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Outline

=  Overview
- High-performance computing and systems software
- Exascale on the horizon

= Next-generation filesystems

- Object storage systems
- Distributed data structures (C-MPI)

= Reliability at extreme scale
- Data placement for survivability
- Simulation and analysis of rebuild performance (GOBS)

= Many-file applications

- Swift and many-task computing
- Improvements for data access to many small files (CDM)
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High-performance computing

= Leadership systems
- ANL - IBM BG/P Intrepid @ 557 TFlops
- ORNL - Cray XT5 Jaguar @ 1.75 PFlops
- TACC - Sun Constellation Ranger @ 505 TFlops

=  (lusters
- U of Chicago - Intel Xeon PADS - 48 nodes X 4 cores
- ANL - AMD Breadboard - 64 nodes X 8 cores

= Crids
- Open Science Grid - ~25,000 nodes
- TeraGrid - Access to a variety of high-performance resources

Future directions in large-scale storage systems

S 05/03,/2010



Uses of high-performance storage (1)

= Checkpoint
- Write out all user memory to non-volatile storage
- Basic survival strategy to avoid lost work

= Optimal checkpoint interval

- First-order approximation to optimal checkpoint write interval
» t,: checkpoint interval

t — 2t t » t, : time to write checkpoint
0 w f . :
» t;: mean time to failure

= Future trends
- Bigger memory — longer writes
- More components — more faults
- Could reach a critical point
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Uses of high-performance storage (2)

= Useful application data

- MPI-IO
* Parallel interface for file I/ O operations
* Allows I/O experts to implement optimizations

- High-level libraries
e Provide a variable-oriented view on data
e PnetCDF, HDF5, ADIOS
* (Can use MPI-IO

~ POSIX1/O

 Gtill prevalent in large-scale applications

* Must maintain user expectations, portability, but make use of high-performance
machines
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Parallel filesystems

= Eliminate single bottlenecks in I/O

sPVFS - Clemson, ANL

*Open source, community

maintained

*GPFS - IBM
*Licensed by IBM

Future directions in large-scale storage systems
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»Lustre - Oracle/Sun
*Open source but supported

"PankS - Panasas
=Software/hardware packages
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Object storage

= Separation of concerns

CLIENT CLIENT
- NETWORK -- - NETWORK --
FS FS
BLOCKS — OBJECTS
- NETWORK -- - NETWORK --

BLOCKS

= Employed by many modern systems - not “old news” either
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Distributed data structures

Future directions in large-scale storage systems

8
S 05/03/2010



Data placement in parallel filesystems

=  (Centralized metadata

OBJECTS OBJECTS OBJECTS FS
/ ——— ——— ——— S—
. o8
SY home
Y — b[0] b[1] b[2] /
~woznliak h\/\\ file>

N

File =  Distributed metadata

OBJECTS OBJECTS OBJECTS FS
b[0] || BI1] || bl2] | ——— ——— ——
o ] [os
~wozniak file /
v v
b[0] b[1l] b[2]
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Distributed metadata

Design features

Decentralized (fast)
Reliable
Distributed
Consistent

Distributed hash tables (DHTSs)

Originally designed for wide-area networks
Self-constructing

Self-organizing *Chord

Self-healing =Pastry

Scalable sKademlia
*CAN
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Server-server communication

= Metadata
- Distributed objects (distributed directories)
- Searches

= Collective operations
- Allocation of striped files
- Control communication

=  Network choices
- BMI

* Network abstraction layer
* Developed for PVFS, now a stand-alone system

- MPI

* Rich API for parallel programming
* Typically used by high-performance applications
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Content-MPI (C-MPI)

= New DHT implementation based on MPI
- MPI library allows integration with existing software, methods
- Abstraction over DHT details, placement algorithm

= Uses “monolithic” MPI or “dynamic processes” without application
modification

- Monolithic
* “Normal” MPI usage
* Uses one big MPI communicator

- Dynamic processes
e MPI-2 feature set

* Dynamic processes allow for dynamic allocation and connection of independent
processes

* Basic model for fault-tolerant MPI programs
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C-MPI use cases

= MPI library
- Programming model analogous to Linda, blackboards
- Perform remote function on remote object
- Maintain critical application state in distributed, fault tolerant manner

= Distributed database
- Perform lookups for key/value pairs
- Check on state of application progress

= Shell IPC

- Shell tools provided to communicate with background process linked to C-MPI
- Useful for many-task computing (more to come...)
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C-MPI internals

= Layered architecture

MPI application

Key/value interface

DHT algorithm

Asynchronous RPC

MPI

=  MPI-RPC programming model
- Use non-blocking MPI calls
- Make progress on RPC return using user function pointer
- Help with management of many outstanding RPCs
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Kademlia

= Assign each node a 160-bit identifier
= Use XOR metric:

distance(X,Y) = xor(X,Y) as integer

= Each node stores a neighbor table with
O(log n) rows, k columns:
- Fornode X, '\ \

Row i contains k nodes Y :
|
» X/

distance(X,Y) = xor(X,Y) e [2], 2*1)
= New neighbors discovered
dynamiclly
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Performance results: SiCortex
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* Lookup RPCs per user lookup * Small key/value pair insertions;

memory only
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Fault-tolerance

Fault emulation in MPI-RPC
- User sets node to emulate failure
- Subsequent RPCs “fail”

Performs as expected
- Data still available

- Overlay network not partitioned

Future directions in large-scale storage systems
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05/03,/2010

17



Fault-tolerance in MPI

=  MPI Standard

Overall assumption: MPI users should not worry about faults
Standard does allow communication errors to be reported to user

Theoretically could recover from errors on one communicator, continue to use
and create other communicators: this is our approach

Difficult issues remain in the case of collective operations, blocking operations
(cannot wait forever)

May be addressed by new non-blocking collective operations and dynamic
process functionality

=  MPIimplementations

Typically, cannot recover from errors
Work is being done...
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C-MPI: Summary

= Distributed storage requires highly scalable metadata management

= Distributed hash tables

= Implementation

Future directions in large-scale storage systems

05/03,/2010

19




Object storage rebuild simulation
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Exascale storage challenges

Number of disks
- Speed: to satisty checkpoint requirements, will need ~30,000 disks
- Capacity: may use additional storage hierarchy for space

Required bandwidth
- ~12TB/s
- New ability to manage many clients

Redundancy
- Must plan to lose up to 10% of disks per year
- That's 263 TB/day; 3.125 GB/s

= (Power)
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Disk failure rates

= CMU study = Google study
- Typically ~5% /year - Below 5% in first year
- Upto13% - Peaksnear 10% in year 3

=
4w

e el
= P Ll

copies in flight
L= Y "L I = T T - - I T = E

|

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
time (days)

= GOBS simulation of 32,000 disks in RAID 5 (4+1)
Plot shows inter-node traffic due to RAID loss
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Simple data placement is problematic

= Combine local RAID with inter-node replication for availability
= Local RAID is relatively faster for read-modify-write operations
=  Whole node loss - often temporary - managed with replicas

= Replica chaining = Large declustered RAIDs
= Simple, localized object = Fully distributed
placement =  Onrebuild, all nodes involved,
* Onrebuild, creates a hot spot all write to one new disk
of activity
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Simulation as initial approach

= Simulated system

Client
Filelobject = Workload simulation
manipulation [F"ﬂrﬂllﬂ I'Enﬁl:l.f'nﬂi&]
Object Pool
. TE— »  ® Idealized control
e ) [ ) (k| B
Liszaticn Ransgar Modification | | Abstraction
ey e
Node Node MNode = Object servers
(Oomot) st )| | (O]t J| | (i) e |
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= General OBject Space (GOBS) simulator architecture

Statistics | | Logaing | | Platting » User interface

Workload [EH'I'ILI!I-DI' [ Fault [ Rebuild T

| Core Injection Engine | = Core functionality
Farameters Layout

File/Object Replica v/ ® Replaceable components
Li.':‘anuraﬂnn‘ Placement

" Workload | Mode ﬁ.dl:im Replica Address |
Ganaration Ganaration Ganaration
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Simulator - extensibility

= Extensible Java simulator
- Heavy use of inheritance
- Enable easy implementation of new schemes

= Class hierarchy: [Placementscheme]

R I k |
i Parity [ Replicated ]
L -r.l
|
STTTTTTTT J """" B T J """ Ty T T J‘ """"" g, I
. LH* | RAID? | | Modulus ! [ Metric ]
________________ _' -.‘_________________' T
|
I s )
[ RUSH, . Spanned | [ HGIDsest]
A N '

C | ' |

UEITEHGFDU[JE][ MNearest ] { Kademlia ]
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GOBS results - rebuild hot spots

= 600 servers; 30 TB disks; RAID 5 (4+1); disk transfer rate 400 MB/s;
= 1EB filesystem

= Single fault induced - rebuild performed

' 30.0
27.31 27.5 —
a
25.0 .; : __—2';.:"" ; -
22.51 29 5
o 20.0 L — =
S — N 200/ .- . -
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:_E?’ 15.0 :_E?' 15.0
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E E 12.5
= 10.0 = 10.0
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node.count node.count
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= Replica pulled from last in chain » Replica pulled from random node
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GOBS results - rebuild curves

= Single fault induced - rebuild performed
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GOBS results - rebuild concurrency

=  Multiple faults induced - average
tratfic recorded
= Replica pulled from primary 15.0
12.5 1
= “target” - RAID (4+1) £
= 10.0
= “san” - RAID (8+2) €
g 75
= “active” - begin copies % 5ol
immediately
2.5 1
= “latent” - wait until replacement is
inserted 0.0 | . Y

0 10 20 30 40 50 60 70
time (hours)

& MEAREST-active san - MEAREST-active target
-4 MEAREST-latent san  -#= NEAREST-latent target
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GOBS results - data loss

= Vary disk MTTF and report objects 131 ¢
lost per year 12
11
ﬁ 10
= Neither scheme loses data unless = z
MTTFs are extremely low s 5
3 6
: : 2 5
= Indicates that aggressive schemes 2 4
may be used that favor user accesses 3]
2 4
1
. (HOW does one quantlfy amount Of . .'D.IS 1.0 -1.5 ;.EI 25 3.0 35 4.0 45 E:ﬂ
data IOSS?) Mean Time to Disk Failure (years)

& NEAREST-san-active - NEAREST-target-active
-& MEAREST-san-latent -#= MEAREST-target-latent
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GOBS: Summary

= Data placement strategies matter when performing rebuilds

= Rebuild time matters over long data lifetimes

= Simulation can help evaluate placement strategies

=  Much more to do here...
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Collective data management
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Many-task computing

= Combine grid computing infrastructure with high-performance resources
= Reuse robust grid software systems

= Use new, rapid schedulers (Falkon, Coasters)

= Plenty of applications

=  Fault-tolerant, scalable

Future directions in large-scale storage systems
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Scripted applications

= Development timeline:

- Scientific software developer produces sequential code for application research

- Produces small batch runs for parameter sweeps, plots

Small scale batches organized through the shell and filesystem

- Additional scaling possible through the application of grid tools and resources

— & What if the application is capable of (and worthy of) scaling further?

Future directions in large-scale storage systems
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Swift and related tools

= Separate workflow description from implementation
= Compile and generate workloads for existing execution infrastructures

<sites.xml> rawdata = sim(settings);
stats = analysis(rawdata);

write script
select resources

compile

allocate resources

> ¥ execute

Future directions in large-scale storage systems
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Default 1/0

= In astandard Swift workflow, each task must enumerate its input and
output files

= These files are shipped to and from the compute site

compute

()

copy inputs

submit site return outputs

= This RPC-like technique is problematic for large numbers of short jobs
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Data generation and access

= Current I/O systems work recognizes the challenges posed by large batches
of small tasks

= Characterized by:

- Small files
e Small, uncoordinated accesses
* Potentially large directories

- Whole file operations

- Metadata operations

¢ File creates
e Links
e Deletes

= Opverall challenges

- BlueGene/P:
e [/O bandwidth: down to 400 KB/s /core
* File creation rate: only 1/hour /core (Raicu et al.)

Future directions in large-scale storage systems
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Related work

= Filesystem optimizations
- PVFS optimizations for small files (Carns et al. 2009)

* Improved small object management
* Eager messages

- BlueFS client optimizations (Nightingale et al. 2006)
* Speculative execution in the filesystem client
» Mitigates latency
= Scheduling and caching
- BAD-FS (Bent et al. 2004)
- Data diffusion (Raicu et al. 2009)

= Collective models
- Enable programmer support
- Borrow from strengths of MPI, MPI-1O functionality
- Expose patterns explicitly (MapReduce, etc.)

Future directions in large-scale storage systems
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Collective Data Management

Provide primitives that the programmer can use explicitly
- May already be used via custom scripts
- Generally difficult to specify with sequential languages

Broadcast (aggregation, map):

» B3

Scatter (two-phase): -
» E2

0J

Gather (aggregation, reduce)

»

i0 O o
\ 1/
Iy
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Cache techniques

= Cache pinning (specify critical data)

» E 0 <

0 0 O

= Workflow/data-aware scheduling

»

time

0 O 0
\ 1/
71\

v 0 0 0
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1/0 reduction

= Let applications continue to move large quantities of small data over POSIX
interfaces

= Prevent these accesses from reaching the filesystem

compute compute

APP
HPM

e

IS

FS
SAM
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1/0 reduction

= The purpose of each potential CDM technique is to reduce accesses to the
filesystem

= In our case studies, we sought to estimate the maximum possible reduction
that a carefully-written application could achieve on our target system
model

= In a default scripted workflow, all accesses go to the FS
» Asastart, we used an I/O reduction defined as:

reduction = 1009 /0 5¢€N bYFS = inbytes

1/0O seen by apps

= Other interesting quantities could measure file creates, links, or a count of
accesses regardless of size
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Case studies: High-level view

=  OOPS: Open Protein Simulator

= DOCK: Molecular docking

= BLAST: Basic Local Alignment Search Tool

= PTMap: Post-transformational modification analysis

= {MRI: Brain imaging analysis
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43
S 05/03,/2010



fMRI

M
compute —"‘ analysis
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APP
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=
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= Simple MapReduce-like structure
*= Broken down into scatter and gather operations
* Intermediate data can be cached. Produces much final output
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BLAST

TOM =
al compute —"‘ reduce
[
{ i A & ‘
2 EN@?SHBE
® L@
),

= ¥
E ' II Esmall re SUHZSj

= Like MapReduce with two inputs

= If cache is used to implement broadcast, must prevent pollution

= Produces trivial final output - I/O reduction may exceed 99%
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DOCK

APP

|5

[ S B

MM 20%

simulate

select

| —

—‘ simulate

T
A [

ZMN@EKEB

SNON

e —- -
1@BOMB M@3KB II

= Significant input size
= Pipeline-like accesses

analysis —‘

x20%

ZMMN@5KB

+
small results

= Produces trivial final output - I/O reduction may exceed 99%
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APP

1S

analyze

M@10MB

i
i

= Significant input size

visualize  |e-ey analyze

2N @20KB

= Pipeline-like accesses and iterations

= Produces trivial final output - I/O reduction may exceed 99%
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APP

IS

FS

Y

PTMap

M = I =< el 20%

compute

analysis

compute —"‘ select

(B)

Pipeline-like accesses and iterations

Uses links to create an intermediate index

Produces trivial final output - I/O reduction may exceed 99%
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Observations

= Great deal of potential optimizations
- Many of which are previously studied
- Difficult to implement with sequential programming models

= Small files
- Large input data sets must be read efficiently

- Many small files are created, written once, and possibly read again multiple
times, primarily by transmission to other compute jobs

- Developer basically knows this - must be able to express it

=  Patterns

- MPI-like concepts such as broadcasts, gathers, and even point-to-point messages
help describe the I/O patterns

- Can be exposed to the developer through scripting abstractions
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CDM active client

= New CDM module allows for dynamic data access on the compute site
= Implemented by modifying Swift wrapper scripts

‘ copy policy ( & inputs?)

~

compute

()

submit site (return outputs?)

data access

CDM

v v v \’
Alt. FS || HW || Agg. || C-MPI? || Etc.?
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Summary

Investigated I/O performance characteristics of five scalable applications
- Laid out workflow job/data dependencies
- Compared with well-studied patterns
- Performed coarse studies of file access statistics
- Looked at idealized potential optimizations (gedankenexperiments)

Portability
- Running on the BG/P not unlike running on the grid
- Benefit from existing software systems
- Work within the typical scientific development cycle

Lots to do
- Proposed new software toolkit and language integration
- Largely based on existing tools; package and expose to developers
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Questions
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