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Outline

 Overview

– High-performance computing and systems software

– Exascale on the horizon

 Next-generation filesystems

– Object storage systems

– Distributed data structures (C-MPI) 

 Reliability at extreme scale 

– Data placement for survivability

– Simulation and analysis of rebuild performance (GOBS)

 Many-file applications

– Swift and many-task computing

– Improvements for data access to many small files (CDM)
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High-performance computing

 Leadership systems

– ANL – IBM BG/P Intrepid @ 557 TFlops

– ORNL – Cray XT5 Jaguar @ 1.75 PFlops

– TACC – Sun Constellation Ranger @ 505 TFlops

 Clusters

– U of Chicago – Intel Xeon PADS – 48 nodes x 4 cores

– ANL – AMD Breadboard – 64 nodes x 8 cores

 Grids

– Open Science Grid – ~25,000 nodes

– TeraGrid – Access to a variety of high-performance resources
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Uses of high-performance storage (1)

 Checkpoint

– Write out all user memory to non-volatile storage

– Basic survival strategy to avoid lost work

 Optimal checkpoint interval

– First-order approximation to optimal checkpoint write interval

» to : checkpoint interval

» tw : time to write checkpoint

» tf : mean time to failure

 Future trends

– Bigger memory → longer writes

– More components → more faults

– Could reach a critical point
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Uses of high-performance storage (2)

 Useful application data

– MPI-IO

• Parallel interface for file I/O operations 

• Allows I/O experts to implement optimizations 

– High-level libraries

• Provide a variable-oriented view on data

• PnetCDF, HDF5, ADIOS

• Can use MPI-IO 

– POSIX I/O 

• Still prevalent in large-scale applications

• Must maintain user expectations, portability, but make use of high-performance 
machines
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PVFS – Clemson, ANL
Open source, community         
maintained

GPFS – IBM 
Licensed by IBM

Lustre – Oracle/Sun 
Open source but supported

PanFS – Panasas
Software/hardware packages 

Parallel filesystems

 Eliminate single bottlenecks in I/O

05/03/2010
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Object storage

 Separation of concerns

 Employed by many modern systems – not “old news” either
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Distributed data structures
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Data placement in parallel filesystems

 Centralized metadata

 Distributed metadata
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Distributed metadata

 Design features

– Decentralized (fast)

– Reliable

– Distributed

– Consistent

 Distributed hash tables (DHTs)

– Originally designed for wide-area networks

– Self-constructing

– Self-organizing

– Self-healing

– Scalable

– …
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Kademlia
CAN
…



Server-server communication

 Metadata

– Distributed objects (distributed directories)

– Searches

 Collective operations

– Allocation of striped files 

– Control communication

 Network choices

– BMI

• Network abstraction layer

• Developed for PVFS, now a stand-alone system

– MPI

• Rich API for parallel programming

• Typically used by high-performance applications
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Content-MPI (C-MPI)

 New DHT implementation based on MPI

– MPI library allows integration with existing software, methods

– Abstraction over DHT details, placement algorithm

 Uses “monolithic” MPI or “dynamic processes” without application 
modification

– Monolithic

• “Normal” MPI usage

• Uses one big MPI communicator

– Dynamic processes

• MPI-2 feature set

• Dynamic processes allow for dynamic allocation and connection of independent 
processes

• Basic model for fault-tolerant MPI programs 
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C-MPI use cases

 MPI library

– Programming model analogous to Linda, blackboards

– Perform remote function on remote object

– Maintain critical application state in distributed, fault tolerant manner

 Distributed database

– Perform lookups for key/value pairs

– C heck on state of application progress

 Shell IPC

– Shell tools provided to communicate with background process linked to C-MPI

– Useful for many-task computing (more to come…)
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C-MPI internals

 Layered architecture

 MPI-RPC programming model

– Use non-blocking MPI calls

– Make progress on RPC return using user function pointer

– Help with management of many outstanding RPCs
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Kademlia

 Assign each node a 160-bit identifier

 Use XOR metric: 

distance(X,Y) = xor(X,Y) as integer

 Each node stores a neighbor table with 
O(log n) rows, k columns:

– For node X,
Row i contains k nodes Y : 

distance(X,Y) = xor(X,Y) [2i, 2i+1)     

 New neighbors discovered 
dynamically
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Performance results: SiCortex
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• Lookup RPCs per user lookup • Small key/value pair insertions; 
memory only



Fault-tolerance

 Fault emulation in MPI-RPC

– User sets node to emulate failure

– Subsequent RPCs “fail”

 Performs as expected

– Data still available

– Overlay network not partitioned
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• Probability that a key/value 
pair is still available given a 
system size and fault count
• Replica count = 3



Fault-tolerance in MPI

 MPI Standard 

– Overall assumption: MPI users should not worry about faults

– Standard does allow communication errors to be reported to user

– Theoretically could recover from errors on one communicator, continue to use 
and create other communicators: this is our approach

– Difficult issues remain in the case of collective operations, blocking operations 
(cannot wait forever)

– May be addressed by new non-blocking collective operations and dynamic 
process functionality

 MPI implementations 

– Typically, cannot recover from errors 

– Work is being done…
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C-MPI: Summary

 Distributed storage requires highly scalable metadata management

 Distributed hash tables 

 Implementation
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Object storage rebuild simulation
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Exascale storage challenges

 Number of disks

– Speed: to satisfy checkpoint requirements, will need ~30,000 disks 

– Capacity: may use additional storage hierarchy for space

 Required bandwidth

– ~12 TB/s

– New ability to manage many clients

 Redundancy

– Must plan to lose up to 10% of disks per year

– That’s 263 TB/day; 3.125 GB/s

 (Power)

05/03/2010

Future directions in large-scale storage systems

21



Disk failure rates

 CMU study

– Typically ~5%/year

– Up to 13%

 Google study

– Below 5% in first year

– Peaks near 10% in year 3

05/03/2010
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 GOBS simulation of 32,000 disks in RAID 5 (4+1 )
Plot shows inter-node traffic due to RAID loss



Simple data placement is problematic

 Combine local RAID with inter-node replication for availability

 Local RAID is relatively faster for read-modify-write operations

 Whole node loss – often temporary – managed with replicas
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 Replica chaining

 Simple, localized object 
placement

 On rebuild, creates a hot spot 
of activity

 Large declustered RAIDs

 Fully distributed

 On rebuild, all nodes involved, 
all write to one new disk

DISK DISK NEW DISK DISKDISK NEW DISK



Simulation as initial approach

 Simulated system

05/03/2010
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 Workload simulation

 Idealized control

 Object servers



 General OBject Space (GOBS) simulator architecture
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 User interface

 Core functionality

 Replaceable components



Simulator - extensibility

 Extensible Java simulator

– Heavy use of inheritance

– Enable easy implementation of new schemes

 Class hierarchy:

05/03/2010
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GOBS results – rebuild hot spots

 600 servers; 30 TB disks; RAID 5 (4+1); disk transfer rate 400 MB/s; 

 1EB filesystem

 Single fault induced – rebuild performed

 Replica pulled from last in chain

05/03/2010
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 Replica pulled from random node



GOBS results – rebuild curves

 Single fault induced – rebuild performed

 Replica pulled from last in chain
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 Replica pulled from random node



GOBS results – rebuild concurrency
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 Multiple faults induced – average 
traffic recorded

 Replica pulled from primary

 “target” – RAID (4+1)

 “san” – RAID (8+2)

 “active” – begin copies 
immediately

 “latent” – wait until replacement is
inserted



GOBS results – data loss

 Vary disk MTTF and report objects 
lost per year

 Neither scheme loses data unless 
MTTFs are extremely low

 Indicates that aggressive schemes 
may be used that favor user accesses

 (How does one quantify amount of 
data loss?)
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GOBS: Summary

 Data placement strategies matter when performing rebuilds

 Rebuild time matters over long data lifetimes

 Simulation can help evaluate placement strategies

 Much more to do here…
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Collective data management

05/03/2010
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Many-task computing

 Combine grid computing infrastructure with high-performance resources

 Reuse robust grid software systems 

 Use new, rapid schedulers (Falkon, Coasters)

 Plenty of applications

 Fault-tolerant, scalable
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Scripted applications

 Development timeline:

– Scientific software developer produces sequential code for application research

– Produces small batch runs for parameter sweeps, plots

– Small scale batches organized through the shell and filesystem

– Additional scaling possible through the application of grid tools and resources

– What if the application is capable of (and worthy of) scaling further? 
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Swift and related tools

 Separate workflow description from implementation

 Compile and generate workloads for existing execution infrastructures
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<sites.xml>
…

rawdata = sim(settings);
stats = analysis(rawdata);

…

compile

select resources

allocate resources

write script

 execute



Default I/O 

 In a standard Swift workflow, each task must enumerate its input and 
output files

 These files are shipped to and from the compute site 
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submit site

copy inputs

return outputs

compute



 This RPC-like technique is problematic for large numbers of short jobs



Data generation and access

 Current I/O systems work recognizes the challenges posed by large batches 
of small tasks

 Characterized by: 

– Small files

• Small, uncoordinated accesses

• Potentially large directories

– Whole file operations

– Metadata operations 

• File creates

• Links 

• Deletes

 Overall challenges

– BlueGene/P: 

• I/O bandwidth: down to 400 KB/s /core 

• File creation rate: only 1/hour /core (Raicu et al.) 
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Related work

 Filesystem optimizations

– PVFS optimizations for small files (Carns et al. 2009)

• Improved small object management

• Eager messages

– BlueFS client optimizations (Nightingale et al. 2006)

• Speculative execution in the filesystem client

• Mitigates latency

 Scheduling and caching

– BAD-FS (Bent et al. 2004)

– Data diffusion (Raicu et al. 2009)

 Collective models

– Enable programmer support

– Borrow from strengths of MPI, MPI-IO functionality

– Expose patterns explicitly (MapReduce, etc.)

05/03/2010
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Collective Data Management

 Provide primitives that the programmer can use explicitly

– May already be used via custom scripts

– Generally difficult to specify with sequential languages

 Broadcast (aggregation, map): 

» 

 Scatter (two-phase):

» 

 Gather (aggregation, reduce)

» 
05/03/2010
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Cache techniques

 Cache pinning (specify critical data)

»  

 Workflow/data-aware scheduling

» 

05/03/2010
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I/O reduction

 Let applications continue to move large quantities of small data over POSIX 
interfaces

 Prevent these accesses from reaching the filesystem 

05/03/2010
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I/O reduction

 The purpose of each potential CDM technique is to reduce accesses to the 
filesystem

 In our case studies, we sought to estimate the maximum possible reduction 
that a carefully-written application could achieve on our target system 
model

 In a default scripted workflow, all accesses go to the FS

 As a start, we used an I/O reduction defined as: 

 in bytes 

 Other interesting quantities could measure file creates, links, or a count of 
accesses regardless of size 

05/03/2010
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Case studies: High-level view

 OOPS: Open Protein Simulator

 DOCK: Molecular docking

 BLAST: Basic Local Alignment Search Tool

 PTMap: Post-transformational modification analysis

 fMRI: Brain imaging analysis

05/03/2010
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fMRI

05/03/2010
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 Simple MapReduce-like structure

 Broken down into scatter and gather operations

 Intermediate data can be cached.  Produces much final output



BLAST
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 Like MapReduce with two inputs

 If cache is used to implement broadcast, must prevent pollution

 Produces trivial final output – I/O reduction may exceed 99%



DOCK
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 Significant input size

 Pipeline-like accesses

 Produces trivial final output – I/O reduction may exceed 99%



OOPS
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 Significant input size

 Pipeline-like accesses and iterations

 Produces trivial final output – I/O reduction may exceed 99%



PTMap
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 Pipeline-like accesses and iterations

 Uses links to create an intermediate index

 Produces trivial final output – I/O reduction may exceed 99%



Observations

 Great deal of potential optimizations

– Many of which are previously studied

– Difficult to implement with sequential programming models

 Small files

– Large input data sets must be read efficiently

– Many small files are created, written once, and possibly read again multiple 
times, primarily by transmission to other compute jobs

– Developer basically knows this – must be able to express it

 Patterns

– MPI-like concepts such as broadcasts, gathers, and even point-to-point messages 
help describe the I/O patterns

– Can be exposed to the developer through scripting abstractions

05/03/2010
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CDM active client

 New CDM module allows for dynamic data access on the compute site

 Implemented by modifying Swift wrapper scripts

05/03/2010
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submit site

copy policy ( & inputs?)

(return outputs?)

compute



data access

CDM

Agg. C-MPI?Alt. FS HW Etc.?



Summary

 Investigated I/O performance characteristics of five scalable applications

– Laid out workflow job/data dependencies

– Compared with well-studied patterns

– Performed coarse studies of file access statistics

– Looked at idealized potential optimizations (gedankenexperiments) 

 Portability

– Running on the BG/P not unlike running on the grid

– Benefit from existing software systems

– Work within the typical scientific development cycle

 Lots to do

– Proposed new software toolkit and language integration

– Largely based on existing tools; package and expose to developers
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Questions
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