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Motivation: Queuing systems 

 What we have (PBS, SGE) 

 

 

 

 

 

 

 What we would like 
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Big Picture: Reusable service components 
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Big Picture: No hands operation 
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Big Picture: Manage scientific applications 
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Disk Disk 

Motivation: File system use on Grids 

 Typical file path when using GRAM 

 For a stage-in, a file is read 3 times from disk, written 2 times to disk, and 
goes 4 times through some network 

 Assumption: it’s more efficient to copy data to compute node local storage 
than running a job directly on a shared FS. 
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Motivation: … can be made more efficient 

 2 disk reads, one write, and 2 times through network 

 Assumption: compute node has no outside world access, otherwise the 
head node can be bypassed 
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Big Picture: Make these resources uniform 
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• Application-level 

 
• Task execution 
• Data access and transfer 

 
• Infrastructure-level 

 
• Pilot job management 
• Configuration management 

 
• Enable automation of configuration 

 
 

Enable high portability 



Big Picture: Create a live pathway between 

client side and compute nodes 
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Outline 

 Overview of scientific scripting with Swift 

 

 Description of Coasters features 
 

 Application use case: protein docking 

 

 Data transfer methods in Coasters 

 

 Deployment on Amazon EC2 with Globus Provisioning  
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Big Picture: Enable complex application logic 

• Iteration 
 

• Typed data 
 

• Structures, arrays 
 

• Automatic dataflow concurrency 
 

• Functions, external applications 
 

• External file data 
 

• Site-specific configuration 
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Scientific scripting - SwiftScript 

 Support file/task model directly in 
the language 

 
app (file output) sim(file input) { 

namd2 @input @output 

} 

 

 Provide natural concurrency 
through automatic data flow 
analysis and task scheduling 

 

file o11 = sim(input1); 

file o12 = sim(input2); 

file m   = exchange(o11, o12); 

file i21 = create(o11, m); 

file o21 = sim(i21); 

... 
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 Separate application script from 
site configuration details 

 

 

 

 

 Support scientific data sets in the 
language through language 
constructs such as structs, arrays, 
mappers, etc. 
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Swift Execution… 
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Swift features 

 Data types 

string s = “hello world”; 

int i = 4; 

int A[]; 

 

 Mapped data types 

type image; 

image file1<“snapshot.jpg”>; 

 

 Conventional expressions 

if (x == 3) {  

    y = x+2; 

    s = @strcat(“y: ”, y); 

} 
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 Structured data 

image  A[]<array_mapper…>; 
 

 Loops 

 

foreach f,i in A { 

    B[i] = convert(A[i]); 

} 

 

 Data flow 

 

analyze(B[0], B[1]); 

analyze(B[2], B[3]); 

 

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011 



Execution infrastructure - Coasters 

 Coasters: a high task rate execution provider  
 

– Automatically deploys worker agents to resources with respect to user task 
queues and available resources 
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– Implements the Java CoG provider 
interfaces for compatibility with 
Swift and other software 

– Currently runs on clusters, grids, 
and HPC systems 

– Can move data along with task 
submission 

– Contains a “block” abstraction to 
manage allocations containing large 
numbers of CPUs 

 

 

 



Infrastructure: Execution/data abstractions 

 We need to submit jobs and move data to/from various resources 
 

 Coasters is implemented to use the Java CoG Kit providers 
 

 Coasters implements the Java CoG abstractions 

 

 Java CoG supports: Local execution, PBS, SGE, SSH, Condor, GT, Cobalt 
 

 Thus, it runs on: Cray, Blue Gene, OSG, TeraGrid, clusters, Bionimbus, 
FutureGrid, EC2, etc. 

 

 Coasters can automatically allocate blocks of computation time for use in 
response to user load: “block queue processing” 

 

 Runs as a service or bundled with Swift execution 
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Implementation: The job packing problem (I) 

 We need to pack small jobs into larger jobs (blocks) 
 

 Resources have restrictions: 

– Limit on total number of LRM jobs 

– Limit on job times 

– Non-unity granularity (e.g. CPUs can only be allocated in multiples of 16) 
 

 We don’t generally know where empty spots in the scheduling are 

 

 We want to fit Coasters pilot jobs into the queue however we can 
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Implementation: The job packing problem (II) 

(not to scale) 

 Sort incoming jobs based on walltime 

 

 

 

 

 Partition required space into blocks 
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Implementation: The job packing problem (II) 

(also not to scale) 

 Commit jobs to blocks and adjust as necessary based on actual walltime 

 

 

 

 

 

 

 

 

 The actual packing problem is NP-complete 

 Solved using a greedy algorithm: always pick the largest job that will fit in a 
block first 
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Coasters settings 

 “Block” or “Passive” queue processor 

 

 Wall time inputs and customization (overallocation) 

 

 General queue settings 

– Node count specification 

– Spread 

 

 Scheduler-specific queue settings 

– PBS, SGE, Globus settings, etc. 

 

 Swift settings  

– Throttles on job submission, data transfer 

– Allows user to conform to site rules 
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Application case - ModFTDock 

 modFTDock:  Novel application to perform 
protein docking using large batches of 
sequential tasks 

 SwiftScript was rapidly built and deployed 
on Beagle, the new Cray XE6, and the 
Bionimbus cloud system 

 Bionimbus: easily scaled to 100,000 tasks on 
20 nodes, 80 cores in preliminary testing 

 Production runs will require similar task 
quantities, longer tasks, more cores 
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rapid ramp-up 

high  sustained utilization 



ModFTDock 
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string str_roots[] =  

   readData( @arg( "list" ) ); 

int n = @toint(@arg("n","1")); 

 

foreach str_root in str_roots 

{ 

  string str_file_static =  

    @strcat( @arg("in", "input/"), str_root, ".pdb"); 

  string str_file_mobile = "input/4TRA.pdb"; 

 

  file_pdb file_static<single_file_mapper;file=str_file_static >; 

  file_pdb file_mobile<single_file_mapper;file=str_file_mobile >; 

  file_dat dat_files[]<simple_mapper; 

                         padding = 3, 

                         location=@arg("out", "output"), 

                         prefix=@strcat(str_root, "_"), 

                         suffix=".dat">; 

 

  foreach mod_index in [0:n-1] 

  { 

    string str_modulo = @strcat(mod_index, ":", modulus); 

    dat_files[mod_index] =  

        do_one_dock(str_root, str_modulo, file_static, file_mobile); 

  } 

} 

 

2dk1.pdb 



Many tasks: many small files 
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fMRI image analysis 



Coasters provider staging 
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Shared file system 



Coasters provider staging 
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Proxy file transfer 



Coasters provider staging 
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Service file transfer 



Use on commercial clouds 

 Swift/Coasters is easy to deploy  
on Globus Provisioning (GP) 

 GP provides simple start-up scripts  
and several other features we may use  
in the future (NFS, VM image, CHEF) 

 Usage: 

0. Authenticate to AWS 

1. start-coaster-service  

   gp-instance-create 

    gp-instance-start 

2. swift myscript.swift … 

     Repeat as necessary 

3. stop-coaster-service 

    gp-instance-terminate 

12/6/2011 

Coasters: uniform resource provisioning 

27 

Submit site 

GP+AWS 

Coaster Pilot Job 

Coaster Service 

Coaster Pilot Job 

NFS 

Swift 



Related Swift/Coasters work… 

 Collective Data Management (CDM) 

– Improve support for shared filesystems on distributed resources 

– Make use of specialized, site-specific data movement features 

– Employ caching through the deployment of distributed storage resources on the 
computation sites 

– Aggregate small file operations into operations on archives, etc. 
Case studies in storage access by loosely coupled petascale applications,  
Proc. Workshop PDSW at SC, 2009 

 

 Many Parallel-Task Computing (MPTC) 

– Support large batches of small MPI or Global Arrays jobs 

– Multiple scheduler modes - JETS project 
JETS: Language and system support for many-parallel-task computing ,  
Proc. Workshop P2S2 at ICPP, 2011 

 

 ExM: Many-task computing on extreme-scale systems 

– Deploy SwiftScript applications on exascale-generation systems 

– Developing new compiler, new distributed progress management infrastructure, 
and new global data store 
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Questions 
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