
Parallelizing the Execution of Sequential Scripts

Zhao Zhang
Department of Computer

Science
University of Chicago

zhaozhang@uchicago.edu

Daniel S. Katz
Computation Institute

University of Chicago &
Argonne National Laboratory

d.katz@ieee.org

Timothy G. Armstrong
Department of Computer

Science
University of Chicago
tga@uchicago.edu

Justin M. Wozniak
Mathematics and Computer

Science Division
Argonne National Laboratory
wozniak@mcs.anl.gov

Ian Foster
Computation Institute

University of Chicago &
Argonne National Laboratory

foster@anl.gov

ABSTRACT
Scripting is often used in science to create applications via
the composition of existing programs. Parallel scripting sys-
tems allow the creation of such applications, but each sys-
tem introduces the need to adopt a somewhat specialized
programming model. We present an alternative scripting
approach, AMFS Shell, that lets programmers express par-
allel scripting applications via minor extensions to existing
sequential scripting languages, such as Bash, and then exe-
cute them in-memory on large-scale computers. We define
a small set of commands between the scripts and a parallel
scripting runtime system, so that programmers can compose
their scripts in a familiar scripting language. The underly-
ing AMFS implements both collective (fast file movement)
and functional (transformation based on content) file man-
agement. Tasks are handled by AMFS’s built-in execution
engine. AMFS Shell is expressive enough for a wide range of
applications, and the framework can run such applications
efficiently on large-scale computers.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Parallel Pro-
gramming

General Terms
Design; Performance

Keywords
Many-task computing, Parallel scripting, Shared file system

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SC13 November 17-21, 2013, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2378-9/13/11 ...$15.00
http://dx.doi.org/10.1145/2503210.2503222.

1. INTRODUCTION
Many scientists seek to express applications in the Map-

Reduce [11] model, because it provides a convenient mech-
anism for combining existing applications that offers simple
parallelism and through Hadoop [4], is available on many
platforms. However, many applications do not fit the Map-
Reduce model well, for one or more of the following reasons:

• Applications include iterations, while the same data
used in multiple iterations must be re-read from stor-
age in each iteration with Hadoop.

• Applications have a trivial reduce stage.

• Applications want to run multiple distinct tasks in the
mapper, where the parallelism does not only comes
from data parallelism but also task parallelism.

The root problem is that many applications written in Map-
Reduce [11] model are actually general purpose scripting
applications: existing programs glued together with files as
intermediate data. Since the MapReduce model only of-
fers one dataflow pattern (reduce), this oversimplifies the
dataflow patterns many applications require. Various re-
search has been carried out to remedy these issues, such as
Iterative MapReduce [15, 9] which provides iterative con-
trol flow. However, there is no single system that solves all
issues.

We introduce here a fundamentally different approach:
combining a simple scripting language with an underlying
runtime system (an execution engine and in-memory file
system) to enable parallel scripting applications. We ask:
are a scripting language and the underlying system inter-
face expressive enough to allow scientists to compose their
applications? What runtime and file system support is re-
quired to enable efficient parallel execution of such scripts
on large-scale computers?

More specifically, we integrate the Bash [26] scripting lan-
guage with a redesigned AMFS (an Any-scale Many-task-
computing File System) [35], a distributed in-memory file
system with a built-in execution engine. The resulting AMFS
Shell implements a scripting language that extends the Bash
language with a small group of commands with which pro-
grammers can decorate an existing script to obtain a par-
allel program. Programmers prefix application statements

with these commands to enable parallel execution; the im-
plementation of these commands invoke AMFS operations
to manage data movement, initiate parallel computations,
and so forth. For example, the following fragment executes
as an ordinary sequential script if the AMFS queue prefix is
omitted, and as a parallel computation if it is included.

1 mkdir temp/
2 for file in ‘ls link/‘
3 do
4 AMFS_queue PageRank_Distribution \
5 link/${file} score.txt \
6 temp/${file}.temp
7 done

The resulting system allows:

• Simple programming: Programmers can construct
parallel scripts by modifying serial scripts.

• Expressive programming: Programmers can ex-
press the algorithms they desire.

• Control flow: Programmers can add script code to
access the data between application stages and make
dynamic decisions.

• Scalable performance: The scripts can run on thou-
sands of compute nodes with modest overhead.

• Seamless gluing: Programmers do not need to change
the applications that are called from their scripts.

As we will see when we introduce the AMFS Shell script-
ing language, the main abstraction that the language intro-
duces is that of a parallel file system. AMFS implements a
distributed in-memory file system spread across all compute
nodes, with distributed metadata and data management.
Programmers can explicitly load/store files and directories
between AMFS and local storage sequentially or shared per-
sistent storage in parallel. Programmers can execute appli-
cation commands in parallel by calling AMFS commands,
and have the flexibility to specify the output target: either
to AMFS or persistent storage. AMFS provides collective
and functional data management interfaces to programmers.
With insight into the dataflow pattern of their scripts, pro-
grammers can expedite data movement or reorganize data
based on file contents. AMFS currently supports Multicast,
Gather, Scatter, Allgather, and Shuffle dataflow patterns.

The main challenge in designing this system is to define
a set of commands that (a) can be inserted into scripts
while preserving the semantics of the original application’s
POSIX interfaces, and (b) can be implemented in a manner
that permits efficient execution and data movement. Fig-
ure 1 shows the design complexity of interfaces among the
three entities of script, execution engine, and runtime file
system. For efficiency, AMFS needs data locality informa-
tion for data-aware scheduling and file system configuration
to enable collective data movement. Existing interfaces for
storage on large-scale computers, e.g., HDFS [6], only offer a
customized file system interface to support locality exposure,
so applications dependent on the POSIX interface can not
be run. Traditional shared file systems, e.g., GPFS [27] and
PVFS [10], do not expose data locality or system configura-
tion though either POSIX or non-POSIX interfaces because
they are treated as peripheral storage devices on large-scale

Script

Execution
Engine

Runtime
File

System

Shell c
ommands

Non-POSIX

POSIX & Non-POSIX

Figure 1: Interface complexity among AMFS Shell
components

computers. Neither approaches can offer both efficient ex-
ecution and data movement and preserve the application
interface, as AMFS Shell does.

A second challenge is scalable metadata management, since
we want to scale to thousands of compute nodes. Many ex-
isting distributed file system deployments, e.g., GPFS [27]
and Lustre [14], preserve the consistency of concurrent meta-
data operations by placing all the metadata for any one di-
rectory on a single metadata server and applying a lock-
ing scheme for metadata in that directory. Because parallel
scripting applications feature a large amount of metadata
and data operations, this metadata server design has a side
effect of limiting throughput, as we have documented in pre-
vious MTC-Envelope work [34].

In contrast to these systems, AMFS provides two different
sets of interfaces to programmers and applications. AMFS
provides programmers with a non-POSIX collective/func-
tional data management interface in the form of shell com-
mands, and it provides applications with a POSIX-compatible.
The internal interface between the AMFS file system and its
execution engine uses remote procedure calls. AMFS thus
exposes data locality and system configuration through a
non-POSIX interface to programmers, while preserving the
POSIX interface to applications. AMFS also implements a
distributed metadata server design, in which every node is
both a metadata server and a storage server. Metadata are
spread across nodes based on the hash value of the file name,
while data is stored where they are produced.

To determine whether the AMFS Shell approach is a good
fit for parallel applications, we studied a set of applica-
tions that have previously been expressed with MapReduce,
namely: CloudBLAST [23], genome sequence alignment;
CAP3 [20], sequence assembly; and high energy physics data
analysis [16]. These applications build on a set of com-
mon primitives, namely PageRank, K-means, and Monte
Carlo, which we show can be implemented effectively with
AMFS Shell. we show scripts for the Montage, PageR-
ank, K-means, and Monte Carlo applications as examples
of AMFS Shell’s expressiveness.

We use the MTC Envelope benchmark to evaluate per-
formance; our results show that AMFS Shell runs 44 times
faster than GPFS on 2,048 compute nodes. We also con-
sider Montage [21] as an example of an application that has
traditionally been expressed by a parallel script or workflow.

The time-to-solution for parallel stages of Montage are im-
proved by 120% at various scales, compared to performance
when using GPFS. PageRank performance on 1,024 com-
pute nodes is improved by 40% compared to GPFS, ignoring
the shuffle stage (GPFS does not support shuffle). Though
AMFS Shell performs identical to GPFS on K-means and
Monte Carlo, it allows simpler composition of parallel scripts
and the applications that scientists currently run with Map-
Reduce frameworks.

The contributions of this work are: a new parallel script-
ing programming model that extends a scripting language
(Bash); a general runtime system interface design that works
with existing scripting languages (that can execute shell
commands); a novel file system access interface design that
combines both POSIX and non-POSIX interfaces to ease
programming without loss of efficiency; a scalable distributed
file system design with no central point that achieves good
scalability; and the implementation of the entire framework
to enable various applications on large-scale computers.

2. PROGRAMMING MODEL
In the scripting programming paradigm, files and directo-

ries are often used as programmable elements much as in-
memory variables are used in MPI [18] and key-value pairs
in MapReduce [11]. A script glues programs together by
specifying shared files or directories that are used to pass
intermediate data. Thus, to produce or consume files and
directories, applications must stick to the POSIX interface.

2.1 AMFS Shell Interface
AMFS Shell provides three groups of commands to pro-

grammers. Those in the first group are functional, meaning
that the script can not correctly execute without them; they
include:

• AMFS load: loads a directory from persistent stor-
age to AMFS; the transfer can be done in parallel if
the persistent storage is globally accessible

• AMFS dump: dumps a directory from AMFS to per-
sistent storage; the transfer can be done in parallel if
the persistent storage is globally accessible

• AMFS shuffle: shuffles all files in a directory to an-
other directory based on the first column of the file

• AMFS diff: compares two directories to see if they
contain an identical set of file contents; the comparison
is on the file contents, regardless of the file names

The collective data movement commands in the second
group can be thought of as performance hints, since a script
runs correctly without calling them, but with lower perfor-
mance; they include:

• AMFS multicast: multicasts a file or a directory to
all compute nodes

• AMFS gather: gathers all files in a directory to one
compute node

• AMFS allgather: gathers all files in a directory to
all compute nodes

• AMFS scatter: scatters all files in a directory to all
compute nodes

The third group implements an interface to the execution
engine’s task management system:

• AMFS queue: push a task into the queue; user can
specify the data-aware option though parameters

• AMFS execute: execute all tasks in the queue, blocked
until all tasks finish

AMFS queue returns immediately, while AMFS execute re-
turns only when all queued tasks have finished. AMFS uses
a work-stealing algorithm [35] to ameliorate inefficiencies
that may result from trailing tasks [5] at the end of each
AMFS execute loop.

2.2 Examples
Listing 1 implements a data-parallel PageRank [8]. The

script has three explicit stages. First, lines 6 to 11 run, for
each file in link/, a PageRank Distribution task to calculate
the PageRank score distribution from one page to another,
and then sum the scores for the same page. As score.txt is
needed for every task, the programmer uses AMFS multic-
ast to broadcast score.txt to every node. Second, line 15
calls AMFS shuffle to reorganize the contents of all files
in temp/ to target/ according to the hash value of the first
column of the files in temp/. Third, lines 17 to 24 invoke
a PageRank Sum task for each file in the target/ direc-
tory. PageRank Sum sums the score for each page, applies
a damping factor to the score, and writes the result to a
file in result/. The programmer then calls AMFS gather
on result/ and redirects all files in result/ to new-score.txt.
The script continues until a convergence condition (line 28)
is satisfied.

Programmers require some insight into the dataflow and
parallel execution patterns of their script if they are to de-
termine which AMFS Shell commands are needed to achieve
efficient parallel execution. For example, in parallel PageR-
ank, if the AMFS gather is missing, files are transferred se-
quentially, which may be acceptable on a small computer but
slow on many processors. If AMFS allgather, AMFS m-
ulticast, and AMFS scatter are missing, I/O traffic is
congested due to the large number of concurrent connections
to a single server; on large-scale computers, such congestion
may be inefficient, or even compromise the stability of the
parallel computer.

Listing 1: Parallel Script for PageRank
1 #!/bin/bash
2 while [${converge} -ne 0];do
3 AMFS_multicast score.txt
4

5 mkdir temp/
6 for file in ‘ls link/‘
7 do
8 AMFS_queue PageRank_Distribution \
9 link/${file} score.txt \

10 temp/${file}.temp
11 done
12 AMFS_execute
13

14 mkdir target/
15 AMFS_shuffle temp/ target/
16

17 mkdir result
18 for file in ‘ls target/‘
19 do
20 AMFS_queue PageRank_Sum \

21 target/${file} \
22 result/${file}. result
23 done
24 AMFS_execute
25

26 AMFS_gather result/
27 cat result /* | sort > new -score.txt
28 converge = ‘diff score.txt \
29 new -score.txt | echo $?‘
30 mv new -score.txt score.txt
31 done

Listing 2 is an AMFS Shell implementation of Montage [21].
Eight stages are expressed in 40 lines of code. The mPro-
jectPP, mDiffFit, and mBackground stages can run in paral-
lel; mImgtbl, mConcatFit, mAdd can benefit from parallel
file transfer. mOverlaps and mBgModel can run on any
AMFS server. In Line 20, the programmer produces the in-
put file names for mDiffFit tasks by processing the content
of diffs.tbl.

Listing 2: Parallel Script for Montage
1 #!/bin/bash
2

3 #mProjectPP
4 mkdir tempdir/
5 for file in ‘ls rawdir/‘
6 do
7 AMFS_queue mProjectPP rawdir/${file} \
8 tempdir/hdu_${file} template.hdr
9 done

10 AMFS_execute
11

12 AMFS_gather tempdir/
13 mImgtbl tempdir/ images.tbl
14

15 mOverlaps images.tbl diffs.tbl
16

17 mkdir diffdir/
18 #processing diffs.tbl requires
19 #programmer ’s interaction
20 for filepair in ‘process diffs.tbl ‘
21 do
22 AMFS_queue mDiffFit ${filepair} diffdir/
23 done
24 AMFS_execute
25

26 AMFS_gather diffdir/
27 mConcatFit diffdir/ fits.tbl
28

29 mBgModel images.tbl fits.tbl corr.tbl
30

31 mkdir corrdir/
32 for file in ‘process corr.tbl ‘
33 do
34 AMFS_queue mBackground \
35 ${file} corrdir/${file} corr.tbl
36 done
37 AMFS_execute
38

39 AMFS_gather corrdir/
40 mAdd corrdir/ final/m101.fits

Listing 3 shows an AMFS Shell script for K-means.

Listing 3: Parallel Script for K-means
1 #!/bin/bash
2 #File content format is: v(x, y)
3 while [${converge} -ne 0];do
4 AMFS_multicast centeroid.txt
5

6 #calulate the distance of every node
7 #to the centeroids , output the closest
8 #centeroid in the form of vertex
9 #pair of (v c)

10 mkdir temp/
11 for file in ‘ls input/‘
12 do
13 AMFS_queue KMeans -Group \
14 input/${file} centeroid.txt \
15 temp/${file}.temp
16 done
17 AMFS_execute
18

19 #shuffle the intermediate file
20 #according to centeroids
21 mkdir temp/
22 AMFS_shuffle temp/ cluster/
23

24 #recalculate the centeroid of each
25 #cluster
26 mkdir centeroid/
27 for file in ‘ls cluster/‘
28 AMFS_queue KMeans -centroid \
29 cluster/${file} \
30 centeroid/${file}. centeroid
31 done
32 AMFS_execute
33

34 #aggregate new centeroid file
35 AMFS_gather centeroid/
36 cat centeroid /* | sort > \
37 new -centeroid.txt
38 converge = ‘diff centeroid.txt \
39 new -centeroid.txt | echo $?
40 mv new -centeroid.txt centeroid.txt
41 done

2.3 Further AMFS Script Examples
We next show how AMFS Scripts can handle file depen-

dencies and data-aware scheduling.

2.3.1 File Dependencies
If an application involves two parallel stages, with each

task in the second group consuming an output file from a
task in the first stage (see Listing 4), it may appear that
the tasks in the second stage cannot execute until all tasks
in the first complete. However, as explained in §3.5, AMFS
supports asynchronous file accesses, and thus this program
can be rewritten, as shown in Listing 5, so that inter-task
file dependencies are resolved in a distributed manner. In
this alternative formulation, stage two tasks will fail if they
are started before their predecessor stage two tasks have fin-
ished, but AMFS will put those tasks on hold until the files
they are waiting for are produced, then restart them, lead-
ing to the same overall application functionality. Program-
mers can also express an asynchronous gather in this way,
by queuing a task that consumes all output files of stage1
right before calling AMFS exec.

Listing 4: Two Stages of Computation With File
Dependencies
1 #!/bin/bash
2 for file in ‘ls input/‘
3 do
4 AMFS_queue stage1 input/${file} \
5 temp/temp_${file}
6 done
7 AMFS_execute

8 for file in ‘ls temp/‘
9 do

10 AMFS_queue stage2 temp/$temp_{file} \
11 output/out_${file}
12 done
13 AMFS_execute

Listing 5: AMFS Resolving File Dependency
1 #!/bin/bash
2 for file in ‘ls input/‘
3 do
4 AMFS_queue stage1 input/${file} \
5 temp/temp_${file}
6 AMFS_queue stage2 temp/temp_${file} \
7 output/out_${file}
8 done
9 AMFS_execute

2.3.2 Data-aware Scheduling
AMFS supports data-aware scheduling as follows. The

execution engine checks if the first parameter of an appli-
cation task is a file. If so, and if the file exists, the task is
forwarded to the node that holds the file.

2.4 Advantages & Limitations of AMFS Shell
AMFS Shell can express parallel scripting applications

that feature simple data flows, iterative computation, and
interactive analysis. It provides efficient execution because:

• AMFS caches files in memory;

• AMFS’s scalable file access makes scripting performance
scalable;

• the AMFS execution engine interface simplifies the
parallelization of Bash scripts;

• the collective data management interface and the un-
derlying system support moving data efficiently and
scalably; and

• the AMFS interface to persistent storage enables check-
pointing by copying or moving the files from AMFS to
a persistent storage location.

AMFS Shell has limitations: it requires that all data fit
in the compute node’s memory. It can not launch tasks that
need multiple compute nodes. The application shell com-
mands are not declarative, so the AMFS execution engine
doesn’t know which files in the command line are inputs or
outputs. Optimization based on declaring file usage does not
work with AMFS Shell. AMFS Shell prefers longer tasks
than shorter tasks. Finer-grained dataflow based applica-
tions can be better addressed by a dataflow-based parallel
programming language, such as Swift/T [33] or DAGuE [7].

3. FILE SYSTEM REIMPLEMENTATION
AMFS was originally a distributed runtime file manage-

ment system that ran in RAM disk. It did not handle
OS I/O traffic directly, but managed the status and loca-
tion of files stored in RAM disk. Application tasks queried
and updated the status and location of files managed by
AMFS via a customized command line interface. Collective
file movement used FTP between nodes. In this work, we
have redesigned and reimplemented AMFS as a distributed

file system with data and metadata stored in compute node
memory and added a POSIX-compatible interface based on
FUSE [17].

The AMFS implementation places an AMFS service in-
stance on every compute node involved in a computation.
Each compute node is thus both an I/O server and a meta-
data server. Because parallel scripting applications have a
multi-read single-write I/O pattern, we further define the
AMFS I/O routines to be local-read-if-possible and local-
write. That is, AMFS tries its best to place a task that
reads a file on the node where that file is located, but can-
not guarantee that all input files are local to the task. All
writes are local to the task to maximize write performance.
AMFS can be configured to support file striping, but in the
results we present here, we constrain every file to be stored
on a single server.

3.1 Metadata Management
AMFS uses different strategies to manage directory and

file metadata. Directory metadata are synchronized across
all AMFS servers, while file metadata are spread across
AMFS servers based on the hashed value of the file path
and name, as shown in Figure 2.

AMFS_server AMFS_server AMFS_server

/tmp/mount
├─ indir
├ ├─ file3
├ └─ file4
└─ outdir

├─ file3
└─ file4

...
/tmp/mount
├─ indir
├ ├─ file1
├ └─ file2
└─ outdir

├─ file1
└─ file2

/tmp/mount
├─ indir
├ ├─ fileN-1
├ └─ fileN
└─ outdir

├─ fileM-1
└─ fileM

Figure 2: AMFS metadata placement

3.1.1 Directory Metadata Management
AMFS maintains directory metadata consistent across all

nodes. Upon the creation of a directory, a create message
is broadcast to all AMFS servers, and the initiating server
blocks until all servers return. Every AMFS server creates
an entry for this directory. The same logic is used to remove
a directory. In a directory read operation, the initiating
server broadcasts a read message to all AMFS servers, and
along with the acknowledgement, each AMFS server sends
all file metadata it stores locally. The initiating server then
adds the subdirectory information to the file information,
and returns. Directory metadata operations are optimized
using a minimum spanning tree (mst) algorithm. The time
complexity of such directory operations is O(logN), whereN
is the number of AMFS servers. Since directory operations
require synchronization among all AMFS servers, they do
not work well when there are multiple concurrent directory
metadata operations or directory-intensive operations.

3.1.2 File Metadata Management
File metadata are spread across AMFS servers based on

the hash value of the file name. This metadata includes both
regular information about a file, a list of the location(s) that
store the actual file data, and a list of AMFS servers that
have tried to access this file before it is produced. Once the
file is produced, the AMFS server will broadcast the file’s
location to all AMFS servers that have tried to access it.

This feature supports distributed data dependency resolu-
tion. Distributing file metadata over AMFS servers is im-
portant to balance the many file metadata access operations
that can occur in parallel scripting applications.

3.2 Data Management
A file’s contents are always stored where the file is first

produced. Upon a read, the file is replicated by the reading
AMFS server. The appropriate metadata are also updated
to record the new replica. AMFS also supports appending
files, although this feature is not used by parallel scripting
applications that feature a multi-read single write I/O pat-
tern.

3.3 Collective Data Management
AMFS supports four types of collective data movement:

Multicast, Gather, Allgather, and Scatter. Multicast, Gather,
and Scatter are implemented with two algorithms: sequen-
tial and minimum-spanning tree. As many have discussed
(e.g., [29, 28]), MST performs significantly faster for small
files, as the data movement is latency bound and MST only
invokes O(logN) file transfers on N servers. When the file
size is large, the two algorithms deliver similar performance,
as the data movement is bandwidth bound Programmers can
select the sequential algorithm where the number of concur-
rent connections to a server is always one, if the network is
congestion sensitive, compared to logN connections in the
MST algorithm. The AMFS collective data management
interface allows programmers to specify which algorithm to
use. We could also implement even faster algorithms based
on network topology. Allgather is implemented as a gather
followed by a multicast. The gather involves O(logN) in-
bound file transfers and the multicast another O(logN) out-
bound file transfers. §5.1 provides a model for collective
data management.

3.4 Functional Data Management
The AMFS functional data management interface includes

AMFS load, AMFS dump, AMFS shuffle, and AMFS diff.
If persistent storage is not globally accessible by all AMFS
servers, then the initiating AMFS server first computes a
distribution plan to map files to AMFS servers and then ex-
ecutes that plan. If persistent storage is globally accessible
by all AMFS servers, the initiating AMFS server computes a
distribution plan and passes that plan to all AMFS servers;
the AMFS servers concurrently load files from persistent
storage. The same algorithm is used for AMFS dump.

AMFS shuffle is implemented as a four-step procedure.
First, the initiating AMFS server notifies all servers via
MST and returns once all servers have received the mes-
sage. Second, all servers process the files in the specified
directory locally and partition the files based on the hash
value of the first column into hashmaps that are indexed
according to which AMFS server is addressed. Third, every
node starts exchanging data with its right-hand neighbor
(using a virtual ring overlay), followed by its second nearest
right-hand neighbor, etc., until it has communicated with all
other AMFS servers. Fourth, the AMFS servers notify their
parent server in the MST. The computational complexity of
this operation is as follows. The control traffic (notification
and acknowledgment) finishes in O(log(N)) time, where N
is the number of servers. The local data processing is per-
formed in parallel, i.e., in O(1) steps. The data transfer

phase takes O(N − 1) rounds. The partition and exchange
step of a simple shuffle on two AMFS servers is shown in
Figure 3.

 AMFS Server

K0, V0_0
K1, V1_0
K2, V2_0
...
KN, VN_0

K0, V0_0
K2, V2_0
...

K1, V0_0
K3, V2_0
...

 AMFS Server

K0, V0_1
K1, V1_1
K2, V2_1
...
KN, VN_1

K0, V0_1
K2, V2_1
...

K1, V0_1
K3, V2_1
...

K0, V0_0
K2, V2_0
...
K0, V0_1
K2, V2_1
...

K1, V0_0
K3, V2_0
...
K1, V0_1
K3, V2_1
...

partition exchange

Figure 3: Shuffle example on two AMFS servers

AMFS diff compares two directories. Unlike the standard
diff, AMFS diff fetches the metadata of all the files in two
directories, and compares the file content checksum of all
files in the directory, regardless of the file names.

3.5 Task Management
AMFS’s task management scheme allows for two types of

execution: straightforward and data-aware. Once the exe-
cution engine receives an execute command, it first evenly
spreads all tasks over all AMFS servers. In data-aware ex-
ecution, each AMFS server checks the location of the file
that a program accesses, and forwards the task to the AMFS
server that has that file. After the initiating server receives
acknowledgements from the task dispatch phase, it sends
another wait message to all AMFS servers. Those wait mes-
sages do not return until all tasks finish.

AMFS also allows for asynchronous file access: when a
task execution fails because a file does not exist, the ex-
ecution engine temporarily puts the failed task in a task
hashmap, using the missing file as the key and the task as
the value. At the same time, the AMFS server that will even-
tually hold the metadata of the file associates the requester’s
address with this file. When the file is later produced, the
metadata entry is created on the AMFS server. The AMFS
server then notifies the requester. The requester replicates
the file from its producer and then retries the previously
failed task. If a task has multiple input files, this process
can repeat if other files are available.

4. INTERFACE DESIGN
As shown in Figure 1, AMFS Shell involves three inter-

faces, between scripts, execution engine, and file system. For
each, we consider the tradeoffs between performance and
programmability, then explain our decision.

4.1 Script - Execution Engine
In parallel scripting languages such as Swift [32], program-

mers declare inputs and outputs when defining applications
tasks; Makeflow [2] uses a similar strategy by defining tasks
with make file rules, so the interpreter knows how files are

used. In addition to the commonly used input and output
definitions, Pegasus [13] also uses ‘intermediate’ to mark files
that do not need to be saved after they are read, to eliminate
unnecessary data movement.

Intuitively, a programmer can express a task as a com-
mand line in the exact format in which the task is executed.

• File-usage blind: bin/exec input.txt output.txt

Here, the engine does not know which files are inputs and
which files are outputs. Alternatively, the programmer can
provide file usage information on the command line:

• File-usage aware: bin/exec input.txt output.txt -if in-
put.txt -of output.txt

The file-usage aware format could enable the execution en-
gine’s logic to use techniques such as data-aware scheduling,
automatic data replication, and smart data placement. On
the other hand, the file-usage aware format is not intuitive.
It requires the knowledge of file usage in addition to the
command line that will execute the task. In enabling task
dependency resolution on files, as we described in §3.5, the
file-usage aware format can allow the execution engine to
know on which files the task depends. When those files are
available, the engine can execute the task.

In AMFS Shell, we compromise between the file-usage
blind format and the file-usage aware format in the inter-
face between script and execution engine. We require the
file-usage blind format, as it is closer to real shell scripts
that programmers would write. At the same time, AMFS
Shell allows programmers who understand their file usage to
write their script in a way that can permit the use of two
performance-improving features:

1. Data-aware scheduling: In AMFS Shell, the runtime
system assumes that the first parameter of an application
task is file, whose location is the target node to run the task.
If the first parameter is not a file or is a file that doesn’t
exist, AMFS Shell use its default task scheduling algorithm
(an even distribution over all available AMFS servers) for
this task.

2. Task dependency resolution: the AMFS Shell interface
allows a task to run in a run-fail-queue-wake-run mode based
on input file availability, as described in §3.5. However, the
programmer needs to guarantee the correctness of the retried
task, and make sure that the retried task does not have
any side effects outside the task. (If the task has potential
side effects, the programmer can call AMFS execute on each
stage separately, avoiding the use of this feature.)

4.2 Script - Runtime File System
The design options for the interface between the scripts

and the file system are POSIX and non-POSIX. When a
script needs to access a directory to find the file names in
that directory (e.g., line 6 in Listing 1), the programmer
can use ls. This is more convenient for programmers than
a customized library remote procedure call. Collective file
movement in this runtime file system design is not supported
by the POSIX standard, so the only option is to implement
the interface as customized command lines that are callable
inside a script.

In AMFS Shell, the interface between the script and the
runtime file system is a mix of POSIX compatible opera-
tions and non-POSIX commands. The POSIX interface al-
lows a programmer to access files that are spread across

multiple nodes, while the non-POSIX commands give per-
formance improvements (AMFS multicast, AMFS gather,
AMFS scatter, AMFS allgather), or build in support for
particular file formats (AMFS shuffle). This mixed design
preserves the ease of programming without loss of potential
performance improvements, though it requires the program-
mer to have knowledge of the dataflow patterns.

4.3 Execution Engine - Runtime File System
An execution engine communicates with the runtime file

system for file location lookup and task execution. File loca-
tions can be exposed either by a customized remote proce-
dure call or they can be embedded in the POSIX standard’s
additional attributes. In either case, extra execution engine
logic is required to process the information. We chose a cus-
tomized remote procedure call for AMFS Shell, as it is more
flexible than enabling asynchronous file access.

When a task is executed, a POSIX-compatible file system
can trivially provide file access. Since many programmers
lack root access on the machines where they run, FUSE [17]
is often used as a POSIX interface. However, the use of
FUSE can cause I/O performance to drop dramatically be-
cause the FUSE write buffer is at most 128 KB. The FUSE
based in-memory file system’s write bandwidth is about 10%
of that achieved by RAM disk, which is also in memory. A
second solution is using a customized file system interface,
which is more efficient but needs the task to be in file-usage-
aware format and requires a translation layer between the
file system and the execution engine. Our previous AMFS
implementation used a Python wrapper to process input and
output files to make the non-POSIX distributed file system
transparent to execution engines. However, many applica-
tions can not benefit from the higher bandwidth of the non-
POSIX interface, as the I/O is limited by the application
tasks themselves. In such cases, a POSIX interface makes
the communication between execution engine and runtime
file system much easier. AMFS Shell implements the POSIX
interface for task execution, since we previously decided that
the task format would be file-usage blind.

5. EVALUATION
We evaluate AMFS Shell by performing three sets of ex-

periments on an IBM Blue Gene/P supercomputer. The first
set confirms the correctness of the collective data manage-
ment implementation in AMFS and permits us to compare
performance with that of our previous implementation based
on files in RAM disk [35].

The second set profiles AMFS Shell’s performance by mea-
suring its MTC Envelope [34] at different scales. The MTC
Envelope characterizes the capability of a parallel scripting
applications on a given system in terms of eight performance
metrics: file open operation throughput; file create operation
throughput; 1-to-1 read data throughput; 1-to-1 read data
bandwidth; N-to-1 read data throughput; N-to-1 read data
bandwidth; write data throughput; and write data band-
width.

The third set of experiments benchmarks application per-
formance. We evaluate AMFS Shell implementations of
three scientific applications for which we also have Hadoop
implementations: PageRank,Monte Carlo, and K-means.We
also show the performance of the Montage application to em-
phasize the benefits to interactive computation that are not
apparent with today’s MapReduce applications.

Figure 4: Collective file movement performance

5.1 Collective and Functional Data Manage-
ment

The time consumption for the data functions are:

• Multicast: T = (log2N) ∗ (a+ b ∗ S)

• Gather: T = (log2N) ∗ a+ N−1
N
∗ S ∗ b+ (M − 1) ∗ c

• Scatter: T = (log2N) ∗ a+ N−1
N
∗ S ∗ b+ (M − 1) ∗ c

• Allgather: T = 2 ∗ (log2N) ∗ a + ((log2N) + N−1
N

) ∗
S ∗ b+ (M − 1) ∗ c

• Shuffle: T = (N − 1) ∗ a+ S
N
∗ b+ S

N
∗ d

where: T = time consumption, S = amount of data trans-
ferred, N = number of nodes, M = number of files, m =
memory on each node, a = latency overhead/file transfer, b
= bandwidth overhead/byte, c = file system overhead/file,
and d = processing overhead/byte.

Figure 4 shows AMFS’s collective file movement perfor-
mance. As we discussed previously [35], Multicast shows
O(log(N)) scalability regardless of file size. Gather, Scat-
ter, and Allgather performance show O(log(N)) scalability
when the data size is small; they are dominated by latency.
For other sizes, Gather, Scatter, and Allgather show linear
scalability.

The time consumption of Shuffle has three elements, due
to latency overhead ((N − 1) ∗ a), bandwidth (S

N
∗ b), and

processing (S
N
∗ d). It requires the total input storage, pro-

cessing, and output storage data size on each node to be
less than its available memory. Thus, the shuffle operations
requires N ≥ 3∗S

m
compute nodes.

On the other hand, for large N , N − 1 approaches N
and the time consumption can be estimated as T = (N) ∗
a + S

N
∗ (b + d). The minimum value of this equation is

2 ∗
√
S ∗ a ∗ (b+ d), when N =

√
S∗(b+d)

a
. In other words,

using more than
√

S∗(b+d)
a

compute nodes for a shuffle of

files of size S won’t improve performance. These two in-
equalities indicate that to enable an efficient shuffle opera-
tion on files of size S, the number of compute nodes has to
meet the following condition:

3 ∗ S
m
≤ N ≤

√
S ∗ (b+ d)

a
(1)

To validate AMFS shuffle, we fixed the data size of the
shuffle operations at 4 GB, and ran the shuffle function on

Figure 5: Shuffle performance

{64, 128, 256, 512, 1024} AMFS servers, as shown in Fig-
ure 5. As discussed in §3.4, a shuffle operation has four steps,
and the partition and transfer steps dominate the time con-
sumption. With fixed data size, increasing the number of
servers results in a shorter partition time as the data size
for each server decreases. On the other hand, the trans-
fer step consumes more time due to the time complexity of
the ring algorithm. We use the measured performance at
64 and 128 servers to regress the parameters in a time con-
sumption model. Equation 1 predicts the optimal number
of servers is 231 servers, while the best performance in our
measurements runs on 256 servers. We see that the real sys-
tem performance is far off on 1024 servers, because as the
scale increases, the transfer congestion is more likely, which
results in unmodeled delay.

5.2 MTC Envelope of AMFS Shell
We measured the MTC Envelope of an IBM Blue Gene/P

with the ZeptoOS operating system and the GPFS shared
file system on {64, 128, 256, 512, 1024, 2048} compute
nodes. Then we measured the same performance metrics
with AMFS replacing GPFS, as shown in Table 1. Figure 6
shows the comparison, where numbers greater than one show
improvements, and numbers less than one show slowdown.

Most of metrics show improvements with AMFS Shell,
as the file system I/O is cached in memory. Exceptions
are open throughput on 64 compute nodes, and N-1 read
throughput and bandwidth in general. On 64 compute nodes,
though we spread the metadata across all compute nodes,
the aggregated throughput is still lower than that of the
GPFS metadata server, as the compute node is 850 MHz
while the GPFS server is 2.6 GHz. The N-1 read is a two

step procedure with AMFS Shell: a multicast followed by
a group of synchronized concurrent reads to the local data
replica. Since the concurrent local reads and the 1-1 read
both access local memory, the N-1 read performance can be
estimated as the sum of the multicast time and a group of
concurrent 1-1 reads. Thus 1-1 read performance is an upper
bound of N-1 read performance.

Figure 6: MTC Envelope improvements

Examining Table 1, we see that open throughput, 1-1
read throughput, 1-1 read bandwidth, write throughput, and
write bandwidth increase close to linearly as the number of
compute nodes increases. This linear scalability is the result
of the combination of distributed metadata server topology,
local write, and data-aware scheduling. Create throughput
scales less well, as the file name distribution over all meta-
data servers is not uniform. The N-1 read is a two-step
operation: multicast followed by read. The speedup of N-1
read throughput and bandwidth is a mix of the scalability
of the multicast and read. Thus when the multicast stage
dominates the N-1 read, the scalability of N-1 read is close
to the scalability of multicast, otherwise it is close to the
scalability of 1-1 read.

5.3 Application Performance
We run four applications—Montage, PageRank, K-means

and Monte Carlo—with AMFS Shell on a Blue Gene/P su-
percomputer. Montage is an astronomy image processing
application with a complex dataflow pattern. We run the
parallel stages of a Montage workload that produces a 6×6
degree mosaic. The input, output, and intermediate data
sizes are 3.2 GB, 10.9 GB, and 45.5 GB, respectively. mPro-
jectPP reads one input file, and reprojects it. mDiffFit fits
a plane to overlapped image pairs. mBackground reads one
reprojected image and applies correction coefficients to it.

In PageRank, we run with the Wikipedia 5.7m-page page
link dataset (1.1 GB size), to produce an output of 120 MB,
with 4 GB of intermediate files. PageRank-Distribution dis-
tributes the score of the current page to the pages it links
to, and produces output files with the link and its score.
PageRank-Shuffle reorganizes those files so that all records
of the same page are in a single file. PageRank-Sum adds
the scores for each page to produce a new score for it.

In K-means, we randomly generate one million coordi-
nates, and cluster them into 2,048 groups. This test has
19 MB input, 38 MB output and 76 MB intermediate data.
KMeans-Group first computes each point’s distance to all
candidate centroids, and writes a pair of points with the
nearest centroid in the first column. KMeans-Shuffle then

reorganizes those output files based on the candidate cen-
troids. KMeans-Centroid reads all point pairs with the same
candidate centroid as key and calculates the new candidate
centroid.

In Monte Carlo, we compute π by counting random coor-
dinates in a square that fall in the circle with diameter equal
to the square’s width. MonteCarlo-Sim generates one bil-
lion random coordinates within a square, counts those that
fall in the target circle, and writes this to an output file.
MonteCarlo-Sum reads those files and adds them together.

In Figure 7, we first fixed each problem size, and ran
the workloads on an increasing number of AMFS servers to
study the scalability of the applications using AMFS Shell.
In each application performance test, we compare each ap-
plication stage performance on AMFS Shell against that on
GPFS, except the shuffle stages of PageRank and K-Means,
as shuffle is a built-in function in AMFS Shell.

5.4 Application Performance Observations
AMFS Shell both performs well and scales well for applica-

tion stages where tasks access distinct files, such as Montage-
mProjectPP, Montage-mBack, and KMeans-Centroid. The
Montage-mDiffFit stage has a similar pattern; each task has
two input files and one output file. PageRank-Distribution,
PageRank-Sum, KMeans-Group and MonteCarlo-Sim also
have this pattern, but the AMFS Shell improvement in these
stages is marginal, because the long task running time hide
the improvement in the small file I/O.

AMFS Shell works well when the I/O size is large but does
not exceed the memory space of any AMFS server. Montage-
mDiffFit’s tasks each read in two 4 MB input file, and write
a 1 MB output file. Our test case has 3,883 tasks. With
AMFS Shell, all writes are local to memory, and data-aware
scheduling guarantees at least one read file is in memory.
That results in a 3.6x speedup of this stage.

For computations that involve the shuffle operation, larger
scale does not imply shorter time-to-solution. The optimal
scale for the problems size of our PageRank and K-means
cases are 256 and 512, respectively.

AMFS Shell eliminates GPFS I/O traffic by caching in-
termediate files in memory. This not only offers better per-
formance, but also removes load on the shared resources
(GPFS) that might be used by other applications on the
same system.

AMFS Shell is slower than GPFS on {64, 128, 256, 512}
compute nodes for MonteCarlo-Sum, which has a single task
that reads many input files. Even though we move the in-
put files into one node using AMFS Gather, the lower CPU
frequency on the compute nodes than on the I/O nodes and
the FUSE latency make AMFS Shell slower than GPFS on
less than 1,024 nodes. However, we see that on 1024 nodes,
AMFS Shell outperforms GPFS, as the task hits the GPFS
concurrency wall, while the AMFS Shell’s performance is al-
most consistent (O(log(N)) time, where N is the number of
nodes.)

6. RELATED WORK
Many parallel scripting applications leverage the paral-

lelism that MapReduce offers, including for example Cloud-
BLAST [23], which runs the BLAST sequence alignment
computation on clouds using Hadoop [4]. Hadoop, Ama-
zon EMR [3], and Azure MapReduce [24] have been evalu-
ated [19] as parallel frameworks for CAP3 [20], a sequence

Table 1: AMFS MTC Envelope Scalability. tput is throughput (in op/s), and bw is bandwidth (in Mb/s).

Scale Create tput Open tput 1-1 read tput 1-1 read bw N-1 read tput N-1 read bw Write tput Write bw
64 255.5 170.8 174.6 2215.3 139.7 537.3 129.6 499.8
128 1.5x 2.0x 2.2x 2.2x 2.1x 1.8x 2.0x 1.9x
256 2.9x 4.1x 4.5x 4.8x 4.2x 3.3x 4.1x 3.3x
512 6.8x 9.8x 10.1x 8.8x 8.6x 5.9x 8.2x 7.9x
1024 11.6x 15.7x 17.3x 16.9x 14.9x 11.0x 15.8x 16.0x
2048 19.4x 29.4x 29.6x 27.9x 26.6x 20.0x 29.0x 31.7x

Figure 7: Application performance

assembly application. High energy physics text process-
ing [19] is run in parallel with MapReduce.

Twister [15] and HaLoop [9] incorporate iteration support
to accommodate iterative applications. Hadoop Streaming
has been used for parallel execution of the parallel scripting
applications, because it has the flexibility to run user-defined
mapper and reducer functions as executables regardless of
implementation language. However, this approach requires
that all communications occur via standard input and stan-
dard output. MARISSA [12] runs Hadoop on a POSIX file
system to eliminate this limitation.

Swift [32] and Makeflow [2] take a functional program-
ming approach to compose and execute parallel scripting
applications. Programmers can declare application tasks as
functions and compose execution logic with control flow.

Bash over shell pipes [31] has been studied to enable paral-
lel execution of Bash scripts. The programming abstraction
here is key-value pairs. Computation stages exchange in-
formation through key-value pair aggregation. AMFS Shell
uses files and directories as intermediate data format, which
is more general than key-value pairs.

Locality has long been a key concern for performance
purposes. HDFS [6] exposes data locality through a cus-
tomized remote procedure call to the Hadoop execution en-
gine. MosaStore [1, 30] takes the approach of embedding
data locality in the extended attributes of the POSIX stan-
dard. Both approaches require that the execution engine

process locality information in order to make it transparent
to programmers.

Collective communications have been well studied in the
MPI community [29, 28]. These communication patterns
could speed up parallel scripting applications if properly im-
plemented at the file system level.

As more parallel scripting applications have been enabled
on clouds and large-scale computers, people have observed
that the single metadata server design of file systems such as
GPFS [27], PVFS [10], Lustre [14], and HDFS [6] is prob-
lematic at large scale. GIGA+ [25], ZHT [22], and other
systems have explored a scalable metadata server architec-
ture.

7. CONCLUSION AND FUTURE WORK
We have shown that a simple scripting language such as

Bash can express many parallel scripting applications, in-
cluding those that use the MapReduce model, using AMFS
Shell. The AMFS Shell interface eases the programming of
applications with simple dataflow patterns without break-
ing the application tasks’ interfaces to the file system. The
AMFS Shell data management scheme reduces congestion
to provide faster collective file movement and it provides
functional file content reorganization. AMFS Shell’s mea-
sured collective file movement and functional file manage-
ment features perform as expected. AMFS Shell extends
the MTC Envelope (benchmark of parallel scripting appli-

cations) on the same machine by factors of {78, 64, 54 47,
40, 12, 44, 10} for {create-throughput, open-throughput,
1-1 read throughput, 1-1 read bandwidth, write through-
put, write bandwidth, N-1 read throughput, N-1 read band-
width}, respectively. Application performance confirms that
AMFS Shell runs the parallel stages of Montage 2.2x faster
on average on between 64 and 1024 compute nodes. AMFS
Shell runs PageRank without shuffle 1.4x faster than GPFS
on 1024 compute nodes.

In future work, we will deploy AMFS Shell on different
platforms, such as supercomputers with other architectures
and commodity clusters. We will comprehensively compare
AMFS Shell with MapReduce models, along with their ap-
plications and frameworks. We will examine additional par-
allel scripting applications with AMFS Shell. We will de-
velop better algorithms for the shuffle functionality of AMFS
to make it more scalable and predictable.

Acknowledgments
This work was supported in part by the U.S. Department of
Energy under the ASCR X-Stack program (DE-SC0005380)
and DE-AC02-06CH11357. Computing resources were pro-
vided by the Argonne Leadership Computing Facility. Work
by Katz was supported by the National Science Foundation
while working at the Foundation. Any opinion, finding, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

8. REFERENCES
[1] S. Al-Kiswany, A. Gharaibeh, and M. Ripeanu. The

case for a versatile storage system. SIGOPS Oper.
Syst. Rev., 44:10–14, March 2010.

[2] M. Albrecht, P. Donnelly, P. Bui, and D. Thain.
Makeflow: A portable abstraction for cluster, cloud,
and grid computing. Technical Report TR-2011-02,
Department of Computer Science and Engineering,
University of Notre Dame, 2011.

[3] Amazon. Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce/.

[4] Apache. Apache Hadoop.
http://hadoop.apache.org/.

[5] T. G. Armstrong, Z. Zhang, D. S. Katz, M. Wilde,
and I. Foster. Scheduling many-task workloads on
supercomputers: Dealing with trailing tasks. In Proc.
of Many-Task Comp. on Grids and Supercomputers,
2010, 2010.

[6] D. Borthakur. HDFS architecture. http://hadoop.
apache.org/hdfs/docs/current/hdfs_design.pdf.

[7] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic
distributed DAG engine for high performance
computing. Parallel Computing, 38(1):37–51, 2012.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[9] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient iterative data processing on large
clusters. Proceedings of the VLDB Endowment,
3(1-2):285–296, 2010.

[10] P. H. Carns, W. B. Ligon, III, R. B. Ross, and
R. Thakur. PVFS: a parallel file system for linux

clusters. In Proc. of the 4th annual Linux Showcase &
Conf. - Volume 4, pages 28–28. USENIX Association,
2000.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. 8th
USENIX Symposium on Operating Systems Design
and Implementation, pages 137–150, 2004.

[12] E. Dede, Z. Fadika, J. Hartog, M. Govindaraju,
L. Ramakrishnan, D. Gunter, and R. Canon.
MARISSA: MApReduce Implementation for
Streaming Science Applications. In Fourth IEEE
International Conference on eScience (eScience ’08),
pages 1–8. IEEE, 2012.

[13] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahl, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob, and D. Katz. Pegasus:
A framework for mapping complex scientific workflows
onto distributed systems. Scientific Programming
Journal, 13(3):219–237, 2005.

[14] S. Donovan, G. Huizenga, A. J. Hutton, C. C. Ross,
M. K. Petersen, and P. Schwan. Lustre: Building a file
system for 1000-node clusters, 2003. Proceedings of
the 2003 Linux Symposium.

[15] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: a runtime for
iterative MapReduce. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, pages 810–818. ACM, 2010.

[16] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce
for data intensive scientific analyses. In IEEE Fourth
International Conference on eScience, pages 277–284.
IEEE, 2008.

[17] FUSE Project. Fuse: Filesystem in userspace.
http://fuse.sourceforge.net.

[18] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard. Par. Comp.,
22(6):789 – 828, 1996.

[19] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox.
MapReduce in the Clouds for Science. In IEEE Second
International Conference on Cloud Computing
Technology and Science (CloudCom 2010), pages
565–572. IEEE, 2010.

[20] X. Huang and A. Madan. CAP3: A DNA sequence
assembly program. Genome research, 9(9):868–877,
1999.

[21] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good,
A. C. Laity, E. Deelman, C. Kesselman, G. Singh,
M.-H. Su, T. A. Prince, and R. Williams. Montage: a
grid portal and software toolkit for science-grade
astronomical image mosaicking. Intl. J. of Comp. Sci.
and Eng., 4(2):73–87, 2009.

[22] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu. ZHT: A
light-weight reliable persistent dynamic scalable
zero-hop distributed hash table. In 27th International
Parallel & Distributed Processing Symposium
(IPDPS). IEEE, 2013. to appear.

[23] A. Matsunaga, M. Tsugawa, and J. Fortes.
CloudBLAST: Combining MapReduce and
virtualization on distributed resources for
bioinformatics applications. In Fourth IEEE

International Conference on eScience (eScience ’08),
pages 222 –229, 2008.

[24] Microsoft. Windows Azure.
http://www.windowsazure.com/.

[25] S. Patil and G. Gibson. Scale and concurrency of
GIGA+: file system directories with millions of files.
In Proceedings of the 9th USENIX Conference on File
and Storage Technologies, pages 13–13. USENIX
Association, 2011.

[26] C. Ramey. Bash, the bourne-again shell. 1994.

[27] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proc. of 2002
Conf. on File and Storage Technologies FAST, pages
231–244, 2002.

[28] R. Thakur and W. Gropp. Improving the performance
of collective operations in MPICH. In J. Dongarra,
D. Laforenza, and S. Orlando, editors, Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, volume 2840 of Lect. Notes in
Comp. Sci., pages 257–267. Springer, 2003.

[29] R. Thakur and R. Rabenseifner. Optimization of
collective communication operations in MPICH. Intl.
J. of High Perf. Comp. Applications, 19:49–66, 2005.

[30] E. Vairavanathan, S. Al-Kiswany, L. Costa,
M. Ripeanu, Z. Zhang, D. S. Katz, and M. Wilde. A
workflow-aware storage system: An opportunity study.
In Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2012.

[31] E. Walker, W. Xu, and V. Chandar. Composing and
executing parallel data-flow graphs with shell pipes. In
Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science, page 11. ACM, 2009.

[32] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Par. Comp., pages
633–652, September 2011.

[33] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S.
Katz, E. Lusk, and I. T. Foster. Swift/T: Scalable
data flow programming for distributed-memory
task-parallel applications. In Proceedings of the 2013
12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2013), 2013.

[34] Z. Zhang, D. Katz, M. Wilde, J. Wozniak, and
I. Foster. MTC Envelope: Defining the capability of
large scale computers in the context of parallel
scripting applications. In Proceedings of the 22nd
ACM International Symposium on High Performance
Distributed Computing. ACM, 2013.

[35] Z. Zhang, D. Katz, J. Wozniak, A. Espinosa, and
I. Foster. Design and analysis of data management in
scalable parallel scripting. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis,
page 85. IEEE Computer Society Press, 2012.

This manuscript was created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Ar-
gonne, a U.S. Department of Energy Office of Science lab-
oratory, is operated under Contract DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable worldwide li-
cense in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

