
Coasters:  

 uniform resource provisioning and 

 access for clouds and grids 

 

Mihael Hategan, Justin M Wozniak, Ketan Maheshwari 

 

Argonne National Laboratory 

 

 
Presented at:  
 
Conference on Utility and Cloud Computing (UCC 2011)  
Melbourne, Australia– December 6, 2011 



Big Picture: Deploy applications on resources 

Application invocations 

Applications Data Dependencies 

Resources 

CPUs Storage Services 

Cluster 

HPC 

Grid Cloud 

In
te

rf
ac

e
s 

12/6/2011 
2 

Coasters: uniform resource provisioning 



Motivation: Queuing systems 

 What we have (PBS, SGE) 

 

 

 

 

 

 

 What we would like 

12/6/2011 

Coasters: uniform resource provisioning 

3 



Big Picture: Reusable service components 

Application invocations 

Applications Data Dependencies 

Resources 

CPUs Storage Services 

Cluster 

HPC 

Grid Cloud 

In
te

rf
ac

e
s 

Coaster Pilot Job 

Coaster Service 

12/6/2011 
4 

Coasters: uniform resource provisioning 



Big Picture: No hands operation 

 

12/6/2011 

Coasters: uniform resource provisioning 

5 

Client 

Coaster Client 

Coaster Service Code 

Head Node GRAM/SSH 

Bootstrap 

Cache 

Coaster Service 



Big Picture: Manage scientific applications 

Application invocations 

Produce 
inputs 

Resources 

CPUs Storage Services 

Cluster 

HPC 

Grid Cloud 

In
te

rf
ac

e
s 

Coaster Pilot Job 

Coaster Service 

Produce 
inputs 

Produce 
inputs 

Compute 
Produce 
inputs 

Produce 
inputs 

Analyze 
Reduce 

12/6/2011 
6 

Coasters: uniform resource provisioning 



Disk Disk 

Motivation: File system use on Grids 

 Typical file path when using GRAM 

 For a stage-in, a file is read 3 times from disk, written 2 times to disk, and 
goes 4 times through some network 

 Assumption: it’s more efficient to copy data to compute node local storage 
than running a job directly on a shared FS. 

12/6/2011 

Coasters: uniform resource provisioning 

7 

Stage-in 

Stage-out 

FS 
Server 

Submit 
Site 

Head 
Node 

FS 
Server 

Compute 
Node 

Disk 



Motivation: … can be made more efficient 

 2 disk reads, one write, and 2 times through network 

 Assumption: compute node has no outside world access, otherwise the 
head node can be bypassed 

12/6/2011 

Coasters: uniform resource provisioning 

8 

Disk Disk 

Submit 
Site 

Head 
Node 

Compute 
Node 

Stage-in 

Stage-out 



Big Picture: Make these resources uniform 

12/6/2011 

Coasters: uniform resource provisioning 

9 

 
• Application-level 

 
• Task execution 
• Data access and transfer 

 
• Infrastructure-level 

 
• Pilot job management 
• Configuration management 

 
• Enable automation of configuration 

 
 

Enable high portability 



Big Picture: Create a live pathway between 

client side and compute nodes 

 

12/6/2011 

Coasters: uniform resource provisioning 

10 

Client Applications Invocations Data 

Desktop 
Coaster Service 

Cluster Grid Site Cloud 
Coaster Service Coaster Service Coaster Service 

Coaster Client 

Coaster 
Worker 

CPU Storage 

Compute 
Node 

Coaster 
Worker 

CPU Storage 

Compute 
Node 

Coaster 
Worker 

CPU Storage 

Compute 
Node 

Coaster 
Worker 

CPU Storage 



Outline 

 Overview of scientific scripting with Swift 

 

 Description of Coasters features 
 

 Application use case: protein docking 

 

 Data transfer methods in Coasters 

 

 Deployment on Amazon EC2 with Globus Provisioning  

 

 

 

 

12/6/2011 

Coasters: uniform resource provisioning 

11 



Big Picture: Enable complex application logic 

• Iteration 
 

• Typed data 
 

• Structures, arrays 
 

• Automatic dataflow concurrency 
 

• Functions, external applications 
 

• External file data 
 

• Site-specific configuration 
 

 

12/6/2011 
12 

Coasters: uniform resource provisioning 



Scientific scripting - SwiftScript 

 Support file/task model directly in 
the language 

 
app (file output) sim(file input) { 

namd2 @input @output 

} 

 

 Provide natural concurrency 
through automatic data flow 
analysis and task scheduling 

 

file o11 = sim(input1); 

file o12 = sim(input2); 

file m   = exchange(o11, o12); 

file i21 = create(o11, m); 

file o21 = sim(i21); 

... 

 

12/6/2011 

Coasters: uniform resource provisioning 

13 

 Separate application script from 
site configuration details 

 

 

 

 

 Support scientific data sets in the 
language through language 
constructs such as structs, arrays, 
mappers, etc. 

script sites apps 

Swift Execution… 

sim 

sim 

e
x
c
h
a
n
g
e
 

input1 
o11 

m 

input2 o12 

sim o21 

sim 
i22 

create 

create 

i21 

o22 



Swift features 

 Data types 

string s = “hello world”; 

int i = 4; 

int A[]; 

 

 Mapped data types 

type image; 

image file1<“snapshot.jpg”>; 

 

 Conventional expressions 

if (x == 3) {  

    y = x+2; 

    s = @strcat(“y: ”, y); 

} 

 

12/6/2011 

Coasters: uniform resource provisioning 

14 

 Structured data 

image  A[]<array_mapper…>; 
 

 Loops 

 

foreach f,i in A { 

    B[i] = convert(A[i]); 

} 

 

 Data flow 

 

analyze(B[0], B[1]); 

analyze(B[2], B[3]); 

 

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011 



Execution infrastructure - Coasters 

 Coasters: a high task rate execution provider  
 

– Automatically deploys worker agents to resources with respect to user task 
queues and available resources 

 

 

12/6/2011 
15 

Coasters: uniform resource provisioning 

– Implements the Java CoG provider 
interfaces for compatibility with 
Swift and other software 

– Currently runs on clusters, grids, 
and HPC systems 

– Can move data along with task 
submission 

– Contains a “block” abstraction to 
manage allocations containing large 
numbers of CPUs 

 

 

 



Infrastructure: Execution/data abstractions 

 We need to submit jobs and move data to/from various resources 
 

 Coasters is implemented to use the Java CoG Kit providers 
 

 Coasters implements the Java CoG abstractions 

 

 Java CoG supports: Local execution, PBS, SGE, SSH, Condor, GT, Cobalt 
 

 Thus, it runs on: Cray, Blue Gene, OSG, TeraGrid, clusters, Bionimbus, 
FutureGrid, EC2, etc. 

 

 Coasters can automatically allocate blocks of computation time for use in 
response to user load: “block queue processing” 

 

 Runs as a service or bundled with Swift execution 

12/6/2011 

Coasters: uniform resource provisioning 

16 



Implementation: The job packing problem (I) 

 We need to pack small jobs into larger jobs (blocks) 
 

 Resources have restrictions: 

– Limit on total number of LRM jobs 

– Limit on job times 

– Non-unity granularity (e.g. CPUs can only be allocated in multiples of 16) 
 

 We don’t generally know where empty spots in the scheduling are 

 

 We want to fit Coasters pilot jobs into the queue however we can 

 

12/6/2011 

Coasters: uniform resource provisioning 

17 



Implementation: The job packing problem (II) 

(not to scale) 

 Sort incoming jobs based on walltime 

 

 

 

 

 Partition required space into blocks 

 

12/6/2011 

Coasters: uniform resource provisioning 

18 

# CPUs 

walltime 



Implementation: The job packing problem (II) 

(also not to scale) 

 Commit jobs to blocks and adjust as necessary based on actual walltime 

 

 

 

 

 

 

 

 

 The actual packing problem is NP-complete 

 Solved using a greedy algorithm: always pick the largest job that will fit in a 
block first 

12/6/2011 

Coasters: uniform resource provisioning 

19 

# CPUs 

walltime 

now 

… … 



Coasters settings 

 “Block” or “Passive” queue processor 

 

 Wall time inputs and customization (overallocation) 

 

 General queue settings 

– Node count specification 

– Spread 

 

 Scheduler-specific queue settings 

– PBS, SGE, Globus settings, etc. 

 

 Swift settings  

– Throttles on job submission, data transfer 

– Allows user to conform to site rules 

12/6/2011 

Coasters: uniform resource provisioning 

20 



Application case - ModFTDock 

 modFTDock:  Novel application to perform 
protein docking using large batches of 
sequential tasks 

 SwiftScript was rapidly built and deployed 
on Beagle, the new Cray XE6, and the 
Bionimbus cloud system 

 Bionimbus: easily scaled to 100,000 tasks on 
20 nodes, 80 cores in preliminary testing 

 Production runs will require similar task 
quantities, longer tasks, more cores 

 

 

 

 

21 
12/6/2011 

Coasters: uniform resource provisioning 

rapid ramp-up 

high  sustained utilization 



ModFTDock 

 

12/6/2011 

Coasters: uniform resource provisioning 

22 

string str_roots[] =  

   readData( @arg( "list" ) ); 

int n = @toint(@arg("n","1")); 

 

foreach str_root in str_roots 

{ 

  string str_file_static =  

    @strcat( @arg("in", "input/"), str_root, ".pdb"); 

  string str_file_mobile = "input/4TRA.pdb"; 

 

  file_pdb file_static<single_file_mapper;file=str_file_static >; 

  file_pdb file_mobile<single_file_mapper;file=str_file_mobile >; 

  file_dat dat_files[]<simple_mapper; 

                         padding = 3, 

                         location=@arg("out", "output"), 

                         prefix=@strcat(str_root, "_"), 

                         suffix=".dat">; 

 

  foreach mod_index in [0:n-1] 

  { 

    string str_modulo = @strcat(mod_index, ":", modulus); 

    dat_files[mod_index] =  

        do_one_dock(str_root, str_modulo, file_static, file_mobile); 

  } 

} 

 

2dk1.pdb 



Many tasks: many small files 

12/6/2011 

Coasters: uniform resource provisioning 

23 

fMRI image analysis 



Coasters provider staging 

 

12/6/2011 

Coasters: uniform resource provisioning 

24 

Shared file system 



Coasters provider staging 

12/6/2011 

Coasters: uniform resource provisioning 

25 

Proxy file transfer 



Coasters provider staging 

12/6/2011 

Coasters: uniform resource provisioning 

26 

Service file transfer 



Use on commercial clouds 

 Swift/Coasters is easy to deploy  
on Globus Provisioning (GP) 

 GP provides simple start-up scripts  
and several other features we may use  
in the future (NFS, VM image, CHEF) 

 Usage: 

0. Authenticate to AWS 

1. start-coaster-service  

   gp-instance-create 

    gp-instance-start 

2. swift myscript.swift … 

     Repeat as necessary 

3. stop-coaster-service 

    gp-instance-terminate 

12/6/2011 

Coasters: uniform resource provisioning 

27 

Submit site 

GP+AWS 

Coaster Pilot Job 

Coaster Service 

Coaster Pilot Job 

NFS 

Swift 



Related Swift/Coasters work… 

 Collective Data Management (CDM) 

– Improve support for shared filesystems on distributed resources 

– Make use of specialized, site-specific data movement features 

– Employ caching through the deployment of distributed storage resources on the 
computation sites 

– Aggregate small file operations into operations on archives, etc. 
Case studies in storage access by loosely coupled petascale applications,  
Proc. Workshop PDSW at SC, 2009 

 

 Many Parallel-Task Computing (MPTC) 

– Support large batches of small MPI or Global Arrays jobs 

– Multiple scheduler modes - JETS project 
JETS: Language and system support for many-parallel-task computing ,  
Proc. Workshop P2S2 at ICPP, 2011 

 

 ExM: Many-task computing on extreme-scale systems 

– Deploy SwiftScript applications on exascale-generation systems 

– Developing new compiler, new distributed progress management infrastructure, 
and new global data store 

28 
12/6/2011 

Coasters: uniform resource provisioning 



Thanks 

 

 Thanks to the organizers 
 

 Grants: 
 This research is supported by the Office of 
Advanced Scientific Computing Research, 
Office of Science, U.S. Dept. of Energy under 
Contracts DE-AC02-06CH11357. Work is also 
supported by DOE with agreement number DE-
FC02-06ER25777. 

 

12/6/2011 
29 

Coasters: uniform resource provisioning 



Questions 

12/6/2011 
30 

Coasters: uniform resource provisioning 


