Use Case Framework for Replication

A guide to preparing data grid use-cases

Mike Wilde

Argonne National Laboratory

DRAFT Version 2: 6 June 2001 11:21 AM
Revision History

V2 – 6 June 2001: Initial posting to the web. Architectural material and incomplete use case examples from previous versions have been removed. Only 1 of the 6 outlined example use cases is present.

1 Overview

This document describes how to specify use cases for experiment activities, specifically for the purpose of capturing and analyzing the requirements those activities have for data grid services. It lays out a framework for gathering use cases across multiple physics experiments in a manner that will be consistent, and will contain the information necessary for creating requirements, specifications, and designs for replication systems within a data grid. The approach should readily extend to cover many other aspects of grid computing.

The document covers:

· A framework for specifying use cases

· A model of the components that can make up a data grid

· The ways in which those components can be used

· Guidelines for capturing replication use cases

· A small set of example use cases to use as models in a use-case gathering effort that we propose

1.1 Use Case Goals

The use case for each activity must cover the following aspects of data grid requirements:

· Where is data for the activity obtained from?

· Where is data from the activity sent to?

· What other resources (especially computational) are needed for the activity?

· What protocols can/must be used to transfer and access the data?

· What are the data sharing requirements related to the activity?

· How does this activity exchange data with other activities?

· How should the data for the activity be grouped and named?

· Where is the data related to the activity cataloged?

· How should the data related to the activity be protected?

· What events or actions trigger the moving of data?

· What is the frequency of the activity and the volume of data movement?

· How repetitive and regular is this activity; how amenable to automation?

· How can this activity be made easier to carry out?

Each of these aspects are discussed in more detail below.

1. Where is data for the activity obtained from? Where is data from the activity sent to?

These questions pertain to what site in the grid the data resides on relative to where it will be used, or where it needs to be stored at (long term) relative to where it is produced.

2. What other resources (especially computational) are needed for the activity?What protocols can/must be used to transfer and access the data?

These questions pertain to the nature of the computing element that the activity will execute on, in particular, how that element accesses file data. If the element is at the same site as the data, and can access the data directly from the server on which it resides, then no additional data transfer is necessary. On the other hand, the application may only have acceptably high performance access to the local disk of the compute element on which it is running, in which case data must be transferred to and from different storage elements, possibly using specific protocols that are either compatible with, or effective with, these storage elements.

If the computing element for an activity can be selected from multiple sites, its possible that the protocols to be used to transfer data to and from an application might be dependent on the selected site. In this case, different protocols may be required for the application, based on the choice of site.

3. What are the data sharing requirements related to the activity?

Will the input data for the activity be taken from a location that’s shared by other user groups, at other locations? Similarly, does the output data from an application need to be posted at different sites for sharing with other groups?

4. How does this activity exchange data with other activities?

Is this particular activity one step in a pipeline of other activities? Is the pipeline a tightly coupled one (such as: produce data | validate data | convert data to a different format) or a loosely coupled one (such as: produce data | publish it for use in next month’s test runs). Is the exchange done in a script, or by less automated conventions, such as publish/subscribe or publish/search/copy?

5. How is the input data for the activity grouped and named? How should the output data for the activity be grouped and named?

This is concerns issues of structured vs unstructured collection names, automated name (or name component) generation (such as embedded unique numbers, sequence numbers, or timestamps in files). What aspects of naming conventions are determined by local group or by higher level authorities within an experiment? Name uniqueness issues? Expected similarity of logical name to physical name? This topic is also concerned with what operations would be performed on collections (or sub-collections: moving, processing, deletion, renaming, etc).

6. Where is the data related to the activity cataloged?

What application-specific metadata catalog(s) need to be searched to locate logical file names, or updated to catalog the available of new logical filenames or collections? What kind of consistency guarantees are required for such updates?

7. How should the data related to the activity be protected?

What different access permission checks are required and how do those authorizations map to users and groups of users? What types of storage quota controls are required?

8. What events or actions trigger the moving of data? How repetitive and regular is this activity; how amenable to automation?

Is the activity a random user-initiated action, or is it part of a planned sequence of production operations (e.g.: reconstruct all events from May 2001)? Is the activity part of a standalone activity or a multiple-job-step sequence that must coordinate several data moves with computations and/or validation operations?

9. How should the replication functionality be encapsulated? How can this activity be made easier to carry out?

In what form should data movement mechanisms be used by applications – APIs or CLIs (command line interfaces)? If APIs, what language(s)? If CLIs, what conventions for argument passing, status reporting/checking, error handling, etc? What level of separation or combination of functionality will maximize both the usefulness and the ease-of-use of the replication mechanism?

10. What is the frequency of the activity and the volume of data movement?

This will in large part determine the capacity and performance requirements of the replication system.

11. Miscellaneous guidelines

Structure the task into units: phases, series, runs, etc.

Describe whether processes are bulk-scheduled, ad-hoc, or interactive (the continuum from very organized to very chaotic).

Describe User groups associated with the task (stakeholders)

2 Use Case Framework

2.1 Activity Summary Template

This template describes a high-level activity, which can consist of one or more specific use cases, and outlines the set of cases “at a glance”. The activities can be broken into any number of levels of sub-activities; the lowest level of each of these should be specific use cases, for which the use case template is detailed.

Activity: Activity Title

Describe the nature, purpose and context of the activity within the overall experiment.

Sub Activity 1: Sub activity title

Purpose: Sub activity purpose within the framework of the activity and experiment

Characteristics: describe the nature of the subactivity in terms of structure, organization, motivation, phase, degree of precision, etc.

Duration: Approximate timeframe for the activity within the experiment

Involves cases: List the specific use cases that will be described under this activity.

2.2 Use Case Template
Activity 1: Name of the major activity being described

Case 1 – Name of the specific use-case within the activity
Duration: A high-level summary of when will the activity occur during the overall experiment – to the year, month, phase, etc.

Group: The name or type of the group(s) that will conduct this activity

Frequency: How many times the activity is carried out (e.g., number of reconstructions per day, month, year. May need to be stated differently for different phases of the experiment.

For each file type involved in the activity, specify:

File type: The type of file: Raw (Zebra, DAQ-1, ESD, AOD, DPD, etc), as specific as possible

File size: Specify any relevant stats about the file size(s): min, max, avg, typical. For very detailed use cases that are undergoing significant analysis, estimated or measured std deviation would tell us more about the range of file sizes.

File Usage: specify if the file will be used for inout, output, or both, and in what access pattern.

File names: Specify the naming conventions for this file type within this activity

Collection names for logical files: Specify the naming conventions to be used for collections of the above file types.

Application Level Cataloging: specify how the data inputs and outputs of the use case are looked up and/or cataloged in any application-level metadata catalogs.

File Access Pattern: if other than read or written once, sequentially, specify the file’s access pattern if known and if relevant to performance. For example, if the file is an OO database, it may get randomly referenced throughout one or more jobs.
Locations: Specify the locations of both data and computation, in terms of the Tier of the data and/or compute sites (assuming a tiered model; for other models, characterize the type of site or list a specific site); Specify the manner in which sites are selected (closest, largest, official repository, etc). Specify data movement criteria (e.g., “validated files are moved up to Tier 2”).

File Residency: specify how long files will be resident at these locations and what will trigger their movement or removal.

Capacity management: Specify how storage capacity is allocated and managed for this activity, in terms of ensuring adequate space through allocation, and reclaiming space through moving and removing files. Specify approximately how much storage needs to be allocated for the activity at different sites.

Process: Lastly, but perhaps the most important section: Describe the main process(es) of the activity in a very high level pseudo-code-like fashion, using primitives defined in section x above (or similar primitives if necessary).

2.3 Use Case Process Vocabulary

We describe the process within a use cases in terms of:

· a set of elements

· a set of actions that can be performed using these elements

· a specific set of topologies in which the elements can be deployed

This use case process vocabulary is described below.

2.3.1 Use Case Process Elements

Grid storage servers (GS). These are the storage servers that act as the backbone of the data grid. Data is placed on these servers to be shared among multiple distributed groups within an application, and replicated close to the point of use for fast access. The file systems used by these servers are dedicated to replication so that storage can be accurately allocated and reclaimed.

Archival storage servers (AS). This is a tertiary level of storage attached to grid storage

Within the data grid, certain servers are designated for long-term archival of a project’s most valuable (or voluminous) data. These servers contain the media and associated storage hardware used to store data that is the most costly (or impossible) to re-create, such as raw experimental data or the collection of dependent data behind painstakingly derived and validated analysis results.

With today’s technology archival storage is implemented with tape media in robotic libraries.

Artifacts of this are the unpredictable and long access latencies associated, and the different access protocols, both associated with tertiary storage systems. These artifacts are not intrinsic to the process of archival, which merely designates a different retention and backup policy than less permanent data objects. It’s very possible that within the next 5-10 years this will shift to hard disk drives, making archival purely a policy issue and removing the access time and protocol differences.

Working storage servers (WS). These storage servers contain files that will be used and produced by the computing elements of the grid. This layer of storage is considered to be part of the overall grid environment but outside of the scope of replica management. Examples of servers at this layer include local disks on a cluster computing node, a file server on a high speed LAN accessible to a cluster node, typically via NFS, or a database server, also on a cluster-computing LAN, that can be accessed by one or more computing nodes.

Metadata catalogs (MC). Application-specific catalogs that allow data files to be cataloged and located using application-specific queries. These queries yield the logical name of a data file, but do not return the file’s physical location.

Replica catalogs (RC). These grid components map logical file names to the physical locations where those files currently exist in the data grid.

An application may have multiple replica and metadata catalog. In such topologies, several mappings must be well defined:

For each metadata catalog, the replica catalog to be used to locate physical files for a logical file must be defined.

If replica catalogs that point to physical file services that can themselves relocate files…

Each grid storage server must be associated with a single replica catalog, to simplify the storage management task of reclaiming the space of files no longer cataloged.
Computing elements (CE). These are the computing resources of the grid on which all application processing takes place. Computing elements may have direct access to grid storage servers, in which case they can directly read a replica and create new logical files. But in most cases computing elements will use disk storage that is outside of the data grid, hence physical files within the data grid must be copied to storage servers or hard drives that can be accessed by the computing element(s) selected to run an application. A computing element is most typically a node of a cluster or farm on which work is scheduled via one or more job queues, but may also be a larger shared resource such as a supercomputer or a system with specialized graphics processing capabilities.

Also define: (???)

Work Group – a group of people working on a project

Space manager / Resource manager – show or not?

Data Mover – need to define?
2.3.2 Use Case Process Actions

These actions are the “verbs” of the use case vocabulary.

Select a computing element CE. This usually involves selecting a site at which a computation should run and then selecting the computing element within that site. These decisions might be made manually, might be dictated by resource ownership or accessibility, or might be made automatically through intelligent load-balancing algorithms.

Select a replica of logical file LF

Copy replica of logical file LF from grid storage GS to working storage WS of CE.

Publish a physical file PF from working storage WS to grid storage GS under name LF

Subscribe to a collection of logical files

Replicate a logical file LF by copying PF from GS(1) to GS(2)

Reserve direct use of a grid file PF

Read a grid file PF directly

Release direct use of a grid filePF

Catalog a logical file LF in metadata catalog MC

Perform special action on a file (eg: attach a database file to an Objectivity federation)

Use Case Examples

Background: USAtlas Test grid environment:

	Site
	Tier
	Disk Storage
	Tertiary
	Compute
	Network

	BNL
	0
	18,7,7,+NFS
	HPSS
	3
	

	LBL
	1
	
	HPSS
	?
	

	ANL
	1
	
	
	3
	

	UMI
	2
	9,80
	
	
	

	IU
	2
	
	HPSS
	
	

	UT
	3
	
	
	
	

	OU
	3
	20,20
	
	2
	

	BU
	3
	
	
	10++ (10 RH + lots of sgi, etc)
	

Activity Overview: Tile Calorimeter Test Beam Activities

The tile calorimeter is a cylindrical subsystem of the ATLAS detector. Its divided into 64 wedge-shaped modules (plus spares), each of which must be individually tested and calibrated using a test beam. Test beam activities for this subsystem occur in three phases: Phase 1 is characterized by heavy software development activity; Phase 2 involves testing of one segment of all detector subsystems together, and Phase 3 entails calibration using stable software and very rigorously controlled job execution production.

Activity 1: Tile Calorimeter (TC) Developmental Test Beam Analysis

Purpose: Test and debug TC physical design and electronics; Develop TC reconstruction and analysis algorithms and software. Develop and debug TC calibration methods and software.

Characteristics: Very ad-hoc data capture; instrument is under development; not all instrumentation is working in every run; lots of info about each run exists in experimenter’s notebooks (e.g.: “Run 45297 – Channels 18 and 24 failed”); data formats still evolving (ideally metadata catalogs track the data format of each file). Activities result in frequent changes to both the calorimeter module and capture and analysis software.

Duration: 6/1998 – 9/2001

Involves cases: 1) Test Beam Data Capture 2) Data Analysis

Activity 2: Detector Initial Integration Testing

Purpose: Test one segment of each detector subsystem physically assembled together to measure the detector design’s integrated response to specific test beam conditions.

Characteristics: similar to activity 1, but raw data is shared and compared by multiple, interacting detector subsystem groups.

Duration: 1/2002 – 1/2003

Involves cases: 1) Test Beam Data Capture 2) Data analysis by each subsystem group 3) Calibration Software Development 4) Preliminary Calibration Analysis and procedure design

Activity 3: Tile Calorimeter (TC) Test Beam Analysis for Subsystem Calibration

Purpose: Test and calibrate each TC module as it is produced and shipped to CERN. Retain calibration data for each module (including spares) for use in raw data interpretation for the life of the experiment.

Characteristics: Very rigorous data capture, as the calibration data is vital for all experimental result interpretation. Capture is done in precisely controlled conditions. Software involved in calibration is frozen and thoroughly debugged and tested.

Duration: 10/2001 – 1/2004

Involves cases: 1) Test Beam Calibration Data Capture 2) Calibration data publishing and use in all experiments

Activity 1: Phase 1 Tile Calorimeter (TC) Test Beam Analysis

Case 1 – Test Beam Data Capture

Duration: 6/1998 – 9/2001

Group: Test Beam Operations, CERN (raw data capture and archival); Tile Calorimeter development team, ANL (OO DB production)

Frequency: 550 runs / year; up to 24 runs / day (1-hour runs) on busiest days; typical running days yield 6 runs.

File type: Zebra, changing to DAQ-1. 1 file per run (approx 1500 files gathered to date)

File size: 100MB / run (average)

File type: Objectivity DB (EOD – Event Object Data) – note – I invented this term – file is a literal packaging of RAW data into object form – less processing than RAW > ESD. Is there a more official term for it?

File size: 150 MB / run (average)

Locations: Data originates at CERN, captured online from test module in test beam. Data is replicated to sites that will be using it frequently

Capture the fact that once converted to EOD, raw is no longer used, and deep-archived. Might raw be recalled to re-run the object conversion with a new schema, etc?
Collection names for logical files:

/TileCal/Development/1998/RunGroup04300/ (Project/Phase/Year/RunGroup/)

File names:

Run_43003.zf (RAW) (Run.Type)

Run_43003.db (EOD)

Data to be archived (master copy) at test grid T0 node – BNL.

Capacity management:

Ensure next 30 days of space available in MSS (72GB)

Ensure next 10 days of space available on line (10x100x24 = 24GB)

(requirement – long term reservation tied to space management)

Process:
For each raw data file produced:

Logical file name: run_40120.zf

Copy each file produced to T0 GS (CERN test beam team)

Allocate space from quantity reserved for this purpose

Run program TileCalZebra2Objy

Input: raw Zebra file

Output: ESD file

Run at site: T0

(Publish to other nodes?)

Save each ESD file produced to T0 GS

Move each file from T0 GS to T0 MSS (specify redundancy desired)

Move requires: copy, ensure ok, delete.

Remove file from Online store when confirmed on MSS (with desired redundancy)

