Argonne°

NATIONAL LABORATORY

Coasters:
uniform resource provisioning and
access for clouds and grids

Mihael Hategan, Justin M Wozniak, Ketan Maheshwari

Argonne National Laboratory

Presented at:

Conference on Utility and Cloud Computing (UCC 2011)
Melbourne, Australia- December 6, 2011

& "‘"".»‘ U.S. DEPARTMENT OF
{ el Y
S

Big Picture: Deploy applications on resources

Application invocations
[Applications] [Data] [Dependencies]

A

| custer |} [eid)] [couwd |

Interfaces

Resources
[CPUs] [Storage] [Services]

12/6/2011

Motivation: Queuing systems

= What we have (PBS, SGE)

= What we would like

Coasters: uniform resource provisioning

12/6/2011

Big Picture: Reusable service components

Application invocations

[Applications] [Data] (Dependencies]
Coaster Service

'_g [Cluster] [Grid] [Cloud]
A 4
Coaster Pilot Job l
Resources
[CPUs] [Storage] [Services]
Coasters: uni form resource provisioni ng

12/6/2011

v

Big Picture: No hands operation

Client

(

Coaster Client

[Coaster Service Code]

|

/ GRAM/SSH l

Head Node

/

N

e

Cache

)

Coasters: uniform resource provisioning

12/6/2011

Big Picture: Manage scientific applications

-

Application invocations

Compute Analyze
%)%)% e

Coaster Service

Cloud l
Coaster Pilot Job '

Resources

Interfaces
E
[t
wn
—+
D
-
0)
o,
o

CPUs l Storage l Services l

Coasters: uniform resource provisioning

s 12/6/2011

Motivation: File system use on Grids

= Typical file path when using GRAM

= For a stage-in, a file is read 3 times from disk, written 2 times to disk, and
goes 4 times through some network

= Assumption: it's more efficient to copy data to compute node local storage
than running a job directly on a shared FS.

FS [~ Submit [Head [FS [~ Compute
Server Site I(Node I(Server Node

Disk Disk
—> Stage-in

<€— Stage-out

Coasters: uniform resource provisioning

s 12/6/2011

Motivation: ... can be made more efficient

= 2disk reads, one write, and 2 times through network

= Assumption: compute node has no outside world access, otherwise the

head node can be bypassed

Submit
Site

Coasters: uniform resource provisioning

> Head > Compute
Node I(Node
\4
Disk
—> Stage-in

€— Stage-out

12/6/2011

Big Picture: Make these resources uniform

Enable high portability

 Application-level

* Task execution
* Data access and transfer

* Infrastructure-level

* Pilot job management
* Configuration management

* Enable automation of configuration

Coasters: uniform resource provisioning

S 12/6/2011 ’

Big Picture: Create a live pathway between
client side and compute nodes

[Applications Invocations] Client [Data]
)r { Coaster Client })F

4 Desktop \\ Cluster | || | GridSite . Cloud
[Coaster Service [Coaster Service | [Coaster Service | [Coaster Service |

/ Compute \ / Compute \ / Compute \

Node A Node ¥ Node v
Coaster Coaster Coaster Coaster

Worker Worker eee Worker eee Worker eee

\ rCPU ' Storage |) CP.U | Storagel CPU I Storage\ CPU l Storagel

o Y. o Y. o Y.

Coasters: uniform resource provisioning
10
12/6/2011

v

Outline

= Overview of scientific scripting with Swift

= Description of Coasters features

= Application use case: protein docking
» Data transfer methods in Coasters

= Deployment on Amazon EC2 with Globus Provisioning

Coasters: uniform resource provisioning

12/6/2011

11

Big Picture: Enable complex application logic

* Iteration

* Typed data

* Structures, arrays

+ Automatic dataflow concurrency
 Functions, external applications
* External file data

* Site-specific configuration

Coasters: uniform resource provisioning

12
S 12/6/2011

Scientific scripting - SwiftScript

= Support file/task model directly in = Separate application script from

the language site configuration details
script sites apps
app (file output) sim(file input) {
namd?2 @input @output \% y y
} Swift Execution...
" Provide natural concurrency » Support scientific data sets in the
through automatic data flow language through language
analysis and task scheduling constructs such as structs, arrays,

mappers, etc.

file 0ll = sim(inputl);
file 012 = sim(input?2);
file m = exchange (oll, 012);
file i21 = create(oll, m); . |
inputl ;
. . . . oll i21
file o021 = sim(i21); — 3 sim > g > create > sim —> o021
Q m
oy
i nput2 012 | & i22
iEBE——> sim ‘ > % > create > sim —> 022

Coasters: uniform resource provisioning

13
s 12/6/2011

Swift features

= Data types

string s = “hello world”;
int 1 = 4;

int A[];

= Mapped data types
type 1image;
image filel<%“snapshot.jpg”>;

= Conventional expressions
1if (x == 3) |
y = X+2;

s = @strcat(My: 7, v);

= Structured data

image A[]<array mapper..>;
= Loops
foreach f,1 in A {

B[1i] = convert (A[1]):;
= Data flow

analyze (B[0], BI[1]1);
analyze (B[2], BI[3]):

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

Coasters: uniform resource provisioning

v

14
12/6/2011

Execution infrastructure - Coasters

= Coasters: a high task rate execution provider

- Automatically deploys worker agents to resources with respect to user task
queues and available resources

. SwiftScript
- Implements the Java CoG provider (e - ——
. i . o file[3] = compute(file[2]):; ...]
interfaces for compatibility with 7
Swift and other software £ Grid commands ®'r Compilation {sw2£z)
. w : [
— Currently rauns on Clustersl grlds, [<executex<compute><file “£.2"> ...]
and HPC SyStemS o _ ® Service start (g=ub,)
) = CoasterService J
- Can move data along with task N
. . o Task queus task (compnte), ...]
submission c @
. . © Allocation {gsub.)
- Contains a “block” abstraction to Compute sites I stan
manage allocations containing large Worker nodes l ® ¢ (message)
numbers of CPUs Worker script ‘

[compnte] [compute]

Coasters: uniform resource provisioning

15
S 12/6/2011

Infrastructure: Execution/data abstractions

= We need to submit jobs and move data to/from various resources
= C(Coasters is implemented to use the Java CoG Kit providers

= Coasters implements the Java CoG abstractions

» Java CoG supports: Local execution, PBS, SGE, SSH, Condor, GT, Cobalt

= Thus, it runs on: Cray, Blue Gene, OSG, TeraGrid, clusters, Bionimbus,
FutureGrid, EC2, etc.

= Coasters can automatically allocate blocks of computation time for use in
response to user load: “block queue processing”

= Runs as a service or bundled with Swift execution

Coasters: uniform resource provisioning

16
s 12/6/2011

Implementation: The job packing problem ()

= We need to pack small jobs into larger jobs (blocks)

= Resources have restrictions:
- Limit on total number of LRM jobs
- Limit on job times
- Non-unity granularity (e.g. CPUs can only be allocated in multiples of 16)

= We don't generally know where empty spots in the scheduling are

= We want to fit Coasters pilot jobs into the queue however we can

Coasters: uniform resource provisioning

17
s 12/6/2011

Implementation: The job packing problem (ll)
(not to scale)

= Sort incoming jobs based on walltime

_—d

= Partition required space into blocks

N

walltime

Coasters: uniform resource provisioning

18
12/6/2011

Implementation: The job packing problem (ll)
(also not to scale)

= Commit jobs to blocks and adjust as necessary based on actual walltime

N

walltime

now

= The actual packing problem is NP-complete

= Solved using a greedy algorithm: always pick the largest job that will fit in a
block first

Coasters: uniform resource provisioning

19
12/6/2011

Coasters settings

= “Block” or “Passive” queue processor
= Wall time inputs and customization (overallocation)

= General queue settings
- Node count specification
- Spread

= Scheduler-specific queue settings
- PBS, SGE, Globus settings, etc.

= Swift settings
- Throttles on job submission, data transfer
- Allows user to conform to site rules

Coasters: uniform resource provisioning

12/6/2011

20

Application case - ModFTDock

= modFTDock: Novel application to perform
protein docking using large batches of

sequential tasks 17,5001 T\
15,000 { |'
" SwiftScript was rapidly built and deployed =~ ff \\
on Beagle, the new Cray XE6, and the 2 10.000] i 1
f |

Bionimbus cloud system 2 7500, [

=

= Bionimbus: easily scaled to 100,000 tasks on ~ **| [

. . . . | \
20 nodes, 80 cores in preliminary testing 2,500 J—M&H‘—l‘k
N

* Production runs will require similar task L ob duration bound (eecondsy
quantities, longer tasks, more cores

8| e T e T D R D e T S e e —
70
60 | high sustained utilization
9 f
8 50 i
=]
= d
3 rapid ramp-up
2 30
20
10
0 10 20 30 40 50 60 70 80 % 100 110 120 130 140 150 160 170 180 190 200
Coasters: uniform resource provisioning time (minutes)

21
s 12/6/2011

ModFTDock

4 tRNA score

:: '|‘o
;! score bkl eval

drossss, pTSIIISSS 'ﬁ Jesnans *| compute-distances

PP LA A A L

........

.......
...........

string str roots[] = MxN@136KB M@13MB M@57MB
readData (G@arg("list"));
int n = Qtoint (QGarg("n","1"));

foreach str root in str roots
{
string str file static =
@strcat(Qarg("in", "input/"), str root, ".pdb");
string str file mobile = "input/4TRA.pdb";

file pdb file static<single file mapper;file=str file static >;
file pdb file mobile<single file mapper;file=str file mobile >;
file dat dat files[]<simple mapper;
padding = 3,
location=@arg("out", "output"),
prefix=@strcat (str root, " "),
suffix=".dat">;

foreach mod index in [0:n-1]
{
string str modulo = @strcat (mod index, ":", modulus);
dat files[mod index] =
do_one dock(str root, str modulo, file static, file mobile);

Coasters: uniform resource provisioning

22
S 12/6/2011

Many tasks: many small files

N x

compute analysis
A

A

| rer2
J User storage

fMRI image analysis

Coasters: uniform resource provisioning

S 12/6/2011

Coasters provider staging

Client K ——— > Service ,_——_ > Worker

Shared -
File-system
Server

Shared file system

Coasters: uniform resource provisioning

24
S 12/6/2011

Coasters provider staging

Client (@ Service (> Worker

Proxy file transfer

Coasters: uniform resource provisioning

25
S 12/6/2011

Coasters provider staging

Client > Service (mm== > Worker

Service file transfer

26

12/6/2011

Use on commercial clouds

= Swift/Coasters is easy to deploy
on Globus Provisioning (GP)

gBrovision

Submit site

= GP provides simple start-up scripts
and several other features we may use
in the future (NFS, VM image, CHEF)

= Usage:
0. Authenticate to AWS

1. start-coaster—-service
gp-instance-create

Coaster Service

gp-instance-start

2. swift myscript.swift .. i i
Repeat as necessary Coaster Pilot Job Coaster Pilot Job

3. stop-coaster-service

gp-instance-terminate

Coasters: uniform resource provisioning
27

12/6/2011

Related Swift/Coasters work...

= Collective Data Management (CDM)
- Improve support for shared filesystems on distributed resources
- Make use of specialized, site-specific data movement features

- Employ caching through the deployment of distributed storage resources on the
computation sites

- Aggregate small file operations into operations on archives, etc.
Case studies in storage access by loosely coupled petascale applications,
Proc. Workshop PDSW at SC, 2009

= Many Parallel-Task Computing (MPTC)

- Support large batches of small MPI or Global Arrays jobs

- Multiple scheduler modes - JETS project
JETS: Language and system support for many-parallel-task computing ,
Proc. Workshop P2S2 at ICPP, 2011

= ExM: Many-task computing on extreme-scale systems
- Deploy SwiftScript applications on exascale-generation systems

- Developing new compiler, new distributed progress management infrastructure,
and new global data store

Coasters: uniform resource provisioning

28
s 12/6/2011

Thanks

= Thanks to the organizers

= Grants:

This research is supported by the Office of
Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy under
Contracts DE-AC02-06CH11357. Work is also
supported by DOE with agreement number DE-
FCO02-06ER25777.

Coasters: uniform resource provisioning

Y

12/6/2011

29

Questions

Coasters: uniform resource provisioning

30
s 12/6/2011

