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Abstract—Efficiently porting ordinary applications to Blue
Gene/Q supercomputers is a significant challenge. Codes are
often originally developed without considering advanced archi-
tectures and related tool chains. Science needs frequently lead
users to want to run large numbers of relatively small jobs (of-
ten called many-task computing, an ensemble, or a workflow),
which can conflict with supercomputer configurations. In this
paper, we discuss techniques developed to execute ordinary
applications over leadership class supercomputers. We use the
high-performance Swift parallel scripting framework and build
two workflow execution techniques–sub-jobs and main-wrap.
The sub-jobs technique, built on top of the IBM Blue Gene/Q
resource manager Cobalt’s sub-block jobs, lets users submit
multiple, independent, repeated smaller jobs within a single
larger resource block. The main-wrap technique is a scheme
that enables C/C++ programs to be defined as functions that
are wrapped by a high-performance Swift wrapper and that
are invoked as a Swift script. We discuss the needs, benefits,
technicalities, and current limitations of these techniques.
We further discuss the real-world science enabled by these
techniques and the results obtained.

1. Introduction

The Argonne Leadership Computing Facility (ALCF) hosts
Mira, a 50K-node IBM Blue Gene/Q (BG/Q) with peak per-
formance of 10 PetaFLOPS. While this system was designed
for and is well-suited to large applications programmed
using advanced parallelization libraries such as MPI and/or
OpenMP, it lacks many features that are taken for granted on
smaller-scale clusters and thus is not well-suited to classes of
scientific applications such as ensemble or parameter sweep
studies and workflow style computation, which are increas-
ingly observed in scientific applications. For example, the
minimum job size on Mira is 512 nodes (8192 cores, or half
a rack), which is too large for some user requirements or for
some application designs. On other systems, the queues may
be configured to encourage very large jobs and discourage

small jobs, which again may conflict with a science need for
many small jobs. Many applications are originally developed
with small- and medium-size execution on regular clusters
in mind. Some of these applications are later used at large-
scale in a many-task computing (MTC) style. (MTC [1]
is an emerging computation style wherein the computation
consists of a large number of medium-sized, semi-dependent
tasks implemented as ordinary programs that are invoked
from the command line.)
Porting such applications to leadership class supercomputers
can be a significant challenge because current tools require
users to manually partition a larger allocation into the ap-
propriate size for their tasks. We propose two solutions for
automating this process, which enable program in the Swift
programming language to run small tasks on BG/Q.
The first technique automates use of the sub-block job
feature of the BG/Q resource manager, Cobalt, which allows
jobs to run on sub-blocks of an outer block allocation. With-
out our technique, a user must manually select a geometry
(i.e., a subset of the nodes based on the network topology)
and configure related low-level parameters.
The second technique we discuss is “main-wrap.” This tech-
nique enables applications with command-line interfaces to
be executed in an MTC mode over BG/Q systems. The
BG/Q compute nodes do not support creation of subpro-
cesses through fork()/exec(), so the usual approach of
running the program as a separate process does not work.
The main-wrap technique bypasses this restriction, enabling
large-scale MTC computing on Mira without modifying
code to use threads or message passing.
While the sub-jobs and main-wrap techniques both enable
users to run their ordinary applications on BG/Q systems,
they address two distinct problems. main-wrap addresses a
BG/Q operating system level deficiency whereas sub-jobs
addresses BG/Q resource management limitations. There are
cases where one must be used over the other, for instance,
when the source code of an application is not available one,
the sub-jobs technique must be used, or where both can
be used together, such as when a main-wrapped application
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must run repeatedly over a parameter space in smaller job
sizes than minimum allowed by Mira (512 nodes). We
compare and contrast the techniques in detail in Section 4.

1.1. Swift

We use the Swift parallel scripting language as a base and in-
terface it with the BG/Q resource management system. Swift
coordinates tasks which are then run directly by the two
previously mentioned techniques. Swift [2] is well suited to
many-task and workflow-style computation. It supports the
use of a variety of computational environments including
clusters, grids, supercomputers, and clouds. Two implemen-
tations of Swift exist: Swift/K and Swift/T. Swift/K is a high
throughput framework which is used to enable the sub-jobs
techniques, while the high performance Swift/T [3] is used
to enable the main-wrap technique. Swift/K uses an XML
dialect to internally represent tasks and their dependencies,
while Swift/T uses Tcl.

1.2. Blue Gene/Q Architecture

user frontend

compute nodesservice and I/O nodes

Figure 1. A simplified architecture of the Blue Gene/Q user interaction
with compute nodes

The BG/Q machine is configured as three major functional
components (see Figure 1.) First, the user front-ends are
the nodes that act as login nodes for end-users. The front-
ends are connected to the second component, the service and
I/O nodes. The service nodes perform system management
services such as I/O and execution monitoring, logical node
partitioning, and running scheduler services. The I/O nodes
provide file and process management services, network
socket, and debugging services. The third component is the
compute nodes, which execute user programs and interact
with service and I/O nodes. The Mira BG/Q is configured as
48 racks of 1024 nodes each. Each rack in turn is configured
as two midplanes (or half-racks) of 512 nodes each. Each
node is comprised of 16 cores.
The compute nodes in the BG/Q system are interconnected
in a five-dimensional torus geometry. This means that each
node is connected with ten of its nearest neighbors. This
configuration results in efficient internode communication
when an application running on a sub-block of a larger
outer block of nodes. However, when this happens, the user’s
choice of which confining topology to use for that sub-block
leads to differing run efficiencies.

2. The Sub-job and Main-wrap Techniques
Here we discuss the design and implementation of the two
techniques.

2.1. Sub-jobs

The BG/Q runs the Cobalt scheduler for resource man-
agement. Cobalt provides a feature through which multiple
smaller, repeated, multi-node jobs can be submitted inside a
larger multi-node outer job. This feature is called sub-block
jobs (or sub-jobs for short.)
Sub-jobs are a convenient job management strategy for
applications composed of many small- to medium-sized
tasks. For example, docking applications are typically run
to find the possible placement of many candidate molecules
against one subject molecule, forming a large number of
independent small-to-medium-sized tasks. Similarly, many
molecular dynamics applications are run as relatively small
computations over a large number of configurations, forming
independent medium-sized tasks. In such computations, it
is convenient to use sub-jobs, because they allow a user to
repeatedly run tasks without interacting with the scheduler
to request and obtain a new Cobalt block for each task.
However, in order to work efficiently with sub-jobs, users
must understand the five-dimensional geometry of the BG/Q
compute nodes. Constructing such geometries for different
job sizes across applications is very tedious, and keeping
track of completed jobs requires additional manual work.
ALCF provides scripts to help the user in this complex
choice process, but even with the scripts, running many-
task applications is inconvenient because the user must
manually do size matching between tasks and blocks, in
addition to activities such as booting the sub-blocks, limiting
the number of jobs so as not to overload the outer block
and, ensuring a time difference of 3-4 seconds between
successive job submissions to avoid a possible system freeze
(a hardware related requirement of BG/Q systems).
In our design, we abstract such low-level details by em-
bedding and integrating these scripts into a higher level
workflow execution framework.

2.1.1. Design. Applications that need to run multiple, si-
multaneous small jobs with interdependencies, such as those
found in workflows, will benefit from using the sub-job
technique. The design goal of this technique is to abstract,
hide, and separate the complicated resource management
process from the workflow. Users must be able to run
their existing workflows expressed in Swift/K with little or
no modifications under the new sub-jobs technique. This
means that the mechanism to handle the nuances of resource
management must be handled at the layers in which the
Swift/K is exposed to the BG/Q Cobalt scheduler. This
is convenient to adapt within Swift/K’s execution mech-
anism, as it is implemented as layered calls (Swift/K’s
chain of invocation) to a series of components handling
specific execution requirements (e.g., task generation, data
management, monitoring, etc.) We solve this through a new
shell script (bg sh) that forms an interface layer between
Swift’s resource management system and the BG/Q Cobalt
scheduler. The bg sh script replaces application invocation
under these circumstances, and the application invocation
command line arguments become the arguments of this
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script. The bg sh script needs minimal information from
users: the size of the outer block and that of a sub-block.
This information is passed via regular Unix environment
variables. The 3-4 seconds time difference between two
invocations must be handled at a higher level because it
affects the communication between the BG/Q service and
compute nodes. This means that Swift/K’s task dispatch
mechanism must be adjusted to accommodate this time
difference, which happens at a higher level than bg sh.

2.1.2. Implementation. Figure 2 shows Swift/K’s chain
of invocation for a workflow using the sub-jobs tech-
nique. Swift invoke starts the Swift/K script and the
Coaster service [4] on the current host and arranges for
one or more workers ( 1©) to be started on the BG/Q service
nodes. The Coaster service submits the worker to a service
node as a Cobalt scheduler job which connects back ( 2©) to
the Coaster service over TCP. As the Swift script runs, it
submits tasks to the Coaster service over a TCP connection,
which then sends tasks to available workers. The worker
then invokes the swift wrapper script ( 3©), which sets up a
sandbox area for application execution. It moves input data
to the sandbox prior to application execution and output
data from the sandbox to the working directory where the
swift invoke was invoked after execution. The swift wrapper
invokes the bg sh ( 4©) script with the application command
line specified in Swift/K script source The bg sh script
sets up the sub-block environment, manages sub-blocks,
and assigns application tasks to the available sub-blocks.
bg sh invokes ( 5©) the Cobalt command runjob on the
compute node and invokes ( 6©) the application executable,
app invoke.
Since the bg sh script is central to our sub-jobs technique,
we will describe its invocation and behavior in detail. The
script is invoked as:

bg.sh exe [preproc] [postproc] args

The steps involved in the bg sh script are:

1) Determine the system name and set the environ-
ment. ALCF hosts two smaller systems in addition
to Mira: Cetus (4 racks) and Vesta (2 racks). This
step enables support for the test hosts by setting the
appropriate environment for them.

2) Determine “shape” of a sub-block based on the
size obtained via externally passed environment
variables. The “shape” is a string of the form
of AXBXCXDXE, which represents the number of
nodes in each of the five dimensions of the node-
geometry. For instance, for a sub-block size of 64,
the shape will be 2X2X4X2X2, whereas that for a
sub-block size of 512, it will be 4X4X4X4X2. The
number in each dimension can change as long as
the product matches the size of the sub-block. A
symmetrical shape is preferred for optimal intern-
ode communication. Block sizes larger than 512
do not need the shape and are treated as bootable
blocks exclusively.

3) Invoke the BG/Q Cobalt-provided scripts to obtain
the corner coordinates of the respective sub-blocks
by supplying the sub-block shape. The size of the
outer block is automatically determined at runtime
by reading the Cobalt-specific environment. As a
result, an array of corner coordinates will be ob-
tained.

4) Invoke the user supplied preprocessing script
(preproc), if any. This script is used to initialize
application specific environment.

5) Use the obtained corner coordinates in a loop to
invoke the exe with args obtained from the com-
mand line arguments to the bg sh script.

6) If the sub-block size is larger than 512, invoke the
block booting routines. As a result, several bootable
blocks will be obtained. Boot these blocks and
invoke the exe with args.

7) Invoke the user supplied postprocessing script
(postproc), if any. This script is used to perform
postprocessing activities after the application has
run.

8) Finally, invoke the cleanup scripts to reclaim the
sub-block by the outer block and optionally shut-
down the booted blocks.

Note that the outer block remains active during the lifetime
of the worker that requested the Cobalt scheduler block via
its qsub command. The sub-blocks remain alive as long as
there are dispatchable tasks available at the Coaster service
end. The available sub-blocks are reused for new tasks by
assigning a unique index to each sub-block. This index is
exported by the worker and is used by the bg sh script.
The multiplicity of workers and blocks are determined by
the Swift configuration. However, most applications can be
run in a configuration where one worker controls one outer
block (obtained via qsub) and coordinates with multiple
sub-blocks with the bg sh script.

swift_invoke app_invokebg_shswift_wrapper
1

1
2

3 4 5 6
worker runjob

Coaster_service

Figure 2. Swift/K sub-jobs chain of invocation

Figure 3 shows an example set of sub-job configurations for
a 512-node outer block. The leftmost configuration shows
the outer block divided into 8 sub-blocks, each of size 64
nodes. Dividing the outer block into smaller sized sub-
blocks will yield a larger number of sub-blocks. In extreme
cases, it is possible to have a single sub-block of the same
size as the outer block (though this is not useful), or 1-
node sized sub-blocks with the number of sub-blocks equal
to the size of the outer block (one restriction is that the
size of a sub-block must be a power of 2). Similarly, the
size of the outer block (and thus the size of overall run)
can be between 1 node and the number of nodes in the
whole machine. However, sub-jobs work in two different
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ways depending on the the size of outer block, 512 nodes
or smaller versus larger than 512 nodes.
There are two types of sub-blocks: prebooted and bootable
sub-blocks. As the names suggest, the pre-booted sub-blocks
are booted along with the outer block while the bootable
sub-blocks needs to be explicitly booted. For outer blocks
larger than 512 nodes, bootable nodes must be used, while
for outer blocks of 512 nodes or smaller, the user can choose
between prebooted and bootable sub-blocks. In Swift/K’s
implementation of sub-jobs, this distinction is abstracted
away and is transparent to end-user. In other words, users
only need to specify the sizes of outer- and sub-blocks and
Swift/K will determine how to invoke them.

. . .

4X4=16 sub-blocks4X2=8 sub-blocks 8X8=64 sub-blocks

64-node

sub-block

32-node

sub-block
8-node

sub-block

Figure 3. A range of sub-block configurations over a 512-node outer block

Figure 4 shows the sub-blocks system mapping between
the Swift/K call-chain and the architectural components
of BG/Q. As shown, swift invoke and Coaster service run
over the user front-end. The worker, swift wrapper, and
bg sh run on service nodes under the Cobalt scheduler. The
Cobalt runjob command runs on compute nodes, which in
turn invoke the application executable on sub-blocks of the
chosen shape and size. In this example, 64 8-node sub-jobs
are shown running over an outer block on 512 nodes.

2.2. Main-wrap

A traditional approach to run applications in many-task
parallel mode is to use the POSIX fork()/exec() sys-
tem call mechanism to fork a new process for application
invocation. However, this approach is not suitable on the
BG/Q’s Compute Node Kernel (CNK) Operating System,
which prohibits fork()/exec(). In this situation, ordi-
nary applications can be run in many-task mode by encap-
sulating the main function of the application in an HPC
wrapper and executing the wrapper on the BG/Q nodes.
This approach enables programs (in almost any compiled
language) to be called as a function rather than executed
via a POSIX fork()/exec() invocation. Replacing the
wrapper with an HPC workflow system such as Swift/T
permits applications to be invoked from Swift/T on the
BG/Q. The resulting workflow is more efficient, even on
systems that do support the fork()/exec() invocation
mechanism, since it avoids process management overheads.

2.2.1. Design. Applications that are built with compiled
languages start their execution from an entry point such as
the main() function in C/C++. The design goal of the

main-wrap technique is to enable invocation of the entry
point of a codebase directly from other code without creating
a separate process. This enables a MTC system like Swift/T
to run many instances of the application over an HPC system
such as BG/Q.
The design must take into account the way application code
is built. Most applications are composed of one or more
supporting libraries and built as either a standalone static
executable or a dynamic executable that loads some libraries
at runtime. This distinction has significant implications for
how a Swift/T application is compiled and run. To build
a standalone static executable, all libraries required by the
application, their dependencies, system libraries, and the
Swift/T language runtime must be linked into the executable.
The design must also consider the command-line parameters
of the application. When a C/C++ program is invoked,
any command-line parameters are passed into the main()
function with two arguments: argument count (argc) and
vector (argv[]). main-wrap must enable command-line
arguments to be passed into wrapped applications from
Swift/T scripts through the same mechanism.

2.2.2. Implementation. Implementation of the main-wrap
technique is done using a shell script that automates the
various transformation steps as shown in Figure 5. In the
first step ( 1©), the definition of the main(int argc,
char** argv) in the application’s entry-point program
is extracted and replaced (using Unix sed) with a non-
main (e.g. leaf_main(int argc, char** argv))
function in a new copy of the program. This modified
main function definition is also added to the corresponding
header file(s). In the second step ( 2©), the duplicated source
file is compiled by linking it with the application libraries
(assuming dynamic linking; we discuss a static build later).
In the third step ( 3©), a stub is generated in the Tcl language.
Swift/T expects all extension functions (known as leaf func-
tions) to be expressed though a Tcl interface. In the fourth
step ( 4©), an extension code is generated in C/C++ that con-
tains appropriate Tcl interface so that it can be invoked from
a Swift/T script. The extension also contains the code to
capture the command line arguments passed to the user code,
to pass them to the duplicated main() function. In the
fifth step ( 5©), the leaf function contained in the Tcl stub is
defined and invoked as an application in a user level Swift/T
script. This step is carried out manually since it depends
on how the particular user/application invokes applications.
The Swift/T script is then compiled ( 6©) using an optimizing
compiler [5] that generates Tcl code to be interpreted by the
Swift/T runtime. The final compute node invocation ( 7©) is
made in a LRM (Local Resource Manager) wrapper (in this
case a Cobalt scheduler script).
Finally, for the cases where an application is compiled and
built as a standalone static executable, it is possible to
create a self-contained Swift/T-wrapped executable. This is
accomplished by specifying the libraries, sources, headers,
and other scripts in a manifest file. This file is processed by
a custom tool that takes the application entry point program
as an argument and generates a C/C++ source code for
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user frontend

compute nodesservice and I/O nodes

swift_invoke app_invokebg_shswift_wrapper
1

1
2

3 4 5 6
worker runjob

Coaster_service

8X8=64 sub-blocks

Figure 4. A mapping between the architectural components of BG/Q, the Swift/K call-chain and a sub-block configuration

standalone executable building. The generated program will
initialize a Tcl interpreter with the required libraries. Any
Tcl source code is embedded as character arrays. Once the
C/C++ source code is generated, it can be compiled and
linked with any required libraries into an executable using
the platform’s C/C++ compiler and linker.

main.c[xx] leaf_main.c[xx]

header.h

TCL_stub

leaf_main.o

lib

LRM_wrapper
1 2

3

4

5
6

user.swift
7

user.TCL

ext.c[xx]

Figure 5. Swift main-wrap automation steps

3. Applications
In this work, we have examined four applications, the first
two of which have been enabled by the sub-jobs technique,
and the second two of which have been enabled by the main-
wrap technique.

3.1. ematter (Material Science)

This application consists of a workflow that involves the
invocation of LAMMPS and Smeagol tools. In our ex-
ample, it is applied to TiN-Ta-HfO2-TiN heterostructures
to mimic HfO2-based memristive switching devices [6].
It performs molecular dynamics (MD) calculations using
LAMMPS to take into account the effect of temperature,
and then performs density functional theory (DFT) - Non-
Equilibrium Green’s function (NEGF) calculations to cal-
culate the electronic transport properties using Smeagol.
Smeagol needs to read in the quenched atomic positions
generated by LAMMPS, which we automate through a work-
flow. Figure 6 shows an overall workflow of the ematter
application.

Figure 6. The overall ematter workflow.

Figure 7. The HfO2 heterostructures optimized by just DFT and MD/DFT.

The TiN-Ta-HfO2-TiN heterostructure is modeled by 113
atoms, with a total length of about 7 nanometers. TiN is
metallic and serves as an electrode on both sides. Tantalum
(Ta), which is expected to work as the oxygen reservoir,
is inserted between the left TiN electrode and HfO2 (see
Figure 7). The total energy of the optimized MD/DFT-
derived structure is 1.2 eV lower that the DFT-only opti-
mized structure, indicating the MD/DFT structure is more
likely to exist in reality.

Interface structure is very important for transport cal-
culations. Compared with the DFT-derived structure, the
MD/DFT-derived structure exhibits a larger Ta-HfO2 dis-
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Figure 8. The transmission function of DFT (origOPTLDA) and MD-DFT
(900KLDA) structures

tance and a smaller HfO2-TiN distance. The structure dif-
ference results in different transmission functions (see Fig-
ure 8). While the transmission functions above the Fermi
level (energy=0 in the figure) are very similar for both
structures, the transmission function of the MD/DFT-derived
structure is shifted by about 0.5 eV to the left.

3.2. VASP (Material Science)

VASP [7] is a popular materials modeling tool that can be
used to perform atomic level calculations over first principal
methods such as density functional theory (DFT). VASP-
based workflows can be used to to study the behavior of
materials by performing a series of calculations where one
or more of a given set of basic parameters are perturbed.
One such workflow is shown in Figure 10. The workflow
starts from a basic input dataset over which a preprocessing
step is run in order to produce a unique parameter set. VASP
is invoked over this parameter set and selected results are
collected and moved to a database for analysis and archival
purposes. The Swift/K code for the workflow is shown in
Figure 9. Lines 3-12 show the application function defini-
tion. Note the invocation to bg sh script in lines 10-11. Lines
14-15 define the preprocess and postprocess scripts. Lines
17-20 define the basic VASP input set. The preprocessing
script takes the lattice factor (fact) and plugs it in one of
the input files (INCAR). The foreach loop shown in line
22 generates 64 such independent lattice factor values and
invokes VASP in parallel over a parameter range of 1.0 to
6.4 with a step size of 0.1.

3.3. Rosetta (Protein Folding)

The FlexPepDock refinement protocol is part of the
Rosetta protein modeling software suite. FlexPepDock
is designed to create high-resolution models of com-
plexes between flexible peptides and globular proteins. [8]

1 type file;
2
3 app (file _o, file _e, file _outcar, file _contcar)
4 runvasp(
5 file _vaspreproc, file _vaspostproc,
6 file _vasp_incar, file _vasp_poscar,
7 file _vasp_potcar, file _vasp_kpoints,
8 int _latt_factor) {
9

10 bgsh "vasp.bgq.ibm" @_vaspreproc @_vaspostproc
11 _latt_fact stdout=@_o stderr=@_e;
12 }
13
14 file vaspreproc <"vaspreproc.sh">;
15 file vaspostproc <"vaspostproc.sh">;
16
17 file incar <"INCAR">;
18 file poscar <"POSCAR">;
19 file potcar <"POTCAR">;
20 file kpoints <"KPOINTS">;
21
22 foreach fact in [1.0:6.4:0.1]{
23 file output <single_file_mapper;
24 file=strcat("logs/vasp-", fact, ".out.txt")>;
25 file error <single_file_mapper;
26 file=strcat("logs/vasp-", fact, ".err.txt")>;
27 file outcar <single_file_mapper;
28 file=strcat("output/vasp-outcar-", fact)>;
29 file contcar <single_file_mapper;
30 file=strcat("output/vasp-contcar-", fact)>;
31 (output, error, outcar, contcar) =
32 runvasp(vaspreproc, vaspostproc,
33 incar, poscar,
34 potcar, kpoints, fact);
35 }

Figure 9. Swift/K representation of the user-level workflow for the VASP
application.

Input Data

preproc
postproc

ResultsVASP

preproc
postproc

ResultsVASP

preproc
postproc

ResultsVASP

preproc
postproc

ResultsVASP

.

.

.

Figure 10. A workflow based on VASP calculations

FlexPepDock starts with coarse model of a peptide-
protein complex. An initial step, called pre-packing, re-
moves internal clashes between amino acid sidechains and
the protein and peptide. The protocol then optimizes the
position of the peptide using a Monte-Carlo minimization
approach (see Figure 11), and calculates an energy score
for the complex. The protocol is repeated n times, where
n is defined by the user at runtime. The final results are
presented as a ranked list of optimized models, where the
lowest energy represents the most stable complex.

We used FlexPepDock to study a set of 2048 peptide-
HLA (human leukocyte antigens) complexes. HLA are pro-
teins located on the cell surface that present antigenic
peptides to generate immune defense reaction. The pep-
tides comprised of proteolyzed protein fragments that are
degraded by cytosolic proteinases and are typically of
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Figure 11. A nonameric peptide is modeled into the binding groove of an
HLA molecule using the FlexPepDock refinement protocol.

length between 8-12 amino acids. Once bound to the HLA
molecule, the peptide-HLA complex is presented for recog-
nition to the T-cell receptors of CD8+ cytotoxic T-cells. The
t-cells can identify peptides from foreign bodies and will
initiate an immune response.
Our peptide data set contain representatives from the Im-
mune Epitope Database (IEDB), a repository that collects
and organizes data on major histocompatibility complex
(MHC) binding experiments [9]. This set was previously
studied by Binkowski et. al. to analyze the effects of amino
acid substitutions in the HLA binding groove using a dif-
ferent methodology [10]. We applied the FlexPepDock
refinement protocol to assess the viability of incorporating
the more complex methodology into the reported analysis
workflow.

3.4. DOCK (Protein Docking)

We study a mock version of the DOCK [11] protein fold-
ing application called mockdock. The mockdock application
accepts two files as input (representing a protein file and
a peptide file), and returns a number. The input files are
read by mockdock, but their contents are not processed. The
program prints a single integer on standard output, based on
the length of the input files.

4. Experiments

We performed a number of experiments by applying the
sub-jobs and main-wrap techniques to the four science ap-
plications.
The sub-job enablement of the ematter application had two
qualitative impacts: first, rapid prototyping of workflow de-
sign and proof-of-concept execution, and second, production
level execution of the workflow for a medium-size dataset.
We ported and executed the workflow with 8 parallel 16-
node sub-blocks over an outer block of 128 BG/Q nodes.
The sub-job technique is particularly well-suited to VASP-
based workflows. As a prototype, we configured and exe-
cuted the VASP workflow in sub-job mode over 512 nodes
(8192 cores) of BG/Q with 64 parallel 8-node sub-blocks.

VASP’s current MPI-based implementation is known to be
sensitive to memory usage and scalability with respect to
the MPI-ranks and input parameters. Consequently, careful
calibration is required in choosing the shape of a VASP
job. A lower number of nodes for a particular run might
offer insufficient memory whereas a larger number of nodes
(and a proportional number of MPI ranks) might result in
poor scalability. Providing a larger number of nodes with
lower MPI ranks will waste compute resources. The easy
tuning of the size of sub-block with the sub-job technique
resulted in rapid calibration of the optimal job size for a
given parameter set.

1 import io;
2 import files;
3 import string;
4
5 (int v) leaf_main(string A[]) "leaf_main" "0.0"
6 "leaf_main_wrap";
7
8 main{
9 /* Collection of pdb files, */

10 file PDB[]=glob("/proj/ExM/hlac/*complex*.pdb");
11 int nstruct=3; // nstruct per job
12 int m=30; // number of jobs per pdb
13
14 foreach pdb in PDB{
15 foreach i in [1:m]{
16 leaf_main([
17 "-database",
18 "/home/vsachde/minirosetta_database",
19 "-pep_refine",
20 "-s", filename(pdb),
21 "-ex1",
22 "-ex2aro",
23 "-use_input_sc",
24 "-nstruct", fromint(nstruct),
25 "-overwrite",
26 "-suffix", "run"+fromint(i) ,
27 "-scorefile",
28 split(filename(pdb), "/")[4]+i+".sc"
29 ]);
30 }}}

Figure 12. Swift/T representation of the user-level workflow for the
FlexPepDock application.

The main-wrap technique was applied to FlexPepDock,
as shown in Figure 12. Lines 5-6 define the wrapped main
function, which is invoked inside the main method of
the Swift/T script. In this example, the FlexPepDock
application was executed in a two-level nested foreach loop
(lines 14 and 15) doing 30 refinements over each of 160
PDB molecules resulting in a parallel invocation of 4800
application instances. The code is general enough for run-
ning the application using any combination of command line
arguments (lines 17-31) without rebuilding. The code also
illustrates usage of Swift/T builtin functions such as glob
(line 10) to populate array from filesystem, filename (line
21) to obtain the file name from a mapped variable and
fromint (line 26) to convert integer to string, and split
(line 31) to split a string over a delimiter. The main-wrap
technique allowed the application to be ported to the BG/Q
in MTC form with minimum performance overhead. It was
run in production as described in Section 3.3. Additionally,
this implementation acts as a proof of concept for the family
of related application in the Rosetta Commons software.
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We applied the main-wrap technique to mockdock, and then
evaluated and benchmarked the performance results with
large-scale runs. The benchmark study was done on Mira for
up to 1,000,000 application invocations, with performance
results as shown in Table 1. Each application task invocation
(“Tasks” column) ran for approximately 30 seconds of real
time. The number of parallel application tasks running at a
time were set to be equal to the number of available cores,
with one task per core. When the number of application
tasks exceed the number of available cores, the additional
tasks are started and assigned to cores as the previous
tasks finish and the cores become available again. In this
experiment, since the tasks are of same duration, we observe
sets of tasks that nearly simultaneously start, run, and then
finish. We refer to one of these sets as a “wave.”
The number of load-balancing and task-distribution servers
in each run (“Servers” column) was incremented as the
number of tasks increased. We use a ratio of load-balancing
servers to core of 1:∼500 for smaller runs and 1:∼300 for
larger runs. We increase the ratio for larger runs in order
to mitigate the communication bottlenecks between Tur-
bine [12] (Swift/T’s task dispatcher) and the load-balancing
servers. However, we still see a slight lag in scaling, which
we attribute to I/O overhead on the BG/Q. We note that a
limited number of I/O nodes interact with a vast number of
compute nodes (see Figure 1). For example, the 1 million
30-second tasks run in 18 waves over 62,656 cores in
556 seconds, whereas ideally they should complete in 540
(18×30) seconds.

Tasks Nodes Cores Servers run time (s)
256,000 1002 16,032 32 492
512,000 2004 32,064 64 501
768,000 3008 48,128 128 495
1,000,000 3923 62,756 256 556

TABLE 1. PERFORMANCE OF MOCKDOCK APPLICATION USING

MAIN-WRAP ON THE ALCF BG/Q SUPERCOMPUTER MIRA.

5. Technique Comparison

The sub-jobs and main-wrap techniques have both similari-
ties and differences, which lead to their differing suitability
for different application types and situations, as shown in
Table 2.

sub-jobs main-wrap
Higher runtime overhead related Minimum runtime overhead

to block management
Minimum application debugging Significant application debugging

as runs from executable as rebuild required
Application source not needed Application source needed
Works with any executable Currently supported C/C++
Flexible in mapping resources More rigid in resource mapping

to application

TABLE 2. COMPARISON OF THE SUB-JOBS AND MAIN-WRAP

TECHNIQUES

Sub-jobs are generally well-suited for rapid porting of ap-
plications intended to run at medium scales (hundreds to

thousands of tasks) whereas main-wrap is suited to appli-
cations running at massive scales (millions of tasks). While
either technique can be used for most applications, there are
situations where one technique is preferable over other. One
often occurring situation is the porting of legacy applications
for which source is not available. Since the main-wrap
technique compiles the application from source, sub-jobs
must be used in this case. Sub-jobs can be good to use for
irregular sized jobs because of the packing flexibility, but
one can also use the sub-jobs technique to run an application
that was main-wrapped.

6. Related Work

As of this writing no similar work that addresses interfacing
a workflow system with BG/Q sub-jobs is known. However,
some related technologies are described in the original IBM
Redbook for BG/Q [13]. BG/Q offers sub-jobs at the core
level limited to one core per node. We do not implement
this feature in the current implementation. It also provides
a paradigm related to MTC called Multiple Program Mul-
tiple Data (MPMD), which is implemented through special
directives specified in a configuration file that is referred
to in the Cobalt job definition. MPMD is limited: user
must manually specify MPI ranks of the application with
a restriction that all ranks in the same node must belong to
a single application.
Work similar to the main-wrap technique was carried out
by the Charm++ group [14]. In their AMPI design and
implementation, multiple simulated MPI processes are run
in the same memory space. The work is related but is not
the same: AMPI interleaves execution of multiple programs
running in the same memory space, while in main-wrap we
try to run them one-after-another.

7. Summary

We discuss two techniques to run ordinary applications in
MTC mode on the BG/Q supercomputers at the ALCF
leadership class computing facility.
First, the sub-block jobs technique lets users submit mul-
tiple, independent, repeated jobs within a single larger re-
source block. Sub-block jobs is a mode of running jobs on
BG/Q systems wherein one can allocate a larger “outer”
block of compute nodes and repeatedly submit jobs of
smaller sized sub-blocks to this outer block. Swift/K work-
flows coordinate Cobalt sub-block job submission: multiple
MPI, OpenMP or serial jobs within one or more large
Cobalt jobs. The current implementation provides tools,
scripts and example use-cases to run Swift/K applications
in sub-block mode over the ALCF resources. The benefit
of this approach is that the user does not have to invoke
the sub-block specific routines involving the details of the
underlying node interconnect hardware. Additionally, with
the same Swift/K script and configuration, the user gets the
flexibility to run jobs in sub-block or non-sub-block mode
depending on the scale and size of a run. The approach

427



transparently allows user to run jobs directly via Swift/K.
Users can run multiple ‘waves’ of jobs asynchronously and
in parallel without restarting the outer block. We showed
sub-jobs used to enable two material science applications
utilizing up to 5,192 cores.
Second, the main-wrap technique allow users to wrap and
invoke regular C/C++ application codes into the high-
performance Swift/T execution engine and lets them run
these codes as tasks within a many-task application on
BG/Q systems. It lets users run their ordinary applications
in HPC mode. Our automated approach makes it easier
and transparent for users to use the main-wrap technique.
We showed main-wrap used to enable two molecular dy-
namics applications utilizing up to 63,012 cores, and our
experiments shows good performance scalability for up to
1 million application invocations.
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