproduction, recombination, and mutation. Several variants
exist; the best one depends on the problem at hand and the parameters of the
algorithm. We use a genetic algorithm based on [4].

Simulated annealing is inspired by the physical process of annealing. The
key algorithmic component is an annealing schedule that slowly reduces the
value of a temperature parameter T so that the probability of accepting a worse
configuration decreases as the search progresses [5]. The mechanism of accepting
worse configurations during the search helps the algorithm escape from bad local
configurations encountered in the early stages of the search.

The Nelder-Mead simplex method was originally developed to solve un-
constrained continuous optimization problems. It works with a simplex of n+ 1
vertices, where n is the number of parameters. At each iteration, the simplex
moves away from less promising regions of the search space using reflection,
expansion, contraction, or shrink operators. We use a Nelder-Mead simplex al-
gorithm that is customized for empirical performance tuning task; see [2] for
implementation details.

Surrogate-based search is an algorithmic framework that uses inexpen-
sive surrogates to approximate the computationally expensive objective. For our
experiments, we consider a basic trust-region algorithm [12] that operates on
discrete values. It starts by constructing a quadratic surrogate function by eval-
uating a few configurations. At each iteration, a configuration that minimizes
the surrogate is evaluated, and the ratio between the true function value and
the predicted surrogate value is used to monitor the quality of the surrogate.
When the surrogate is accurate enough, the trust region is expanded; otherwise,
the region is contracted, and a promising neighbor of the current configuration
is evaluated to improve the surrogate.

3 Numerical experiments

We evaluate the algorithms on problems from the SPAPT test suite [3], a col-
lection of extensible and portable search problems in automatic performance
tuning. These problems are implemented in an annotation-based language that
can be readily processed by Orio [7]. Originally, the SPAPT problems had inte-
ger and binary parameters (scalar replacement, array copy, loop vectorization,
and OpenMP) with both bound and algebraic constraints. Since the focus of
our study is on bound-constrained problems with integer parameters only, we
removed all algebraic constraints and binary parameters from the problems. The
numerical parameters include loop unroll/jamming ∈ [1,. . .,50], cache tiling ∈
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] (treated as [1,. . .,12]), and reg-
ister tiling ∈ [1,. . .,32]. The number of parameters ni ranges between 8 and 38,
and the size of search space |D| ranges between 5.31× 1010 and 1.24× 1053. Of
the 18 problems in the SPAPT test suite, we use only 12. On the remaining 6
problems, since the algebraic constraints are required for the correctness of the
transformation, we did not use it.

Random search (RS), the genetic algorithm (GA), simulated annealing (SA),
modified Nelder-Mead simplex (mNM), and modified surrogate-based search
(mSBS) were implemented and run in MATLAB version 7.9.0.529 (R2009b). We
adopted the default parameter values for all the algorithms. Experiments were
carried out on dedicated nodes of Fusion, a 320-node cluster at Argonne Na-
tional Laboratory, comprising 2.6 GHz Intel Xeon processors with 36 GB of
RAM, under the stock Linux kernel version 2.6.18 provided by RedHat.

We considered the objective value f(x) at a parameter configuration x as the
average computation time over 10 generated code runs. Other objective functions
can be adopted, such as the median or minimum; see [3] for a discussion. For
the initial configuration from which the algorithms start, we set each parameter
to its lower bound. This corresponds to a code variant without any transforma-
tion. We used 100 code evaluations as the stopping criterion for each algorithm.
Given a parameter configuration, a code evaluation consists of code transforma-
tion, compilation, and execution. For the size of the search space that we have,
this corresponds to the evaluation of only 8.05 × 10−50% (|D|=1.24 × 1053) to
0.00000018% (|D|=5.31× 1010) of the total configurations.

Figure 1(a) shows a bar chart of the speedups at different time intervals. We
compute “x% of max T” is computed as follows: For each problem, max T is
the maximum elapsed time that any of the five algorithms took to complete 100
evaluations. The speedups obtained by each algorithm after 10%, 25%, 50%, and
100% of the max T is computed and shown in the figure. From the speedups
obtained at these intervals, we observe that the two local search algorithms,
mNM and mSBS, obtain high-quality configurations in short computation time.
The main advantage here comes from the time required for the algorithms to
complete 100 code evaluations. RS and GA require longer search times because
they spend more time exploring the domain and tend to be slower than mNM and
mSBS. The performance advantage of mNM and mSBS comes from the fact that
the time per evaluation tends to be shorter once a good configuration has been

(a) Default initial configuration; default
input size; 100 function evaluations

(b) Default initial configuration; large
input size; 100 function evaluations

(c) Poor initial configuration; default in-
put size; 100 function evaluations

(d) Default initial configuration; default
input size; 500 function evaluations

Fig. 1. Speedups obtained by each algorithm as a function of % of the budget.

found. On 9 of 12 problems, we found that the local algorithms outperformed the
global algorithms. The observed speedups are between 1.15 and 3.0, respectively.
On adi and correlation, we cannot detect a significant speedup.

Under the same computation budget of 100 code evaluations, we tested the
behavior of the algorithms on larger input sizes (the size of the arrays and
matrices in the kernels) by doubling the input size for each problem. The results
are shown in Figure 1(b). Although the times to complete 100 code evaluations
are larger than those observed with smaller input sizes, the trend in the behavior
of the algorithms is similar: the local search algorithms obtain high-performing
code variants in short computation time. Out of 12 problems, on 8 problems
the local search algorithms are better than the global search algorithms. On
correlation, we cannot detect a significant difference between the results of the
global and local search algorithms. Although mNM and mSBS find high-quality
configurations in short computation time, on gessumv, given enough time GA
obtains a better configuration than mNM and mSBS. On mm and correlation,
we cannot detect a significant difference between the results of the global and
local search algorithms.

Figure 1(c) shows the results when the starting point is set to the upper-
bound values. From the exploratory studies, we found that the initial configu-
rations with lower-bound values are reasonably good starting points and that
those at the upper bounds are extremely poor. We found that mNM and SA
tend to be sensitive to the starting point and obtain poor results. These algo-
rithms also required longer search times because the parameter configurations
closer to the upper bounds have longer transformation time and consequently
longer compile time. Whereas SA tries to escape from the nonpromising region,
mNM stagnates, spending most of the search time exploring the neighborhood
of the current configuration. We found mSBS to be less sensitive than mNM or
SA to the starting point because it uses randomly sampled configurations within
a larger initial neighborhood to form the initial surrogate. GA uses the initial
configuration only as an individual of the population in the first iteration. Since
RS is independent of the starting point, it found better code variants than did
mNM and SA in short computation times. The results show that the poor start-
ing points significantly reduce the effectiveness of the local search algorithms.
Out of 12, only on 6 problems did the local search algorithms, in particular,
mSBS, outperform the global search algorithms. We also used the center of the
hyperrectangle D as a starting point. The results observed are similar to those
with lower bounds as in Figure 1(c), local algorithms being better than the global
algorithms despite a slightly worse starting value than the lower bounds.

Figure 1(d) illustrates the behavior of the algorithms using a slightly larger
computation budget (500 code evaluations) as the stopping criterion. The al-
gorithms start from initial configurations in which each parameter is set to its
lower-bound value. Global search algorithms benefit from a larger number of
iterations. On 7 out of 12 problems local search algorithms dominate global
search algorithms, but the difference in the speedups between global and local
algorithms is smaller than that observed with 100 evaluations. Although local

(a) GAs on atax; |D| = 2.81× 1021 (b) SAs on atax; |D| = 2.81 × 1021

Fig. 2. Best objective value obtained by each algorithm as a function of search time.
Each algorithm is allowed to perform 100 function evaluations. Markers are placed at
every 20 evaluations.

search algorithms find high-quality code variants in short times, they spend the
search effort in exploring the neighborhood of a local configuration to certify
local optimality.

To further test that the exploration component is the major factor affect-
ing the performance of global search algorithms, we reduced their degree of
exploration. Specifically, for GA and SA, we reduced the values of the muta-
tion parameter µ and starting temperature parameter T , respectively. We used
three GAs: GA-I (default µ = 0.5), GA-II (µ = 0.1), and GA-III (µ = 0.001).
Similarly for SA, we used SA-I (default T = 1.0), SA-II (T = 0.1), and SA-III
(T = 0.001). Figures 2(a) and 2(b) illustrate the results of the algorithms on
atax for 100 code evaluations. The default lower-bound configuration is used as
a starting point. The results of our study show that reducing the exploration
in global search algorithms is beneficial but the appropriate reduction depends
on the algorithm characteristics, the problem, and the starting point. GA-I and
GA-II obtain configurations with similar runtime, but the latter obtains this
configuration in a shorter period of time (1200 CPU-seconds). However, an ex-
tremely small degree of exploration in GA-III leads to stagnation. In contrast,
although slightly slower, SA-III obtains a better configuration than do SA-I and
SA-II. Our conjecture is that given a good starting point, SA with a very low
degree of exploration can be effective.

4 Conclusion

We investigated the issue of global versus local search in empirical performance
tuning under short computation times. We tested illustrative global and local
algorithms on bound-constrained search problems with integer parameters. We
used different initial configurations, input sizes, and stopping criteria. The re-
sults show that (1) the exploration capabilities of global search algorithms are
less useful; (2) given good initial configurations, local search algorithms can
find high-performing code variants in short computation time; and (3) poor
initial configurations can significantly reduce the effectiveness of both global
and local search algorithms that are sensitive to the starting point. From the

results, we conclude that when the available tuning time is severely limited,
carefully customized local search algorithms are promising candidates for em-
pirical performance-tuning problems that have integer parameters and bound
constraints.

Our future work includes the following: (1) problem-specific techniques to
handle binary parameters and constraints for both global and local search algo-
rithms, (2) effective restart and multi start strategies for local search to escape
from poor local configurations, (3) global algorithms that automatically adopt
exploration and exploitation parameters, (4) tuning of parallel scientific codes
using search algorithms, and (5) analysis of the impact of different target ma-
chines on various performance objectives.

Acknowledgments
This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. We are
grateful to the Laboratory Computing Resource Center at Argonne National Lab.

References

1. D. Bailey, R. Lucas, and S. Williams, editors. Performance Tuning of Scientific
Applications. Chapman & Hall, 2010.

2. P. Balaprakash, S. M. Wild, and P. D. Hovland. Can search algorithms save large-
scale automatic performance tuning? In Int. Conf. on Computational Science,
2011.

3. P. Balaprakash, S. M. Wild, and B. Norris. SPAPT: Search problems in auto-
matic performance tuning. Preprint ANL/MCS-P1872-0411, Argonne National
Lab, 2011.

4. A. Chipperfield and P. Fleming. The MATLAB genetic algorithm toolbox. In IEE
Colloquium on Applied Control Techniques Using MATLAB, 1995.

5. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

6. T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection of tile
sizes and unroll factors using iterative compilation. In Proc. Int. Conf. on Parallel
Arch. and Compilation Techniques, Washington, DC, 2000.

7. B. Norris, A. Hartono, and W. Gropp. Annotations for Productivity and Perfor-
mance Portability, pages 443–461. Computational Science. CRC Press, 2007.

8. A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole ap-
plications using direct search and a performance-based transformation system. Su-
percomputing, 36(2):183–196, 2006.

9. K. Seymour, H. You, and J. Dongarra. A comparison of search heuristics for
empirical code optimization. In Proc. 2008 IEEE Int. Conf. on Cluster Computing,
pages 421–429, 2008.

10. A. Tiwari, C. Chen, C. Jacqueline, M. Hall, and J. K. Hollingsworth. A scalable
auto-tuning framework for compiler optimization. In Proc. of the 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing, pages 1–12, Washington,
DC, 2009.

11. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In
Proc. 1998 ACM/IEEE Conf. on Supercomputing, SC ’98, pages 1–27, Washington,
DC, 1998.

12. S. M. Wild. MNH: A derivative-free optimization algorithm using minimal norm
hessians. In Tenth Copper Mountain Conference on Iterative Methods, 2008.

