[image: image3.png]NAYdUD

Technical Report GriPhyN-2001-xx

www.griphyn.org
DRAFT: COMMENTS AND MATERIAL SOLICITED

GriPhyN Project Plan

Draft Version 6 – 12 October 2001
Developed by members of the GriPhyN Project Team

Submit changes and material to: Mike Wilde, editor
wilde@mcs.anl.gov
31
Review of GriPhyN Vision and Goals

42
Common Planning Approach for All Experiments

52.1
Application analysis

62.2
Infrastructure building

72.3
Challenge Problem Identification

72.4
Challenge problem solution

82.5
Challenge Solution Integration

82.6
Requirement Differences between Projects

83
Plan Overview – Project Years 2 through 5

83.1
Challenge Problems

93.2
VDT Releases

93.3
Goals, approximately by Project Year

93.4
Metrics

103.5
Seeking Common Solutions

103.6
Coordinating Research with GriPhyN Applications

103.7
Funding, reporting, and accountability

114
Project Year 2: October 1, 2001 to September 30, 2002

114.1
Overall Goals

124.2
Project Year 2 Milestone Summary By Quarter

124.3
Research Objectives

154.4
Virtual Data Toolkit Development

174.5
ATLAS

194.6
CMS

214.7
LIGO

224.8
SDSS

244.9
Education and Outreach (to be addressed in detail in next revision; see Manuela’s mail)

254.10
Coordination

265
Year 3: October 1, 2002 to September 30, 2003

265.1
Overall Goals

265.2
Research

265.3
Virtual Data Toolkit Development

265.4
ATLAS

265.5
CMS

265.6
LIGO

265.7
SDSS

265.8
Education and Outreach

276
Year 4: October 1, 2003 to September 30, 2004

276.1
Overall Goals

276.2
Virtual Data Toolkit Development

276.3
Research

276.4
ATLAS

276.5
CMS

276.6
LIGO

276.7
SDSS

276.8
Coordination

287
Year 5: October 1, 2004 to September 30, 2005

287.1
Overall Goals

287.2
Virtual Data Toolkit

287.3
Research

287.4
ATLAS

287.5
CMS

287.6
LIGO

287.7
SDSS

287.8
Coordination

1 Review of GriPhyN Vision and Goals

The goal of GriPhyN is to increase the scientific productivity of large-scale data intensive experiments. Such experiments share the common need to harness large-scale distributed resources through data grid technologies. We state an approach to doing this by describing what the four GriPhyN experiments should look like when the results of GriPhyN are in place:

Scientists can harness significant grid resources with little knowledge of the complexities of resource allocation and distributed computing.

Example: a CMS physicist can look in a catalog for simulation results. Some of the results they want might be already at their site; others may be at other sites and can be fetched quickly. Still others existed at one time and can be re-derived; the remote network to yet another set of results is going to be congested with a major transfer for the next 8 hours, so a new computation is kicked off to re-derive some of these results, which will finish in 1 hour. The new computation uses 75% local resources, the remaining resources are from remote sites with available cycles on uncongested network paths.

The analysis job that needs to run in these results is scheduled and initiated when all data dependencies have been located or materialized. This job runs at 4 different sites, and the final result is emailed to the scientist in the morning. The scientist can check status of the computation at any point, can stop or pause the job; sometimes even steer it.

Experiment data is tracked in a uniform manner, clearly identifying how most data objects were derived.

Example: A scientist questioning the validity of an analysis can look in the catalog, find that the analysis was based on 1000 event reconstructions, and can check which version(s) or reconstruction code was used to create each of the 1000 events. She discovers that 15 events were reconstructed using outdated code, and she initiates a new reconstruction for these events, keeping the new data in a private store. She then notifies her data administrator of the problem, pointing him to the new events; the DA then replaces the outdated reconstructions. He also interrogates the catalog to look for similar events that require upgrading.

Resource allocations are controlled, measured and tracked by resource administrators who set policies to achieve and arbitrate the overall goals of both the experiment’s virtual organization and the resource owners. These policies are not excessively complex to express and maintain, and they control the way in which the grid machinery executes user requests.
Scientists use end-user-oriented tools and express their jobs in science terms rather than in CS terms. Scientists should say: I want to run code X on data Y. The automated grid “ planner” mechanism should decide where to get the data from, where to run the code, when to run the code, and tell the user the expected completion time. Then decide where to place the resulting data. The planner should slow down or pause/stop existing work if the new work has sufficiently high priority. The planner should be able to explain its decisions and recommendations to the users.

Users are given performance predictions for their jobs before they submit them, with alternatives spelled out for them so that they can make prudent cost-delay-benefit decisions.

Unified, off-the-shelf component/toolkit solutions are created in common across all four experiments; the results are usable by future experiments with relative ease, and change the way science will be done in the future.

What does this goal statement have to do with project planning? If the scenarios represent the end goals of this project, we must create a year-by-year plan that clearly identifies how we’ll develop the specified capabilities. This will demand a lot of inter-related and interworking technologies and components, and will have to solve research problems in a manner that creates solutions for the missing pieces of this puzzle.

Each step in our plan needs to fit clearly into building the type of solutions that we have described in the scenarios above.

Common Planning Approach for All Experiments

Although the complex worlds of the four GriPhyN experiments defy common and uniform solutions, we nonetheless propose to base the GriPhyN activities within each experiment on a similar planning approach, based on 1-year cycles. This section describes this common, and how the experiment activities interplay with CS research and toolkit development.

This yearly goal-oriented approach will fit well with cyclic events such as project reviews and the demo-driving Supercomputing conference; it may require adjustments, however, in order to accomplish integrations of deliverables into experiment plans that are each driven by a project-specific calendar.

The figure below describes an idealized one-year activity plan for the overall project; for each remaining year we would presumably follow a similar pattern (at least, at this point in our planning). CS activities are shaded dark, experiment activities light. The activities nearer the top of the figure feed the activities lower down, with the challenge problem solutions representing the ultimate GriPhyN goals. A very important aspect of our coordination plan is that the CS activities span across experiments, striving to conduct research and create tools that that fit the needs of all of the experiments.

[image: image1.wmf]CS Research

VDT Development

Application Analysis

Infrastructure Development and Deployment

Challenge Problem

Identification

Challenge Problem Solution Development

Challenge Problem Solution Integration

VDT Development

VDT

Development

Infrastructure Deployment

IS

Deployment

time

Process

Figure 1: Common Yearly Plan for Experiment Activities.

The yearly plan predicts about 2-3 VDT point releases per year (based on a VDT major-release plan described in Section 3), continuous CS research and application analysis (the latter at a steady but less intensive rate), and one cycle of challenge problem identification, development, and integration. As appropriate, the challenge problem cycle can be repeated several times per year, possibly in an overlapped fashion, depending on the nature of the chosen problems and available integration opportunities that are driven by experiment needs and schedules. This plan reflects the project interaction model that was described in the original proposal, shown in figure 2, below.

The main activities of this common planning approach are outlined in the following sections.

[image: image2.wmf]CS Research

Application

Experiments

Toolkit

Development

Ideas,

expressed in

prototypes

Validated

ideas

feedback

CS

results

Software

tools

Trained

professionals

enables

informs

exploits

refines

ITR

-

Funded

Computer Science

Application

requirements

Testbed

development

Real

applications

define

enables

Physics

feedback

Figure 2: Process and information flow within the GriPhyN project.

1.1 Application analysis

The purpose of application analysis is to determine what processes in each experiment could benefit from the type of results that GriPhyN seeks to produce, to refine the requirements for GriPhyN research, development, and deliverables, and to figure out how to apply the results back into the experiment. This activity is critical to the relevance and utility of GriPhyN results to the experiments.
Unfortunately, this activity has also proved to be difficult to conduct, and has not yet yielded the necessary information back into the project. Difficulties include: much of the information is not yet known, and needs to be extrapolated from past experience; experiment architectures, applications, and decisions are still being formed; the information involved is heavily distributed and the project documents and information sources in which requirements are embedded are usually voluminous. On the other hand, the LHC experiments have been very successful at modeling the expected processing flows within their applications, so there is a positive basis for hope here. We propose to re-assess the process and to find an approach that works and delivers the expected benefits to the project.

Another goal of application analysis is to compare requirements of the four experiments, and then identify common needs that can be met with common tools, architectures, paradigms, testbeds, and infrastructure. If the mechanisms that GriPhyN seeks to create need to be heavily customized for each experiment, then our work is likely to be of less value to other scientific efforts than if we can demonstrate that our results have proven themselves in the four participating experiments.

Stated in an over-simplified manner, the key question we need to analyze is this: how do the experiment’s scientists process data? The information we need to capture includes:

- dataset types stored (both types of files and types/classes of object collections)
- definition of jobs and job types, what their control parameters are, and how they are expressed and invoked
- the grouping of jobs into processing pipelines that may be internally amenable to virtualization
- derivation dependencies for each dataset type (the sequence of transformations to create each dataset type)
- the frequency and priority of each data object, program, and information process
- with what mechanisms and frequency will jobs look up and locate data copies to use
- the location of the storage of each dataset type in a virtual organization (e.g., what tier / location the data resides at)
- the likely replication patterns of the datasets (where to, for how long, how/if replicas are eventually disposed of)

To begin with, it will be useful to create a high-level, abstract model of experiment data flow, to use as a guide to the data flow analysis. For example, it seems that at a very high level, most of our experiments follow a model that is something like:

Capture and/or simulate
Refine the raw or simulated date into a more manipulatable form
Re-factor and/or reorganize the data, sometimes changing the dimensions upon which its based
Index the refined data, gradually building knowledge about the science phenomena inherent in the data
 Distribute the data within the virtual organization for local processing
Analyze the data, typically through search, filtering, and statistical correlation techniques
Reprocess previous steps, backtracking as necessary, as algorithms, indexing, and search criteria are refined

We proposed to develop a common format for describing these processes, data flows and dependencies. We need to look for new ways to describe the changing rates of data production and consumption within each experiment, and to describe the manner in which data items depend on and are derived from each other. A good example of the beginnings of such an effort are represented in the documents that Koen Holtman has produced to describe the CMS experiment [references].

We see the analysis effort proceeding in 2 phases: Step 1 is to locate the best possible source information and make it broadly available to all GriPhyN by maintaining reference web pages that link to appropriate experiment activity pages. Step 2 is to analyze that information, and reduce it, and then extract the information from those sources into a common GriPhyN format.

Ideally, we will identify common information about each experiment in a common format using a common vocabulary. We need to determine the aspects of each experiment’s data processing processes that are most relevant to GriPhyN’s mission.

The following knowledge bases are proposed, to document the analysis. This information should be maintained as a continually updated GriPhyN document set:

· Data and Application Map – a chart showing data types, application tools, and their dependencies at a glance. By “data types” we mean: file types, object classes within persistent object-oriented databases, and tables within relational databases.

· Data dictionary – a detailed description of each data type, down to the level where computer scientists can understand the access patterns and the derivation dependencies of that data.

· Tool dictionary – a detailed description of each relevant application that will be part of Grid jobs and/or data “transformations”. We need to, in particular, understand these applications from a data transformation and data dependency point of view. What data objects are searched or read by the application, and what data objects are produced or transformed by the application? We also need to understand in detail how parameters and input/output specifications are passed to applications, and how some applications dynamically navigate around a massive information base.

· Data requirements spreadsheet – a summary of quantitative data storage and transfer requirements, detailing a time-varying birds-eye view over multi-year periods of how data will be produced, consumed, and replicated throughout the multiple sites and tiers of each experiment’s virtual organization. This data will be used primarily to determine the scaling needs for data transport and cataloging mechanisms, in terms of storage capacity, catalog capacity, and transaction rates.

This knowledge base should consist mainly of “man-page” style documentation that describes the specific details of specific data formats, tools, and science-driven IT processes. We want to collect and tabulate a lot of useful information, more than a lot of words. This style of documentation will be the easiest to write (or, in many cases, to simply gather from existing documentation) and grow, and will enable us to both track the changes in our application knowledge base, as well as use that base to drive our toolkit developments and challenge problem applications.

Infrastructure (testbed) construction

The computing infrastructure of GriPhyN will involve three levels of Grid resources:

Research testbeds: small grids where software or application research can be conducted and tools developed
Experiment testbeds: larger grids where the viability of challenge problem solutions can be demonstrated
Production resources: where challenge problem solutions can be placed in live (production) use by the experiments.

The current vision is that these resources will be unified into a single “GriPhyN Grid” to provide uniform access to and control of these resources as needed by the project. Currently, we expect this grid to contain some mix of research, challenge problem, and a limited amount of production testbeds within it. (We defined a “testbed” as a set of nodes within the Grid). This Grid will:

- run successive releases of the VDT
- be available to all GriPhyN project members for research, development, and challenge problem work
- be under the control of a single Certification Authority
- have a well-maintained Grid Information Service
- contain an agreed-upon mix of job execution facilities
- contain other shared infrastructure such as test and production replica location services and data transfer services

The experiment-maintained testbeds (for example, the ATLAS testbed) would be used mainly in the challenge-problem development and demonstration phases of the project, and the construction and management of those testbeds could be handled by the experiments and related projects (such as PPDG in the case of ATLAS and CMS).

Most of the final stage of GriPhyN solution development – live deployment – is expected to take place on the experiment’s production resources, but we expect that there may be cases where some types of live deployment can take place on GriPhyN grids (for example, running preliminary analyses where the experiment does not require complete control of the execution environment.

Compatibility issues: if challenge problems are developed using a specific VDT toolset, it’s important that deployment take place on an identical or compatible base. Due to the complexity of the tools (both grid and application) involved, its very difficult to ensure that GriPhyN-developed solutions will run correctly if the target environment is not precisely matched to the development environment.

The infrastructure tasks will typically include:

- Identification of resources (hosts,…)
- Design of Login administration mechanism and certification mechanism
- Installation of application software
- Installation of VDT
- Creation of VO’s
- Establishment of CAS’s and policies (policy design a major task)
- types of work
- types of user groups
- priorities of access to resources: computing, storage, network
- Design and setup of Catalog architectures
- Namespace management

It seems clear at this point that the computing resources from which the GriPhyN grid will be constructed will not be contributed unofrmly from each project institution. Currently, it appears that resources to construct this grid might be available from UW, UFL, UTB, and ANL.

Once the basic infrastructure is in place for both production and research, the level of infrastructure effort should diminish somewhat, and involved mainly the installation of new releases of the VDT.

In our process diagram (figure 1), infrastructure deployment is shown keyed to the availability of new toolkit releases; note that it could also be triggered by the availability of new hardware resources that could be integrated into the GriPhyN testbed.

Note that an excellent challenge problem for all experiments is to develop policy-based resource sharing mechanisms that make any under-utilized resources of each experiment’s testbeds and processing farms available to the other experiments in a dynamic, on-demand basis.

Open Issue: we need to clarify exactly how the infrastructure building effort will be related to and coordinated with iVDGL.

1.2 CS Research

This section to be developed…
Research topics include:

Scheduling / planning / execution management

Monitoring, execution profiling, and information recording

Languages and protocols for component integration – eg: VDL DAGman

Fault tolerance and recovery

Replica Location Services

Storage management protocols

1.3 VDT Development

To be supplied.
1.4 Challenge Problem Identification

We propose to conduct all integration of GriPhyN results into the experiments through the vehicle of challenge problems. This phrase is appropriate, in that we view this integration as the most challenging aspect of the entire GriPhyN program. Our partner experiments are large and complex: scientifically, technically, logistically, and organizationally. Challenge problems serve as a focal point of our efforts. They give the plan a concrete grounding, help identify integration points within experiments’ processes, and provide demonstrable results of clear value.

It is not easy for an orthogonal research program to insert its results into the mainstream of independent experiments, with independent schedules and, in many cases, funding and oversight. This is further complicated by the GriPhyN mandate to find common solutions across the experiments which runs counter to the need typically felt by each experiment for precisely tailored custom solutions to their complex software problems. The need for commonality is dictated in part by limited staff resources, but primarily by the need to produce results which can benefit numerous disciplines.

We will apply an “intercept” approach to challenge problem design: we need to determine where the experiments will be when the GriPhyN results are expected to be ready for live usage; otherwise, the results will be irrelevant to the experiments. This will require that we identify integration points (both functionally and in the experiment’s schedule), negotiate the willingness of the experiments to accept and perform integrations, achieve timely deliverables, and track the experiments and their commitments to GriPhyn, so that we can adjust the GriPhyN plans to accommodate any changes that occur in the experiment’s plans.

In designing challenge problems, we need to clearly document the value proposition that the GriPhyN research results would bring to each experiment. In some cases, we will need to make a tradeoff between value to the experiment, difficulty of the challenge, and risk to the experiment for integrating a GriPhyN result. We need to be keenly aware of the quality assurance processes of the experiments if we are to propose integrating changes into mainstream tools upon which the experiments are critically dependent.

(insert value proposition list for virtual data here – good list is in some earlier notes)
As part of the challenge problem identification, we need to develop a plan for how the solution to the problem will (or can) be ultimately integrated back into the experiments standard science processes.

1.5 Challenge problem solution

Demonstration/proof-of-concept phase

Being able to create a compelling demonstration of the application of GriPhyN research is perhaps the single most important phase of the entire program. This is a good thing, because for most of us its also the most exciting and rewarding phase: proving that we can apply our research to the solution of practical problems.

Divide these into GriPhyN features and CP’s. Each CP can implement the aspects of one or more features; typical a set of features.
1.6 Challenge Solution Integration

QA cycles; test processes; resources (people, machines, and data) to execute tests.

Define the transition of support from GriPhyN staff to the staff of the experiment.

1.7 Requirement Differences between Projects

The following factors may dictate differences between the 4 experiments’ plans and require deviations from the common experiment activity template shown above:

Timelines; availability of and development schedules for new tools.
Technology bases (database and data storage technology; languages and compilers; application frameworks)
Object model differences
Science-driven data processing differences
Inter-grid-project dependency differences (eg, ATLAS and CMS influenced by both PPDG and EDG)
Coordination w/ other science projects:
 LIGO-VIRGO
 SDSS-NVO, (LSSC?)

1.8 Coordination Between Grid Projects

accepting /adopting components and contributions from other projects e.g. GDMP from PPDG/EDG. (section suggested by Ruth…)
2 Plan Overview – Project Years 2 through 5

(Refinement of this section to be put on hold until sections 4-8 are further developed)

2.1 Challenge Problems

Challenge problem solutions involve integrating VDT components with application code and tools to yield working solutions that are suitable for live experiment usage. Examples of challenge problems and CP sequences that are created from the GriPhyN feature sets include:

CP-1
Virtualize an application pipeline
CP-2
High speed data transfer to replicate results
CP-3
Automated planning
CP-4
Mixed replication and re-materialization at high speeds
CP-5
Abstract generator functions added to virtualization
CP-6
Jobs submitted from high-level tools/UIs (e.g., GRAPPA)
 CP-7 Higher level Intelligent job management: Transparency, Fault Tolerance, Advanced policy and scheduling? Monitoring and information synthesis (from Ruth)

2.2 CS Research

Plan to be specified.
2.3 VDT Releases

An approximate plan for VDT releases are shown here by project year. Note the each release will be updated via a set of point releases during each project year. The features listed for each year will typically be released one at a time, through a set of point releases.

Y2:
VDT-1
Initial release
Y2:
VDT-2
Includes virtual data catalog structures, VDL and rudimentary centralized planner / executor, +
CAS & RFT; striped GridFTP services
Y3:
VDT-3
Includes managed storage element (NeST-based?); policy based planner;

distributed high-capacity catalogs; virtual data generation semantics; basic fault tolerance;

metadata integration
Y4:
VDT-4
Distributed planner; fuzzy virtual data description mechanisms; advanced fault recovery
Y5:
VDT-5
Enhanced and stable base for use by other sciences (final project deliverable)

2.4 Testbed Development

To be specified.
Project Year 2: October 1, 2001 to September 30, 2002

2.5 Overall Goals

Our primary goals in Year 2 are:

· Release “Data Grid Architecture” and “Representing Virtual Data” document revisions that resolve open issues in catalog structure, planner architecture, monitoring and measurement, policy implementations, and the languages for job and data description techniques that will be used throughout the data grid.

· Release VDT 1.0 as a base toolkit from existing components.

· Release VDT 2.0 with a solid set of virtual data software, addressing materialization transparency.

· Achieve solid results from research projects established in the first year, with plans for transitioning these results into VDT 3.0.

· Establish a GriPhyN testbed in each of the 4 experiments, and maintain it with successive VDT deliveries. In Year 2, there will be a larger focus on infrastructure identification and construction.

· In at least two experiments, do production computing using VDT 1.0, using resources in multiple sites (at least four sites where possible). (CMS simulation production is one candidate for this).

· Identify and solve Year 2 challenge problem(s)

· Create Data & Process Map and Dictionary / Use Case Digest for all four experiments: describes in detail the nature of jobs, data, and requests that each experiment will generate, with quantifications of scale, frequency, importance to the experiment, and feasibility of managing that data and/or process using GriPhyN technology.

· To the extent possible, develop a roadmap for challenge problems for project years 3-5.

· Create a GriPhyN Result Integration Plan (GRIP) for each experiment – describes the technical and project management mechanisms that need to be achieved in order to achieve successful result integration.

· Achieve solid results from the Education and Outreach program: Facilities, Programs, Seminars, Papers, Activities

· Create a VDT Canonical Application that captures key elements of virtual data concepts, and utilize that application to facilitate more rapid, parallel research.

· Align research plans with the concrete goals of the GriPhyN project, and address the highest priority research goals: ojb description languages; scheduling and planning; distributed catalog architecture.

Year 2 challenge problem candidates are:

· ATLAS: Virtualization of test beam capture and analysis process. Ideally, virtualize a simulation process that uses the new Athena framework. A more clear goal might be to look at some of the emerging specifications for year 2002 data challenges (DC1?) and to take snapshots of those DC’s to use as a base for GriPhyN technology application.

· CMS: Virtualization of Monte Carlo production in the MOP high-throughput framework. Actual production, at least at Fermilab, could use the virtualized MOP framework. Other sites will be able to both replicate and materialize data products produced under Fermilab control. Sites will be able to replicate early initial files in the simulation pipeline and materialize the final files in the pipeline. Some amount of intelligence for dealing with Objectivity object sharing of simulation results will be required to place this work into production. Late in the project year, an automated planner could make decisions about where to execute simulation runs. CONTINGENCY: there is a possibility that after further analysis, a better challenge problem will be identified. If this happens, we will need to consider changing the plan to switch to the alternative challenge.

· LIGO: capture in a sentence or two.
Consider using Grid tools (GridFTP, replica catalog) for LIGO-VIRGO data exchange. Note that this might be too difficult to arrange, given the number of organizations involved and the organizational boundaries.
· SDSS: TBD: The previous release of this document mentioned galaxy cluster finding application as a challenge problem. Support for public data access has also been mentioned – does this include application software execution, and, if so, does it call for a datagrid-based solution?
2.6 Project Year 2 Milestone Summary By Quarter

Y2 Q1: Oct-Dec 2001:

VDT 1.0 Release
CMS Virtual Data Demo
LIGO Virtual Data Demo
SDSS Challenge Problem Plan
ATLAS Challenge Problem Plan
ATLAS testbed upgraded to VDT 1.0
CMS testbed upgraded to VDT 1.0

Y2 Q2: Jan-Mar 2002:

VDT 2.0 Release
LIGO-CMS virtual data catalog unification
VDT virtual catalog component development
Virtual Data Catalog integration into CMS simulation production framework (MOP)
SDSS Grid testbed deployed (using VT 1.0)

Y2 Q3: Apr-Jun 2002:

CMS MOP component
CMS starts identification and design of Challenge Problem 3 (or 4), moving from the simulation process to reconstruction and analysis processes.

Y2 Q4: Jul-Sep 2002:

CMS request planning demo
ATLAS request planning demo

2.7 Research Objectives

2.7.1 Overall

[UC-Yong] Define "canonical virtual data application" for use in development activities
[UC,ISI] (Overall) In collaboration with application scientists, complete Data Grid Reference Architecture v2 [Draft by July 15, final version following review by September 1].

2.7.2 Virtual data

Develop techniques for representing data transformations, and integrate these techniques into the information model. Develop methods and catalogs for categorizing and curating code elements. Develop information structures for identifying the control parameters of executable programs in a uniform manner that is amenable to automation of execution plans.
Extend catalog services to support distributed and replicated catalogs. Develop techniques for failure detection and fail-over in the situation of catalog failure.

[UC,ISI,UW] Complete design of first version of virtual data catalog.

[UC,ISI] Develop basic information model to represent data elements, the relationships between different data types and the characteristics of data elements. Develop protocols for storing, discovering and retrieving these models. Design and develop tools for creating, accessing and manipulating these models by interactive tools, and planning and scheduling tools.

Develop tools for managing catalogs.

[?] Object / Relational issues: how to deal with data in databases instead of files.

[UCB] relationshiop of db query planning to grid query planning

Develop techniques for representing data transformations, and integrate these techniques into the information model. Develop methods and catalogs for categorizing and curating code elements.
[UC] Extend catalog services to support distributed and replicated catalogs. Develop techniques for failure detection and fail-over in the situation of catalog failure.

Koen:...add something about collaborating on the definition of a common job description language based on DAGs? Is this a CS goal?

Koen:...add monitoring?

Koen:...need to add something that integrates the experiments more with the scheduling CS research in GriPhyN? What are their plans anyway? I would love to see a CS-written grid scheduler take a location-independent DAG representing a CMS production job and map it to locations after which it is executed, however this is likely to be too ambitious for year 2?

2.7.3 Storage Management

Define NeST/Globus/DRM integration with the goal of producing a managed storage element architecture.

Design how data can be striped for faster transfer. This will be essential to achieving the scalability goals that were described in the proposal (“peta-scale”).

Design how data can be clustered, and events re-clustered and moved around for fast transfer. (Eg. Move 10M events (= 10 TB) from one Objy fed to another at ultra high speeds. Do same problem using both CMS and Objy and ATLAS/Athena. Can we saturate a 2.5GB link doing this? (This by the way would make a great SC challenge problem…)

[UW, UC] Develop plan for GridFTP/NeST integration, focusing in particular on space management.

2.7.4 Request Planning

[UW] Complete work enhancing the ClassAd language to support events and triggers.

[UW] Develop generic models for representing execution plans. Define a set of API and tools for constructing, traversing, and manipulating plan data structures. Develop protocols and formats for storing and exchanging execution plans

[UW] Develop and evaluate a task control language capable of capturing the requirements, preferences and dependencies of a PVDG request. Implement prototype of an interpreter to a basic subset of the language. A key aspect of this language is that it must be capable of representing data derivation dependencies, so that the virtual data catalog can be populated and maintained through the interpretation of this language.

[UW] Enhance the "Gang Matching" capabilities of the ClassAd language and add these enhancements to the run-time support library.

[UW] Develop a protocol for information exchange between the execution and planning agents.

[NWU] item – Work on performance expectation modeling - Prophesy

[UCB] item – DB query stuff

Develop generic models for representing execution plans. Define a set of API and tools for constructing, traversing, and manipulating plan data structures. Develop protocols and formats for storing and exchanging execution plans.

Develop and evaluate a task control language capable of capturing the requirements, preferences and dependencies of a PVDG request. Implement prototype of an interpreter to a basic subset of the language.

Develop uniform policy representation for code, data and resource access. Develop a set of global and local policy scenarios that reflect the requirements of the user communities of the four physics experiments.

Develop simple optimization heuristics. Initial thrust will be on data movement only and focus on the use of alternative, or branching plans to compensate for both resource failure and changes in resource performance. Implement planning heuristics in prototype planning module. Evaluate performance of alternatives with simulation and model based studies, as well as execution on GriPhyn testbed.

Develop an execution agent capable of receiving a simple plan form the planner and interacting with the PVDG services and resources in order to carryout the plan. Develop a protocol for the exchange of co-allocation information (availability, policy, statistics, …) between the planner and the co-allocation agents. Develop a basic portable and configurable event and trigger manager. Develop a framework for gathering statistics on the resource consumption profile of completed and in-progress requests and the availability of resources.

[UW] Develop simple optimization heuristics. Initial thrust will be on data movement only and focus on the use of alternative, or branching plans to compensate for both resource failure and changes in resource performance. Implement planning heuristics in prototype planning module. Evaluate performance of alternatives with simulation and model based studies, as well as execution on GriPhyn testbed.

[UC - Kavitha] (We place simulation under planning because it can be used as an aid to developing better plans and to understanding the execution process better.) Complete prototype of data grid simulator, with documentation. Initial paper evaluating alternative data replication strategies.

Design a basic planning API, to facilitate access to remote planning services from high-level tools without dependence on underlying planning heuristics or planning methods. Define and implement planning toolkit, providing access to catalogs as well as remote planning servers.
Extend planning toolkit to incorporate global and local policy considerations into policy construction. Initial focus will be on the application of matchmaking as a means method for the introduction of policy.
Extend optimization heuristics to include computational resources and data transformations (i.e., code). Evaluate the use of alternative plans to meet optimization goals.
2.7.5 Request Execution

[NWU] item – Data collection and logging mechanism (object/event reference traces; Node execution traces (CPU load; net load; disk load); actual time vs predicted time. Job nature: cpu, I/O, network resources used.

 [ANL-Jenny?] (Request execution) Develop a set of global and local policy scenarios that reflect the requirements of the user communities of the four physics experiments. The nature of these policies should specify what user and project jobs and data can utilize what storage, network, and computation resources, for what purposes, on what basis, what priority, what limits, etc. We need to understand how the policy model can be implemented, how the model affects and fits into the design of the CAS, and how it interacts with planning/scheduling decisions.

[ISI:Laura; UC:Von, ?] (Request execution) Develop uniform policy representation for code, data and resource access.

From Koen: ...need to add something that integrates the experiments more with the scheduling CS research in GriPhyN? What are their plans anyway? I would love to see a CS-written grid scheduler take a location-independent DAG representing a CMS production job and map it to locations after which it is executed, however this is likely to be too ambitious for year 2?

Enhance the "Gang Matching" capabilities of the ClassAd language and add these enhancements to the run-time support library.

Explore ways to enhance the ClassAd language to support events and triggers.

Resolve architectural differences between ClassAds and GRAM RSL.
Develop a protocol for information exchange between the execution and planning agents.
2.7.6 Fault tolerance

[UC: Anda, Matei; ISI: Ann, Ewa] Examine the issues of "consistency" in the data replication services and virtual data with respect to: (1) replicated metadata; (2) replicated data (being a grid file service, there is less trust one can place in repositories); (3) dependency tracking - being able to trace the effects of an error introduced by an application or filter.

[UCSD: Keith?] (Fault tolerance) Produce a paper detailing fault-tolerance issues in GriPhyN. Jenny Schopf will be involved, also perhaps Miron Livny. This model could/should deal with issues like job failure detection, cleanup, and restart. How failures should affect the planner and executor stages; how fault recovery should interact with the virtual data catalog.

[UCSD: Keith?] (Fault tolerance) Define (and implement) fault tolerance model for replica management utilities.

2.8 Virtual Data Toolkit Development

VDT-1 (Basic Grid Services) provides an initial set of grid enabling services and tools, including security, information, metadata, CPU scheduling, and data transport. VDT-1 will support efficient operation on O(10 TB) datasets, O(100) CPUs, and O(100 MB/s) wide area networks and will build extensively on existing technology.

VDT 1.0 will provide three distinct software packages:

· Server code to be installed on a data grid node: (GSI, MDS, GRAM, GridFTP, Condor)

· Client side programs and libraries for use in client scripts and applications: DAGMan, Condor-G; client-side MDS, GRAM (?), GridFTP; replica catalog, replica management

· Standalone services: replica catalog

VDT-1 (to be delivered by end of November 2001), consists of:

Instructions or script for installing a specific recent Condor release (including Condor-G and DAGMan). The Condor part will be a "standard" release prepared and supported by the Condor Team. The DAGMan version may be a "non-standard" release that meets the special needs of GriPhyN and is maintained and supported by the VDT team.

Instructions or script for installing a specific Globus 2.0-based release (including replica catalog and GridFTP). The Globus (including GridFTP) part will be a "standard" release prepared and supported by the Globus Team. The Replica Catalog package within this release may be a "non-standard" release that meets the special needs of GriPhyN and is maintained and supported by the VDT team.

Instructions or script for installing GDMP based on gridftp but not requiring Objectivity. The VDT team will maintain and support this version if it requires changes for data grid use that are not yet available in the standard release.

Configuration scripts for replica catalog, GridFTP, GDMP, and MDS that are specific to the GriPhyn/iVDGL test grid.

Specific milestones:

Definition of VDT v1.0 components and negotiation of schedule: July 20
Creation of VDT campaign plan to obtain DSL resources (if needed).
Packaging and documentation of server-side functions (provided by GiB + GridFTP): Aug 1
Packaging and documentation of replica catalog server installation: Sep 1
Establish VDT support system based on the resources and capabilities of the GRIDS Center: Sep 1
Release of VDT 1.0: Sep 1
Dependency: need stable Globus Toolkit 2.0 (GT2)

VDT-2 (Centralized Virtual Data Services) (to be delivered by Feb 1, 2002)
VDT 2.0 provides a first set of virtual data services and tools, including support for a centralized virtual data catalog, centralized request estimation, centralized request planning, network caching, and a simple suite of distributed execution mechanisms. Representation and exchange of local policies will be supported for network caches.

VDT 2.0 will add: CAS; GDMP support for Objectivity; RFT;
Initial Metadata catalog
Integration with Globus Replica Catalog 2.0
Virtual Data Catalog and Virtual Data Language interpreter
Initial (rudimentary) support for performance monitoring and logging
Condor enhancements: identify

VDT 2.1, etc: The remainder of the releases in project year 2 will consist of maintenance releases and improvements to the catalog data structures and the VDML virtual data manipulation language.

2.9 ATLAS

2.9.1 Goals

· Establish an ATLAS testbed linking resources with basic Grid services at N sites. Purpose: obtain expertise; provide a basis for experimental work.

· Conduct preliminary integration of the Athena analysis framework with initial virtual data services (replication only) and demonstrate effective operation on a testbed data challenge problem. Purpose: evaluate effectiveness of replica catalog tools in ATLAS context; obtain expertise.

· Complete design documents detailing ATLAS requirements for virtual data technologies. (These will be part of the Challenge Problem descriptions)

2.9.2 People Involved

Randy Bramley and IU Active Notebook researchers (RB)
Rob Gardner (RG)
David Malon (DM)
Ed May (EM)
Jennifer Schopf and ANL/DSL students (JS)
Shava Smallen (SS)
Alex Undrus (AU)
Valerie Taylor and NU monitoring group (VT)
Saul Youssef (SY)

This list is from the 8/2-3 UC meeting, but may be to broad to manage under GriPhyN.
2.9.3 Application analysis

[IU,ANL,NWU] Complete Version 1 of ATLAS Virtual Data Requirements document

Develop several revisions of :

Data and Application Map
Data dictionary
Tool dictionary
Data requirements spreadsheet

2.9.4 Infrastructure development and deployment

[?] Complete a document specifying in detail the testbed configuration, and which projects and people are responsible for creating it.

[IU] Build basic services for 1-2 prototype Tier 2 centers. [Need more info: what are “basic services”? What are the prototype centers? How does this relate to proposed ATLAS testbed? Is the AT a GriPhyN, PPDG, or ATLAS activity?]
[IU, ??] Deploy VDT services on a small number of machines at a small number of sites, identifying a skilled person at each site who is responsible for making this happen.

[IU] Develop a Condor-G interface to the ATLAS testbed

Bring all development nodes up to the level of VDT 1.0

Install VDT 2.0 on all development nodes

Bring all nodes for Challenge Problem production up to VDT 2.0

Implement Grid testbed between BNL (tier 1), ANL, LBNL(tier 2) prototype centers.

Items below are from the 8/2-3 UC Meeting. Tasks in this section that are not directly (or immediately) needed by the GriPhyN research plan should, potentially, be left to ATLAS to manage outside of GriPhyN.
ATLAS-capable testbed subset (ANL, BU, BNL)

GridFTP must be installed on testbed nodes (EM?)

“pacman –install atlas” (SY)

mds-2 installation (JS)

objectivity installed (EM?, DM?)

GRIPE for accounts (RG)

Add in Indiana to testbed

Full testbed (add UTA, NERSC, UMich, OU) with install above?

GDMP on Testbed nodes

GRAPPA using Condor-G (GRAM) submission [RB]

Functional 3 node testbed – ANL, BNL, BU [EM, JS, SY]

DBYA Using GridFTP [TW]

DBYA running on 2 testbed nodes
[TW]

Grappa on 3 node testbed (running on one site, can submit a grappa job from any of the testbed nodes) [RB]

Check completion date estimate for setting up a grappa submission and then have the output files registered through DBYA (shared naming convention) [JS]

Register data outputs with Globus replica catalog [TW]

Moving data to an archival place [TW]

Application performance data logged [VT]

Check-in meeting in Boston (10/12)

GriPhyN All-hands meeting in CA (10/15)

Grappa and Athena on 1 node of testbed [SS, RB]

Submit jobs using condor-g/dagman (maybe through GRAPPA) [RB]

Monitoring and logging messages related to file usage, part of GRAPPA [VT]

Test gridftp on sites

Install Objectivity at BU

2.9.5 Challenge-problem Identification

Create ATLAS Challenge Problem 4-year roadmap

Challenge Problem 1 description document: software to be produced, experiments to be conducted

Potential challenge problems are:

CP1: Testing of basic file replication, transport, and virtual data tracking using 500 GB testbeam data sets. (Is this the Tilecal testbeam data that Ed May was involved with?)
CP2: Implementation of PPDG/GriPhyN tools into ATHENA (Atlas analysis framework) for Monte Carlo simulation.
CP3: Using multi-site replication and caching services for test beam data analysis and simulation at scale of 2-10TB.

A challenge problem sketch that was created at the 8/2-3 UC Meeting was:

 Have different generator sets, run through simulation, generate reconstruction, run it through analysis
 Monitor performance, harvest information
 Use replica catalog and replica selection
 Data resident at tier 1, any of the tier 2’s need to be able to access it through the tier 2’s

2.9.6 Challenge-problem Solution Development

(Requirement: needs VDT 2.0)

[IU] Develop and demonstrate use of Condor-G interface to the ATLAS testbed and for computationally intensive analysis of ATLAS data, using ATLAS testbed.

[IU] Complete testing of basic file replication and transport using 500 GB testbeam data sets. (Are these the Tile Calorimeter test beam datasets that Ed May is working on?)
[IU] Connect the Athena analysis framework to a set of prototype virtual data services. Begin with the Globus replica catalog service; incorporate Athena EventSelector service to replica catalog (data reading); add Athena Replica catalog update service (data upload).

2.9.7 Challenge-problem Solution Integration

Document the solution

Install and integrate the solution

Package the solution and transition its support to the experiment

 [IU?] What about GRAPPA work? -> Move to research section? Becomes part of a challenge problem?

GRAPPA is a clear part of IU’s Phys/CS goals. Need to connect the two with VD tracking and VDL.

Then try Grappa in other projects.
2.9.8 Dependencies

TBD:
· ATLAS Challenge Problems may require VDT 2.0

2.10 CMS

2.10.1 Goals

Y1: Build basic services and 1-2 prototype Tier 2 centers.
Y1: Complete High Level Trigger milestones and perform studies with ORCA, the CMS object-oriented reconstruction and analysis software

Y2: Initial Grid system working with Tier 1 center.

Work with the Condor team to develop DAGMan further, in particular its expressiveness in terms of error recovery, with the goal of applying it to the CMS production system. [UF taking lead]

Work further on exploring the impact of end-user physics analysis workloads on the grid system, by prototyping distributed end user analysis tools, demos, and pilot facilities which allow end-user physicists without specific grid training to accomplish basic physics data manipulation tasks using the grid. Show user collection creation and transport over the grid, driven by an easy-to-understand grid interface. [CIT talking lead]

Show the utility of Grid technology as a basis for enhancing the robustness and reproducibility of distributed computing, by integrating grid components more deeply into the CMS production software, with the results of the integration being used either in real production or in challenge demos. [UF taking lead, heavy interaction with PPDG, US production, FNAL]

File replication service.

Multi-site cached file service

2.10.2 People Involved

James Amundson
Lothar Baurdick
Rick Cavanaugh
Greg Graham
Koen Holtman
Rajesh Rajamar
Jorge Rodriquez

2.10.3 Application analysis

Develop several revisions of :

Data and Application Map
Data dictionary
Tool dictionary
Data requirements spreadsheet

Work with the Globus team and the EU DataGrid to develop a set of long-term scalability requirements for the file replica catalog service.

Do further work on the issue of reconciling the object and object-collection nature of the CMS data model with the file nature of the low-level data grid services.

Actively participate in the development of a Grid architecture by reviewing architectural documents created in the Grid projects, and by communicating architectural lessons learned in CMS production to the Grid projects.

2.10.4 Infrastructure development and deployment

[CIT, UF, ??] Deploy VDT services on a small number of machines at a small number of sites, identifying a skilled person at each site who is responsible for making this happen.

[CIT,UF] Build basic services at 1-2 prototype Tier 2 centers. [Need more info: what are “basic services”? What are the prototype centers? How does this relate to testbed?]
2.10.5 Challenge-problem Identification

Create CMS Challenge Problem 4-year roadmap

Challenge Problem 1 description document: software to be produced, experiments to be conducted

Potential challenge problems are:

Demonstrate the robustness gains of the use of DAGMan in a realistic CMS production setup by doing a challenge demo which includes at least 3 sites. In this demo, certain times system crashes will be injected to show the capability of the system to auto-recover without human intervention.

Demonstrate virtual location of data at a file level in a realistic CMS production setup by doing a challenge demo which includes at least 3 sites.

The CMS challenge problem for this year is to integrate virtual data and request planning concepts into the CMS Monte Carlo Production system (MOP).

Request estimation?

Request estimates stored in VDC?

[CIT,UF] Complete High Level Trigger milestones and perform studies with ORCA, the CMS object-oriented reconstruction and analysis software. [More details! How does this use VDT services? Need to make clear how this relates to GriPhyN.] MW: is this software simulation of the hardware HLT? If so, how does it relate to the MC production that’s part of MOP? Same, similar, or very different?

Show how the CMS MOP GriPhyN app could be retrofitted to ATLAS and other experiments.

Analyze the parts of MOP that perform griphyn-like operations (for example – figuring out what sequence of operations needs to be performed.

Segregate MOP login into cms-specific logic and general batch job execution planning logic

Augment MOP with virtual data tracking

Embed MOP jobstep execution logic into the VDC

See if virtual data generator functions can be used in MOP

See if execution sites could be picked with some degree of automation in MOP – make MOP requests execution-site independent.

Augment MOP with object-level virtual data tracking – track a set of objects that came from one speciic execution run, and trace its data derivation from files to objects. (Note that for this, we are counting on some level of object clustering and independence within the Objy database. Its an open issue as to whether or not this exists, and how complex and fast the data removal and insertion process can be made).

2.10.6 Challenge-problem Solution Development

2.10.7 Dependencies

Ability and willingness for CMS to let us use MOP as a challenge problem and bring modified versions of it into production.

Requires VDT 2.0

 (Koen)...MOP, PPDG, testbeds

(Koen)...could construct some dependencies here based on CMS goals above...

2.11 LIGO

Goals:

The challenge problem for this year is to grid-enable the scientific analysis of pulsar-search application codes.

Integration with HPSS.

Unification of the catalog schemes used by CMS and LIGO in Y2Q1 – basing it on a common VDT 2.0 release.

Establishment of a test grid spanning CIT, UW-Madison, and UW-Milwaukee.

Integration of XSIL and LDAS concepts into the VDT; Grid-enabling of LDAS

LIGO goals during Year 1, and some of Year 2, are to:

· Advance virtual data concepts by defining a virtual data language and architecture. Purpose: explore virtual data concepts, develop understanding of LIGO VDT requirements.

· Implement a LigoVista Web display. Purpose: why?
· Apply replication concepts by developing a real-time international mirror, and a fault-tolerance replica at UW-Mil. Purpose: develop expertise, develop software.

· Explore scheduling issues by performing a large parallel pulsar search. Purpose: evaluate software.

Specific milestones are as follows:

L.1.a. [CIT] Q1/01 - Q1/02: Extract code from LDAS environment and "grid-enable" it. [Jul 1] [Done?]
L.1.b. [CIT,USC,UW-Mil] Complete a document detailing the work to be finished during Year 1, indicating the testbed configuration, software to be produced, experiments to be conducted [Aug 1].

L.1.c. [CIT,UW-Mil] Build basic services at 1-2 prototype Tier 2 centers. [Need more info: what are “basic services”? What are the prototype centers? How does this relate to testbed?]
L.1.d. [CIT] Implement simple filters and math transformations. [Need details.] [Oct 1]

L.1.e. [CIT] Define Web service and prototype without data. [Need details.] [Oct 1]
L.1.f. [CIT] Implement replication LIGO-VIRGO with GridFTP. Document performance. [Oct 1]

L.1.g. [CIT] Design interface for reliable mirroring, implement GridFTP at CACR. [Oct 1]

L.1.h. [CIT] Start work on implementing checksum/backup with GridFTP

Known dependencies:

· Note that the “implement checksum/backup with GridFTP”, scheduled for Q1/02, may be done by ANL group?
· More? Not very VDT-specific??
Milestones:

Work on LIGO continues with work started in the last period. Specific milestones are as follows:

L.2.a. [CIT] Use LIGO virtual data to drive display. [April 1, 2002]

L.2.b. [CIT] Complement implementation of checksum/backup with GridFTP [April 1, 2002]

L.2.c. [CIT] Implement replica catalog and conduct full-scale replication [July 1, 2002].

L.2.d. [CIT] Start work on runs and validation of pulsar search code with Condor farms.

L.2.e. [CIT] Continue runs and code validation Condor farms [Jan 1, 2002]

L.2.f. [CIT] Full-scale search with LIGO science data. [Apr 1, 2002]

??? also: Perform LIGO-VIRGO data transfer using grid tools?

Dependencies:

Y1: LIGO: Develop a cataloging approach for data access methods and data location (metadata definition, design).

Y1: Develop an access and use model for LIGO data across the GriPhyN system.

Y2: LIGO: Demonstrate efficient access to LIGO data via GriPhyN caches.

2.12 SDSS

Milestones:

Cluster-finding application as demonstration of grid capabilities
Detail plans here

Goals:

· Understand current pipeline (for future projects?) Analysis to be done by CS staff?

Milestones:

· Install VDT toolkit on …

Grid-enabled galaxy cluster finding code. (Need to define what Grid enabled means… Catalogs? Job defns? GRAM? Etc?)
· Test replication of SDSS databases using existing grid infrastructure.

· Install first generation hardware.

· Integrate with SDSS early data release.

· Install second generation iVDGL software.

· Tests of code migration to other iVDGL sites.

· Grid-enable gravitational lensing application code? (see Jim Aniss’s paper?)

· Integrate first SDSS data release.

Dependencies: TBD: We need to say what is expected, who will produce it, what we do if it doesn’t arrive.
Y1: SDSS: Build a prototype distributed analysis system
Y2: SDSS: Bring the system into production, open it to project

Education and Outreach (to be addressed in detail in next revision; see Manuela’s mail)

Specific milestones are as follows:

O.1.a. [UTB] Install VDT software on UTB cluster (Oct 1).

O.1.b. More …: Facilities, Programs, Seminars, Papers, Activities, Internships/Co-Ops
Q4-FY00: Begin search for E/O coordinator
 Begin benchmarking tests for UTB linux cluster

Q1-FY01: Search for E/O coordinator continues

 Benchmarking continues; Order equipment

 Search completed (M. Campanelli hired)

Q2-FY01: Begin construction of UTB linux cluster

E/O coordinator makes contacts with European data grid projects, other E/O projects (EOT-PACI, QuarkNet, ThinkQuest), and possible tier3 centers for the iVDGL proposal

Construction of UTB cluster completed

Q3-FY01: Begin installing condor, globus on UTB cluster

Q4-FY01: E/O coordinator starts at UTB

 Prepare and submit proposal for REU supplement for iVDGL (if

 funded)

 Continue grid-enabling UTB cluster

 Design simple (passive) web-page for GriPhyN E/O activities

From Paul: 1) Bring to a wider audience through taks, seminars 2) website for working w/ virtual data at the HS level 3) On web: what is Vdata for a layperson; animation.
From Manueallas mail:

some of our Education/Outreach
(E/O) goals for 2001:

1) Since the E/O program of the GriPhyN and iVDGL projects is designed

to expose faculty and students at other U.S. universities and

institutions to grid-related research, it is extremely important that

all GriPhyN and iVDGL senior personnel be committed to lecturing and

mentoring activities at other institutions. Thus, please let me know

if you have recently given talks about the grid and where you've given

them (minority institutions preferred). If you have not yet given a

talk then I would like to urge you to start now! Thanks.

2) Our second near term goal is to give undergraduate students the

opportunity to participate in grid-related research at Griphyn/iVDGL

institutions by taking advantage of the NSF Research Experience for

Undergraduate (REU) Program. We are going to submit a proposal for

an REU supplement later this fall, but in order to get that started,

I need to know which institutions/faculty are willing to mentor

students during the summer months as part of this program. Please

reply to Manuela Campanelli <manuela@aei-potsdam.mpg.de> and/or Joe Romano

<jromano@utb1.utb.edu> as soon as possible sending along a list of

possible research projects.

Hi All,
 I am building the E/O web pages and would like to provide links to

all your `Educational and Outreach' talks, tutorials etc, in a pdf form

possibly (ppt are OK too). Please, send me <manuela@aei-potsdam.mpg.de>

the above material and/or links as soon as possible.

2.13 Coordination

We will hold the following meetings:

· All-hands meeting, LA, Oct 15-17, 2001.

· CS research meeting(s): to be defined.

· Application/VDT integration meeting: TBD.

· Jan 2002 at UF meeting?

· All-hands meeting, Chicago, April 8-10, 2002.

Year 3: October 1, 2002 to September 30, 2003

2.14 Overall Goals

2.15 Research

Year 3

Virtual data: Extend information model to support multiple versions of both data dependencies and data transformation components. Also extend catalogs to support interfaces to request planning and request execution modules. Develop distributed algorithms for discovery of information across distributed virtual data catalogs.

Request Planning: Extend request planning APIs and toolkit to support incremental plan generation and dynamic replanning. (This extended interface will be used to couple the request planner with the request execution services.) Extend the range of planning algorithms to incorporate alternative optimization heuristics, for example including factors such cost. Investigate the hierarchal and distributed planning algorithms and evaluate their impact on scalability, reliability, and the ability to share plans across multiple, independent requests.
Request Execution: Develop a fault-tolerant version of the execution agent.

Develop a basic recoverable co-allocation agent. The agent will support basic reservation services.

Add fault-tolerance to the manager and reliability to basic propagation protocols.

Develop a fault-tolerant and persistent repository of PVDG statistics

2.16 Virtual Data Toolkit Development

VDT-3 (Distributed Virtual Data Services) supports decentralized and fault tolerant execution and management of virtual data grid operation, via integration of distributed execution mechanisms able to select alternatives in the event of faults, agent-based estimation and monitoring mechanisms, and iterative request planning methods. This version will support O(100) TB datasets, O(10 TB) network caches, O(1000) CPUs, and O(400 MB/s) networks.

2.17 ATLAS

ATLAS: Implement Grid testbed between CERN (tier 0), BNL(tier 1), ANL, LBNL, BU, IA(tier 2)

Begin multi-site distributed simulations to generate 100TB Monte Carlo for Physics studies and Mock Data Challenges.

2.18 CMS

CMS: Second set of Tier 2 centers.

CMS data challenges.

Software and Computing Technical Design Report (TDR)

2.19 LIGO

LIGO: Develop a robust distributed computing model for using GriPhyN to process continuous wave gravitational wave searches across a grid of computing resources.

2.20 SDSS

Begin integration of National Virtual Observatory infrastructure with iVDGL technology. Large scale production runs on core science using half SDSS dataset. Update to second generation hardware. Integrate third SDSS data release.

SDSS: Design prototype distributed public analysis system, full production use internally

2.21 Education and Outreach

Q1-FY02: Begin extension of web-interface to SDSS data to include concept of virtual data

Q2-FY02: Continue work on SDSS web-interface

3 Year 4: October 1, 2003 to September 30, 2004

3.1 Overall Goals

3.2 Virtual Data Toolkit Development

VDT-4 (Scalable Virtual Data Services) scales virtual data grid operation to realistic magnitudes, supporting applications involving widely distributed O(1 PB) datasets, O(100 TB) network caches, and O(10,000) CPUs.

3.3 Research

Year 4

Virtual data: Augment the information model to include information about alternative implementation of data transforms with alternative performance characteristics. Develop methods for collecting historical performance information and incorporate into the catalogs.

Request Planning: Develop algorithms that incorporate policy constraints into request planning process. These algorithms just examine the constraints applied to each element of the request being planned, and respect the constraints for each local resource as well as for the entire request, with respect to global policies. Initial focus will be on static, non-incremental planning.
Request Execution: Develop a distributed (mobile) version of the execution agent and enhance the ability of the agent to adapt to changes in the availability, location and capabilities of the grid resources. Interface co-allocation agents with planning agents. Develop reliable, efficient and secure event propagation and notification protocols. Develop and implement dynamic and incremental execution algorithms

3.4 ATLAS

ATLAS: Mock Data Challenge 2: Distributed Data Analysis Using 00TB Monte Carlo sample based on ATHENA Framework using GriPhyN tools between CERN/BNL/ANL/LBNL/UM/BU/IU testbed grid.

3.5 CMS

CMS: Tier 2 centers at last set of sites.

5%-scale data challenge.

Physics TDR; production Data Grid test.

3.6 LIGO

[CIT] Full-scale search with LIGO science data. [Apr 1]

LIGO: Develop query tools to search (mine) event databases derived from search algorithms which pre-process LIGO data.

3.7 SDSS

Implement grid-enabled tools for statistical calculations on large scale structure. Begin full scale tests with additional iVDGL sites. Integrate second SDSS data release.

SDSS: Start using public system, monitor usage

3.8 Coordination

We will hold the following meetings:

· CS research meeting(s): to be defined.

· Application/VDT integration meeting: TBD.

· All-hands meeting, Chicago, April ??-??, 2003.

4 Year 5: October 1, 2004 to September 30, 2005

4.1 Overall Goals

4.2 Virtual Data Toolkit

VDT-5 (Enhanced Services) enhances VDT functionality and performance as a result of application experiences.

4.3 Research

Virtual data: Augment information model to incorporate local and global policy constraints.

Request Planning: Extend policy sensitive optimization algorithms to incorporate incremental planning. Develop hybrid strategies that combine static and incremental planning. Evaluate performance of new planning algorithms both in simulations and on testbed.

Request Execution: Evaluate the performance of different execution policies. Evaluate co-allocation and reservation policies. Add real-time services to the event and trigger system. Evaluate impact of incremental and dynamic planning on request execution.
4.4 ATLAS

ATLAS: Build production quality offline distributed data analysis for ATLAS Grid using GriPhyN tools. Use in Mock Data Challenge 3.

4.5 CMS

CMS: Production-quality Grid system.
20% production CMS mock data challenge.
4.6 LIGO

LIGO: Optimization of Grid-based techniques to process time series data to develop event databases.

4.7 SDSS

Large scale production runs on core science using full SDSS dataset. Conduct initial joint SDSS/NVO analyses. Integrate final SDSS data release.

SDSS: Full production mode of public analysis system

4.8 Coordination

We will hold the following meetings:

· CS research meeting(s): to be defined.

· Application/VDT integration meeting: TBD.

· All-hands meeting, Chicago, April ??-??, 2004.

Plan To Dos

Create a list of specific research projects and their relevances and plan for integrating their results into the overall G plan.

Which projects need HPSS access? How many phases (proto vs production)? How to integrate into the plan? How related to PPDG and the ASCI DRM work? (Who was doing the basic integration of GSI-based HPSS first?)

Define what system resources each organization needs to meet the plan, I particular, the test grirds that each exp wil need to set up: details of who what where when why.

List deliverables that GriPhyN will draw from SciDAC Security and Mware

Open Issues

How much of each project’s infrastructure do we really want to get into planning here? I propose that we do the minimal infrastructure effort that we need in order to achieve our goals. I would saythat our focus should be on the research and challenge activities – those are the things that seem to be the essence of GriPhyN.

How to coordinate the establishment of test grids with other projects: PPDG, EDG, etc? (Mainly PPDG). Whose resources? Who sets up the grids? How does resource allocation get divvied up (CPU time, disk space, netwk bw?)

Where will petascale performance come from? The proposal clearly identified this as a goal, but we still need to identify the work tasks that are needed to enable petascale computing. The sources of these technologies need to be clearly identified, especially in the context of the VDT. When we talk about, say, O(10TB), O(1PB), we need to state how this will be done. In HEP, a PB is 1G events. We just need to state how we will make 1PB of disk and tape interact and be shared. Where will n PBs exist in the multi-tiered grid?

What is Virtual Sky Project and how does it fit into the GP project? (Was this the outreach project in Joe’s task list?)

What project plan items come out of the “Cost Sharing” resources?

How do we show in the project plan how research “scouts ahead” of VDT and challenge problems to create solutions?

Hard Issues

Scheduling: degrees of freedom; policy interaction. How/where in this plan do we want to clarify our goals in this area.

From email w Ruth:

	To: Ruth <ruth@fnal.gov>, wilde@mcs.anl.gov, LATBauerdick <bauerdick@fnal.gov>

Subject: Re: GriPhyN Planning document

Cc: Ian Foster <foster@mcs.anl.gov>, Paul Avery <avery@phys.ufl.edu>

Ruth, thanks for the review and comments. Ive inserted some responses below. Please feel free to circulate as needed, including to all@griphyn.org.

Regards,

Mike

At 06:05 AM 10/9/2001 -0500, Ruth wrote:

Hi Mike and Lothar
I attach some comments on the GriPhyN planning document I received - I
apologise if there is an updated version that makes these irrelevant/wrong.

First let me say that I think the document is very valuable.

 CP-6 How about Higher level Intelligent job management

Transparency, Fault Tolerance, Advanced policy and scheduling? Monitoring
and information synthesis

Yes, these are a logical progression and need to be inserted and refined.

Could you also put something in about accepting /adopting components and
contributions from other projects e.g. GDMP from PPDG/EDG. That this is part
of the scope of GriPhyN and how to clearly tie results to collaboration and
resuse of development. Especially if GDMP is a part of a VDT release then
some acknowledgement of source and collaboration would be appropriate I
believe.

Yes, I will do that.

It seems to me the CMS plans tie into Lothars thinking of what happens after
the first PPDG/MOP deliverable. I propose we arrange a discussion for
debriefing on the demonstrations we have at SC2001 on the Wednesday for a
couple of hours since I think a lot of the relevant people will already be
there.

Sounds good. I assume you mean Wed 10/17, the iVDGL meeting day?

Im very eager to understand the possibilities for CMS analysis challenge problems - moving deeper into the CMS information processing progression.

2.5.2 Infrastructure Building - I would be interested in an actual PPDG
collaboration here as we are focused as you know on end-to-end applications
and demonstrators and all these topics are extremely relevant. I can argue
that the scope can include SDSS and LIGO if that is necessary. Can we
discuss this at the GriPhyN meeting perhaps?

Yes, I would like to discuss. The inter-organizational planning hurdles seem large but maybe not insurmountable.

I would also think putting some iVDGL connection to the testbeds would be
relevant.

Yes, it would be. All these testbeds seem to blur - I have a hard time sorting out who pays for what, who uses what for what, and who claims credit for what. My naive focus in in the middle part - usage - but I think all these aspects need to be sorted out and negotiated.

To my understanding DGRA document has been renamed - extended to be toolkit
and roadmap. What is RVD please?

I think Ian renamed DGRA to simply DGA - Data Grid Architecture. RVD is the document "Representing Virtual Data" by Ian, Carl, Ewa, and Miron.

 Are you looking to establish a reference GriPhyN testbed platform ? It
sounds to me from the Joint Technical board meeting that Carl is interested
in this?

Yes, I am interested first in a common GriPhyN testbed for GriPhyN research and challenge-problem demonstration, and second for experiment science usage. Its clear to me that the former needs to be built from the VDT. Its not clear to me to what extent GriPhyN can control or influence the latter.

For CMS I believe FNAL should appear in the infrastructure development and
deployment bullets.

I agree, and will add that.

thanks

Ruth

9

