
Future directions

in large-scale storage systems

Justin M Wozniak

Argonne National Laboratory

Presented at:

Northwestern University

Evanston, IL – May 3, 2010

Outline

 Overview

– High-performance computing and systems software

– Exascale on the horizon

 Next-generation filesystems

– Object storage systems

– Distributed data structures (C-MPI)

 Reliability at extreme scale

– Data placement for survivability

– Simulation and analysis of rebuild performance (GOBS)

 Many-file applications

– Swift and many-task computing

– Improvements for data access to many small files (CDM)

Future directions in large-scale storage systems

2
05/03/2010

High-performance computing

 Leadership systems

– ANL – IBM BG/P Intrepid @ 557 TFlops

– ORNL – Cray XT5 Jaguar @ 1.75 PFlops

– TACC – Sun Constellation Ranger @ 505 TFlops

 Clusters

– U of Chicago – Intel Xeon PADS – 48 nodes x 4 cores

– ANL – AMD Breadboard – 64 nodes x 8 cores

 Grids

– Open Science Grid – ~25,000 nodes

– TeraGrid – Access to a variety of high-performance resources

05/03/2010

Future directions in large-scale storage systems

3

Uses of high-performance storage (1)

 Checkpoint

– Write out all user memory to non-volatile storage

– Basic survival strategy to avoid lost work

 Optimal checkpoint interval

– First-order approximation to optimal checkpoint write interval

» to : checkpoint interval

» tw : time to write checkpoint

» tf : mean time to failure

 Future trends

– Bigger memory → longer writes

– More components → more faults

– Could reach a critical point

05/03/2010

Future directions in large-scale storage systems

4

fwo ttt 2

Uses of high-performance storage (2)

 Useful application data

– MPI-IO

• Parallel interface for file I/O operations

• Allows I/O experts to implement optimizations

– High-level libraries

• Provide a variable-oriented view on data

• PnetCDF, HDF5, ADIOS

• Can use MPI-IO

– POSIX I/O

• Still prevalent in large-scale applications

• Must maintain user expectations, portability, but make use of high-performance
machines

05/03/2010

Future directions in large-scale storage systems

5

PVFS – Clemson, ANL
Open source, community
maintained

GPFS – IBM
Licensed by IBM

Lustre – Oracle/Sun
Open source but supported

PanFS – Panasas
Software/hardware packages

Parallel filesystems

 Eliminate single bottlenecks in I/O

05/03/2010

Future directions in large-scale storage systems

6

DISK DISK DISK DISK

FS FS FS FS

-- NETWORK --

CLIENT CLIENT CLIENT CLIENT

-- APPLICATION --

Object storage

 Separation of concerns

 Employed by many modern systems – not “old news” either

05/03/2010

Future directions in large-scale storage systems

7

-- NETWORK --

DISK

FS

CLIENT

-- NETWORK --

BLOCKS

-- NETWORK --

DISK

FS

CLIENT

-- NETWORK --

BLOCKS

OBJECTS→

Distributed data structures

05/03/2010

Future directions in large-scale storage systems

8

Data placement in parallel filesystems

 Centralized metadata

 Distributed metadata

Future directions in large-scale storage systems

/

usr home

~wozniak

file

b[1]b[0]

DISK DISK DISK DB

OBJECTS FSOBJECTSOBJECTS

b[2]

/

file

b[1] b[2]b[0]

DISK DISK DISK DB

OBJECTS FSOBJECTSOBJECTS

/file

b[1] b[2]b[0]

~wozniak

Distributed metadata

 Design features

– Decentralized (fast)

– Reliable

– Distributed

– Consistent

 Distributed hash tables (DHTs)

– Originally designed for wide-area networks

– Self-constructing

– Self-organizing

– Self-healing

– Scalable

– …

05/03/2010

Future directions in large-scale storage systems

10

Chord
Pastry
Kademlia
CAN
…

Server-server communication

 Metadata

– Distributed objects (distributed directories)

– Searches

 Collective operations

– Allocation of striped files

– Control communication

 Network choices

– BMI

• Network abstraction layer

• Developed for PVFS, now a stand-alone system

– MPI

• Rich API for parallel programming

• Typically used by high-performance applications

05/03/2010

Future directions in large-scale storage systems

11

Content-MPI (C-MPI)

 New DHT implementation based on MPI

– MPI library allows integration with existing software, methods

– Abstraction over DHT details, placement algorithm

 Uses “monolithic” MPI or “dynamic processes” without application
modification

– Monolithic

• “Normal” MPI usage

• Uses one big MPI communicator

– Dynamic processes

• MPI-2 feature set

• Dynamic processes allow for dynamic allocation and connection of independent
processes

• Basic model for fault-tolerant MPI programs

05/03/2010

Future directions in large-scale storage systems

12

C-MPI use cases

 MPI library

– Programming model analogous to Linda, blackboards

– Perform remote function on remote object

– Maintain critical application state in distributed, fault tolerant manner

 Distributed database

– Perform lookups for key/value pairs

– C heck on state of application progress

 Shell IPC

– Shell tools provided to communicate with background process linked to C-MPI

– Useful for many-task computing (more to come…)

05/03/2010

Future directions in large-scale storage systems

13

C-MPI internals

 Layered architecture

 MPI-RPC programming model

– Use non-blocking MPI calls

– Make progress on RPC return using user function pointer

– Help with management of many outstanding RPCs

05/03/2010

Future directions in large-scale storage systems

14

MPI application

Key/value interface

Asynchronous RPC

MPI

DHT algorithm

Kademlia

 Assign each node a 160-bit identifier

 Use XOR metric:

distance(X,Y) = xor(X,Y) as integer

 Each node stores a neighbor table with
O(log n) rows, k columns:

– For node X,
Row i contains k nodes Y :

distance(X,Y) = xor(X,Y) [2i, 2i+1)

 New neighbors discovered
dynamically

Future directions in large-scale storage systems

15

Performance results: SiCortex

05/03/2010

Future directions in large-scale storage systems

16

• Lookup RPCs per user lookup • Small key/value pair insertions;
memory only

Fault-tolerance

 Fault emulation in MPI-RPC

– User sets node to emulate failure

– Subsequent RPCs “fail”

 Performs as expected

– Data still available

– Overlay network not partitioned

05/03/2010

Future directions in large-scale storage systems

17

• Probability that a key/value
pair is still available given a
system size and fault count
• Replica count = 3

Fault-tolerance in MPI

 MPI Standard

– Overall assumption: MPI users should not worry about faults

– Standard does allow communication errors to be reported to user

– Theoretically could recover from errors on one communicator, continue to use
and create other communicators: this is our approach

– Difficult issues remain in the case of collective operations, blocking operations
(cannot wait forever)

– May be addressed by new non-blocking collective operations and dynamic
process functionality

 MPI implementations

– Typically, cannot recover from errors

– Work is being done…

05/03/2010

Future directions in large-scale storage systems

18

C-MPI: Summary

 Distributed storage requires highly scalable metadata management

 Distributed hash tables

 Implementation

05/03/2010

Future directions in large-scale storage systems

19

Object storage rebuild simulation

05/03/2010

Future directions in large-scale storage systems

20

Exascale storage challenges

 Number of disks

– Speed: to satisfy checkpoint requirements, will need ~30,000 disks

– Capacity: may use additional storage hierarchy for space

 Required bandwidth

– ~12 TB/s

– New ability to manage many clients

 Redundancy

– Must plan to lose up to 10% of disks per year

– That’s 263 TB/day; 3.125 GB/s

 (Power)

05/03/2010

Future directions in large-scale storage systems

21

Disk failure rates

 CMU study

– Typically ~5%/year

– Up to 13%

 Google study

– Below 5% in first year

– Peaks near 10% in year 3

05/03/2010

Future directions in large-scale storage systems

22

 GOBS simulation of 32,000 disks in RAID 5 (4+1)
Plot shows inter-node traffic due to RAID loss

Simple data placement is problematic

 Combine local RAID with inter-node replication for availability

 Local RAID is relatively faster for read-modify-write operations

 Whole node loss – often temporary – managed with replicas

05/03/2010

Future directions in large-scale storage systems

23

 Replica chaining

 Simple, localized object
placement

 On rebuild, creates a hot spot
of activity

 Large declustered RAIDs

 Fully distributed

 On rebuild, all nodes involved,
all write to one new disk

DISK DISK NEW DISK DISKDISK NEW DISK

Simulation as initial approach

 Simulated system

05/03/2010

Future directions in large-scale storage systems

24

 Workload simulation

 Idealized control

 Object servers

 General OBject Space (GOBS) simulator architecture

05/03/2010

Future directions in large-scale storage systems

25

 User interface

 Core functionality

 Replaceable components

Simulator - extensibility

 Extensible Java simulator

– Heavy use of inheritance

– Enable easy implementation of new schemes

 Class hierarchy:

05/03/2010

Future directions in large-scale storage systems

26

GOBS results – rebuild hot spots

 600 servers; 30 TB disks; RAID 5 (4+1); disk transfer rate 400 MB/s;

 1EB filesystem

 Single fault induced – rebuild performed

 Replica pulled from last in chain

05/03/2010

Future directions in large-scale storage systems

27

 Replica pulled from random node

GOBS results – rebuild curves

 Single fault induced – rebuild performed

 Replica pulled from last in chain

05/03/2010

Future directions in large-scale storage systems

28

 Replica pulled from random node

GOBS results – rebuild concurrency

05/03/2010

Future directions in large-scale storage systems

29

 Multiple faults induced – average
traffic recorded

 Replica pulled from primary

 “target” – RAID (4+1)

 “san” – RAID (8+2)

 “active” – begin copies
immediately

 “latent” – wait until replacement is
inserted

GOBS results – data loss

 Vary disk MTTF and report objects
lost per year

 Neither scheme loses data unless
MTTFs are extremely low

 Indicates that aggressive schemes
may be used that favor user accesses

 (How does one quantify amount of
data loss?)

05/03/2010

Future directions in large-scale storage systems

30

GOBS: Summary

 Data placement strategies matter when performing rebuilds

 Rebuild time matters over long data lifetimes

 Simulation can help evaluate placement strategies

 Much more to do here…

05/03/2010

Future directions in large-scale storage systems

31

Collective data management

05/03/2010

Future directions in large-scale storage systems

32

Many-task computing

 Combine grid computing infrastructure with high-performance resources

 Reuse robust grid software systems

 Use new, rapid schedulers (Falkon, Coasters)

 Plenty of applications

 Fault-tolerant, scalable

Future directions in large-scale storage systems

33
05/03/2010

Scripted applications

 Development timeline:

– Scientific software developer produces sequential code for application research

– Produces small batch runs for parameter sweeps, plots

– Small scale batches organized through the shell and filesystem

– Additional scaling possible through the application of grid tools and resources

– What if the application is capable of (and worthy of) scaling further?

Future directions in large-scale storage systems

34
05/03/2010

Swift and related tools

 Separate workflow description from implementation

 Compile and generate workloads for existing execution infrastructures

Future directions in large-scale storage systems

35
05/03/2010

<sites.xml>
…

rawdata = sim(settings);
stats = analysis(rawdata);

…

compile

select resources

allocate resources

write script

 execute

Default I/O

 In a standard Swift workflow, each task must enumerate its input and
output files

 These files are shipped to and from the compute site

Future directions in large-scale storage systems

36
05/03/2010

submit site

copy inputs

return outputs

compute



 This RPC-like technique is problematic for large numbers of short jobs

Data generation and access

 Current I/O systems work recognizes the challenges posed by large batches
of small tasks

 Characterized by:

– Small files

• Small, uncoordinated accesses

• Potentially large directories

– Whole file operations

– Metadata operations

• File creates

• Links

• Deletes

 Overall challenges

– BlueGene/P:

• I/O bandwidth: down to 400 KB/s /core

• File creation rate: only 1/hour /core (Raicu et al.)

05/03/2010

Future directions in large-scale storage systems

37

Related work

 Filesystem optimizations

– PVFS optimizations for small files (Carns et al. 2009)

• Improved small object management

• Eager messages

– BlueFS client optimizations (Nightingale et al. 2006)

• Speculative execution in the filesystem client

• Mitigates latency

 Scheduling and caching

– BAD-FS (Bent et al. 2004)

– Data diffusion (Raicu et al. 2009)

 Collective models

– Enable programmer support

– Borrow from strengths of MPI, MPI-IO functionality

– Expose patterns explicitly (MapReduce, etc.)

05/03/2010

Future directions in large-scale storage systems

38

Collective Data Management

 Provide primitives that the programmer can use explicitly

– May already be used via custom scripts

– Generally difficult to specify with sequential languages

 Broadcast (aggregation, map):

» 

 Scatter (two-phase):

» 

 Gather (aggregation, reduce)

» 
05/03/2010

Future directions in large-scale storage systems

39



















Cache techniques

 Cache pinning (specify critical data)

»  

 Workflow/data-aware scheduling

» 

05/03/2010

Future directions in large-scale storage systems

40


















time

I/O reduction

 Let applications continue to move large quantities of small data over POSIX
interfaces

 Prevent these accesses from reaching the filesystem

05/03/2010

Future directions in large-scale storage systems

41

U
se

r
I/

O CDM

I/O reduction

 The purpose of each potential CDM technique is to reduce accesses to the
filesystem

 In our case studies, we sought to estimate the maximum possible reduction
that a carefully-written application could achieve on our target system
model

 In a default scripted workflow, all accesses go to the FS

 As a start, we used an I/O reduction defined as:

 in bytes

 Other interesting quantities could measure file creates, links, or a count of
accesses regardless of size

05/03/2010

Future directions in large-scale storage systems

42

appsby seen I/O

FSby seen I/O
%100reduction

Case studies: High-level view

 OOPS: Open Protein Simulator

 DOCK: Molecular docking

 BLAST: Basic Local Alignment Search Tool

 PTMap: Post-transformational modification analysis

 fMRI: Brain imaging analysis

05/03/2010

Future directions in large-scale storage systems

43

fMRI

05/03/2010

Future directions in large-scale storage systems

44

 Simple MapReduce-like structure

 Broken down into scatter and gather operations

 Intermediate data can be cached. Produces much final output

BLAST

05/03/2010

Future directions in large-scale storage systems

45

 Like MapReduce with two inputs

 If cache is used to implement broadcast, must prevent pollution

 Produces trivial final output – I/O reduction may exceed 99%

DOCK

05/03/2010

Future directions in large-scale storage systems

46

 Significant input size

 Pipeline-like accesses

 Produces trivial final output – I/O reduction may exceed 99%

OOPS

05/03/2010

Future directions in large-scale storage systems

47

 Significant input size

 Pipeline-like accesses and iterations

 Produces trivial final output – I/O reduction may exceed 99%

PTMap

05/03/2010

Future directions in large-scale storage systems

48

 Pipeline-like accesses and iterations

 Uses links to create an intermediate index

 Produces trivial final output – I/O reduction may exceed 99%

Observations

 Great deal of potential optimizations

– Many of which are previously studied

– Difficult to implement with sequential programming models

 Small files

– Large input data sets must be read efficiently

– Many small files are created, written once, and possibly read again multiple
times, primarily by transmission to other compute jobs

– Developer basically knows this – must be able to express it

 Patterns

– MPI-like concepts such as broadcasts, gathers, and even point-to-point messages
help describe the I/O patterns

– Can be exposed to the developer through scripting abstractions

05/03/2010

Future directions in large-scale storage systems

49

CDM active client

 New CDM module allows for dynamic data access on the compute site

 Implemented by modifying Swift wrapper scripts

05/03/2010

Future directions in large-scale storage systems

50

submit site

copy policy (& inputs?)

(return outputs?)

compute



data access

CDM

Agg. C-MPI?Alt. FS HW Etc.?

Summary

 Investigated I/O performance characteristics of five scalable applications

– Laid out workflow job/data dependencies

– Compared with well-studied patterns

– Performed coarse studies of file access statistics

– Looked at idealized potential optimizations (gedankenexperiments)

 Portability

– Running on the BG/P not unlike running on the grid

– Benefit from existing software systems

– Work within the typical scientific development cycle

 Lots to do

– Proposed new software toolkit and language integration

– Largely based on existing tools; package and expose to developers

05/03/2010

Future directions in large-scale storage systems

51

Thanks

 Rob Ross and the Radix group

 Mike Wilde and the Swift community

 Application collaborators: Yue Chen (PTMap),
Aashish Adhikari (OOPS) and Sarah Kenny (fMRI)

 Thanks to Ioan Raicu and CUCIS

 Grants:
This research is supported in part by NSF grant OCI-721939, NIH grants DC08638 and DA024304-02, the Office of
Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy under Contracts DE-AC02-
06CH11357 and DE-AC02-06CH11357. Work is also supported by DOE with agreement number DE-FC02-
06ER25777.

05/03/2010

Future directions in large-scale storage systems

52

Questions

05/03/2010

Future directions in large-scale storage systems

53

