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Abstract

Researchers conducting computer simulations can often
provide estimates of computation time for a given type of
simulation, which may be used by the compute cluster to
aid in resource allocation and scheduling. However, the
low quality of these estimates can cause deadline misses
and unpredictable behavior. This problem is exacerbated
on complex compute resources, clusters, and grids. Past-
deadline jobs may be killed to provide resources for others,
but the effect on the throughput of whole batches not fully
understood. In this paper, we examine models for simple job
schedulers and examine the quality of the deadline guaran-
tee given. Simulation results based on actual runtimes are
provided and discussed.

1 Introduction

The emergence of commodity compute clusters and
grids has provided researchers with an important tool for
simulation. Batch systems such as PBS [12] and LSF [21]
provide users with a cluster of compute hosts to which
jobs may be submitted, while grid engines such as Condor-
G [10] and Globus GRAM [8] create an access point
for widely distributed compute systems. Although such
resources often suffer from poor internal communication
speed compared to a multiprocessor shared memory ma-
chine, they have been used with considerable success by
researchers who need to submit a batch of independent jobs
for processing. The vast majority of this work has focused
on how to successfully share and complete computing tasks
such as computation and storage to achieve a large scientific
objective.

However, an often unaddressed aspect of grid comput-
ing is the notion of deadline-driven scheduling [18]. Unlike
traditional deadline scheduling from the realm of real-time
computing [15], the problem of deadline scheduling in the
grid context is significantly more difficult. The critical dif-
ference that emerges in grid computing is the dynamic na-
ture of the grid resources themselves.
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Previous work in the area of grid deadline scheduling
considered only the impact of low quality estimations on
throughput with regards to deadline scheduling [18]. To the
best of our knowledge, no previous work has examined the
effects of policing when coupled with variable quality dead-
line estimations in the context of grid computing. In addi-
tion, previous work in grid scheduling has focused on each
task being completely independent. For many types of sci-
entific simulation such as parameter sweeps and parameter
explorations, this is often not the case. In those cases, tasks
can often be grouped into a batch of related tasks that while
computationally independent, the utility of the final scien-
tific result is dependent upon the completion of all tasks.

Thus, the motivation of our paper is to answer the fol-
lowing question: Given an environment of related tasks with
low quality information, how strictly should policing be en-
forced and what effects will result on throughput and dead-
line guarantees? In our paper, we make several key con-
tributions. First, we offer insight into the effects of polic-
ing when the system contains low quality run-time estima-
tions. We offer a broad set of simulation studies incorporat-
ing both real world data as well as synthetic data. Second,
we formalize a model whereby batches of jobs can be spec-
ified with differing deadlines, and applied this to real world
scenarios. Finally, we offer insight into how to police. In
short, when multiple users offer bad estimates, who should
pay the price?

The remainder of our paper is organized as follows. Sec-
tion 2 describes related work both in the grid computing
community as well as related work from multi-processor
real-time systems. Next, Section 3 motivates our work by
providing cases that exemplify the tradeoffs directly con-
sidered in this work. Then, Section 4 formalizes the system
model used in Section 5 for our simulation studies based on
both synthetic and real world data. Finally, Section 6 offers
several concluding remarks.

2 Related Work

This work is intended to explore the area between tradi-
tional real-time computing and grid computing. These two



research areas traditionally have very different objectives.

In a real-time system, jobs are marked with a worst-case
computation time that is enforced by system policy. Any
deviation over this worst-case estimate is expected to result
in termination. The result is that real-time schedulers must
be conservative when scheduling. An investigation into how
conservative such schedulers must be when computing on
the grid may be found in [18].

The real-time literature is rich with examples of sched-
ulers for single and multi-processor systems. In uniproces-
sor systems, EDF (Earliest Deadline First) is optimal [14].
In the multiprocessor case, however, the worst-case achiev-
able utilization on M processors for EDF, which is a job-
level dynamic-priority algorithm, is only (M + 1)/2 [6].
In [15], the authors showed that if all tasks have utilization
limitations under a value «, the utilization bound for the
system increases to (M + 1)/(8 + 1) where 8 = |1/«].
Anderson et al. [3] proposed a EDF-based scheduler which
ensures the bounded deadline tardiness for every task in the
system. In [3], however, even though there is no restriction
on the overall system utilization, the per-task utilization for
any task must be capped: the lower the cap, the lower the
tardiness threshold.

Efficient scheduling of a batch of independent tasks is a
challenging problem in grid no matter what the performance
metric is. Several scheduling strategies have been proposed
to achieve the minimum overall running time [11, 13, 16],
which do not take into account possible deadline require-
ments from users.

Simulation of computational grid resources is an im-
portant tool when testing scheduling algorithms and tech-
niques. The Bricks system [19] has been used by several
researchers to test algorithms and grid performance. For
example, to effectively schedule parameter sweep jobs and
associated file staging on an internetwork of compute hosts,
Bricks was used [7] to evaluate various scheduling algo-
rithms.

Real software aids actual users who desire efficient
scheduling on the grid. The AppLeS system [4] and the
AppLeS Parameter Sweep Template (APST) match jobs to
a variety of grid resources. The Nimrod parameter sweep
system also provides deadline scheduling with respect to
resource costs [2].

3 Case Studies

3.1 Applications: SimpleScalar and NS-2

For our first example case, a CPU design was optimized
through simulation with SimpleScalar [5], a tool for simu-
lating the performance of real programs on a range of mod-
ern processors utilizing execution-driven simulation. Tasks

varied in run-time from as shown in Table 1. Most impor-
tantly, the utility of the results themselves was dependent
upon the completeness in that no points were missing from
the results. In the second simulation case, network simula-
tions were conducted using the NS-2 [1] simulator. NS-2 is
a discrete event simulator that provides packet-level gran-
ularity for simulating networks. During execution of the
above simulations, the run-time statistics were sampled. No
reasonable guesses about when the batches would actually
complete could be made.

3.2 Grid Middleware: GIPSE

Over the past few years, the GIPSE (Grid Interface for
Parameter Sweeps and Exploration) toolkit has been de-
veloped [20]. Rather than exposing the task-centric na-
ture of the grid, the tool allows the user to solve prob-
lems using a research-oriented interface. GIPSE manages
the creation and monitoring of jobs on the compute grid,
as well as maintaining a database of all the relevant data
about previously completed jobs, including input parame-
ters and output results, job metadata such as the executable
and resources used, job computation time, and other useful
information.

It is this requirement for timeliness the large body
of work in real-time multi-processor scheduling can be
brought to bear. In essence, the problem can be reduced to
an admission control and scheduling problem. For the re-
searcher, the question is simple: given a group of tasks, can
they be finished on time? However, it is the nature of grid
computing that makes this problem significantly more dif-
ficult than the traditional multi-processor scheduling prob-
lems faced in real-time.

4 A Model for Deadline-Driven Grids

As discussed above, there is a great need for ad hoc com-
pute clusters and grids that can provide reasonable schedule
guarantees. In this section, we lay out a model to meet such
demands, as shown in Figure 1.

The object of the system is to complete several batches
of jobs, where each batch has a deadline given by the user.
For each batch B; € B, B; = {J;;1 }, where each job J has
three indices, the batch number, the task type, and a uniqi-
fier. Each batch has an independent deadline, B;.deadline.
The system can identify a job J;;; as an instance of task
T; € T, belonging to batch B;, and different from all other
jobs in the system.

To obtain a response from the scheduler as to whether B;
is feasible given the current system state, each job is given a
computation time estimate, J; ;i .est. The user also provides
each job with a corresponding input set 5, which is a set
of input parameters valid for task T;, which is the parameter



space for T}, denoted T;.I. Each parameter is indexed, so
I;;1[0), Lijr[1], .. Iije[m — 1] € I;ji. The actual computa-
tion time is obtained empirically by the grid; in this model,
each task has a device that may be applied to an input set
to determine computation time. Hence, once submitted to a
compute resource, the computation time J;;x.c is obtained
by evaluating J;;.c = T}.device(;;1).

A compute grid G consists of N homogeneous process-
ing hosts, that are each capable of executing any job in a
non-preemptive, single-processing manner. The jobs cur-
rently running on the grid at time ¢ are said to be in the set
R,;. If a job J is added to Ry, then J.start = t. If more
jobs are submitted to the grid than available hosts, they are
queued in the FIFO wait queue W. When a job J; com-
pletes execution, R;11 := R; — {J;}, an event is triggered
back to the user, and if W is not empty, it is popped to ob-
tain job J;, which is added to ;4 1.

The scheduler S accepts a batch B; from the user at
any time, and can determine whether the batch has a fea-
sible deadline in several heuristic ways. In the FIFO model,
which we use', S builds up a calendar into the future, stack-
ing onto R all jobs in W U {B;}. If each job meets the
deadline, success is returned for the batch, but since the
guarantee is based upon the accuracy of the task estimates
provided, there is the possibility of deadline misses.

The value of the batch in a simulation research setting
represents, for example, data points on a plot. This work
assumes the researcher cannot accept partially complete
datasets. Since the user penalty for having a rejected batch
is less than that from a late or incomplete batch, it is better
to force the user to negotiate: to adjust their submission to
meet a deadline than to provide a less accurate guarantee,
providing poor results.

This is based on the assumption that the user can sup-
ply per task estimates where the actual runtime is centered
around the estimated computation time, but offset by a ran-

!For simplicity and compatibility with our experimental results on a
Condor system.
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Figure 1. Deadline-Driven Computing Model

dom value that is within a given percentage of the actual
time. We call this value the Quality of Estimate (QoE) to
avoid conflict with [9]. For example, if the simulated user
can always provide the scheduler with a time estimate such
that the actual runtime is within 40% of the estimate, and
not biased higher or lower, we say the QoE is 40%. So we
assert:

Jijk.est— Jijk.c S QOE (1)

Jiji-est

For any set of batches B, after submission to the sched-
uler, we have an acceptance ratio that indicates the size of
the subset of B that was accepted. Additionally, we use the
definition of guarantee ratio as given in [17], on batches, so
the ratio represents the number of batches in which all jobs
met the deadline for that batch, divided by the number of
batches accepted by the scheduler.

To help free up space for a new batch that arrives at a
given scheduling event, the scheduler may be permitted to
kill jobs that have been running in R for longer than they
were allocated based on their estimate. So we say that J is
eligible to be killed at time ¢ if:

t — J.start > J.est. 2)

To demonstrate an intermediate approach as motivated
in Section 5, we can instruct the scheduler to kill jobs that
have exceeded a certain threshold K, meaning we kill jobs
when:

t — J.start > J.est x (1 + K). 3)

For example, if K = 0.5, jobs are allowed to exceed their
estimate by 50% before becoming a possible victim.

Choosing K is difficult, because it is not easily possible
to choose a value that provides the users with flexibility for
errors and still promotes fairness and deadline guarantees.
To help select jobs for termination, and ameliorate these is-
sues, we may assign a probability p that a job will be killed
at a scheduling event at time ¢, as:

J.est

- 4
t — J.start “)

p=1
For example, a job that had exceeded its estimate by a factor

of 2 at a given scheduling event would have a 50% chance
of being killed.

5 Simulation

To investigate the properties of the system presented in
Section 4, a simulator was written that corresponds to that
model. The results in this section demonstrate the perfor-
mance of scheduler policy under idealized and experimental
workloads.



The simulator, designed to allow the study of computa-
tion time estimates over time is named East>. The program
allows the researcher to set up a virtual compute grid and
scheduler combination. Virtual tasks may be defined, as-
signed input parameters, grouped into batches, and sent to
a virtual compute cluster. A table of computation time de-
vices is given in Table 1. The experimental run times were
obtained from the Condor system as discussed in Section 3.

Each of the following tests is based on a varying QoE,
as defined above in (1). For each QoE value, 10 tests were
run, and the results were averaged. The standard deviation
of the tests is shown by the bars around each data point.
For each job, the estimate given to the scheduler was ran-
domly selected from the set of estimates that satisfy (1).
Batches of fixed size arrived at the scheduler between ran-
dom, uniformly distributed intervals around a given mean
value. The input set for each job was randomly, uniformly
selected from the space of valid input for the appropriate de-
vice. The simulated compute resources comprise a simple
N node cluster. The batch size was scaled up as the number
of hosts increased to simulate more complex systems.

5.1 Low-Quality Estimates

In this test, the acceptance and guarantee ratios for the
scheduler were measured agaist the QoE. As shown in Fig-
ure 2, increasing the error in the estimate has a significant
effect on scheduler acceptance, especially in complex sys-
tems. This was observed in many cases to be due to a single
large over-estimation of the runtime of a long job, which
forces the schedule past the deadline, and results in rejec-
tion. Additionally, the guarantee ratio for whole batches is
perfect when the estimates are exact, but even when they
vary widely, the effect is that the guarantee ratio rarely
drops. This is because the deadlines are somewhat per-
missive, but tight enough that not all batches are accepted.
However, in the complex case with 128 hosts, a heavy job
rate, and very bad estimates, almost no jobs are accepted,
because nearly all batches will have at least one extremely
long job with an overestimated runtime, forcing batch re-
jection. In these extreme cases, the Batch Guarantee Ratio
is shown as 0 because no batches were considered.

Overall, while the guarantee ratio is nearly perfect, the
acceptance ratio is not. This indicates that users could inten-
tionally provide underestimates to increase their acceptance
ratio, hogging the system.

In our next test, Figure 3, we attempt to police the system
fairly and increase the scheduler acceptance rate by killing
jobs that have exceeded their estimate. However, when the
scheduler is instructed to kill jobs that have exceeded their
estimate in order to accept future jobs, many fewer batches

2This work was supported in part by the National Science Foundation
through the grant NSF DBI-0450067.

are able to complete. This is aggravated by the fact that we
are measuring the Batch Guarantee Ratio, so killing one job
that is slightly over time results in a loss of the whole batch.
In addition, there is little to no gain in scheduler acceptance.
This is because many of the jobs that were killed were close
to completion at the time of kill, which means that very little
schedule time was freed.

Similar results are obtained when using runtimes from
real NS-2 runs as shown in Figures 4 and 5, in which we re-
peat the above experiments using experimentally observed
NS-2 runtimes.

5.2 Grace Periods

The fact that so many jobs are killed near their comple-
tion time motivates the implementation of grace periods.
The simple technique of granting jobs a threshold, or grace
period, before killing them was also simulated for the Poly-
Device tasks. For a range of values of K, the same simu-
lation was performed, where jobs were killed according to
the method described above. Although the results in Figure
6 show that larger grace periods result in more throughput
as measured by the batch guarantee ratio, this is an unfair,
easily manipulated system policy.

5.3 Probabilistic Enforcement

Applying the probabilistic policy, as describe in Equa-
tion (4) and shown in Figure 7, acceptance ratios match
up with ratios as given in the previously shown hard en-
forcement and non-enforcement policies. The batch guar-
antee ratio is much improved. This is due to the policy,
which rarely kills jobs that are near their estimate. How-
ever, throughput as measured by the batch guarantee ratio
still does not approach that of the unpoliced system.

5.4 Protecting Users from Bad Estimates

The intent of a policed system is to provide better results
for users overall, especially those that use the system prop-
erly. Users that intentionally abuse the system, for exam-
ple, by providing low estimates to increase the probability
of batch acceptance, should receive poor results, if this is
necessary to continue to provide good results to other users.

In this experiment, we compare the results obtained by
two groups of users: Group A, which submits NS-Device
tasks with estimates centered on the correct value, and
Group B, which always submits an underestimate. Esti-
mates for Group B were generated by randomly selecting an
estimate inside the given QoE range, until an underestimate
was obtained. Acceptance and guarantee ratios are shown
in Figure 8. These results show that Group A users obtain
better results: more of their accepted batches complete on



| Type | Name | Device | Median | Mean | Min | Max |
Ideal SumDevice > 14 22 22 0 45
Ideal PolyDevice > kiI[d] 123 198 0 804
Experimental | SS-Device | Lookup [ in table SS 218 237 137 | 615
Experimental | NS-Device | Lookup I in table NS 297 426 87 | 3442

Table 1. Computation Time Devices Used in the East Simulator

time, because very few of their jobs are killed, compared to
the Group B users.

6 Conclusion

While real-time computing and grid computing both em-
phasize scheduling, their ultimate goals are often different
and result in tradeoffs. Strictly enforcing computation time
estimates on the grid can greatly reduce throughput in heav-
ily loaded, complex systems. However, failure to enforce a
schedule is unfair to the other users of a shared compute
system, and necessitates policy to prevent users from cheat-
ing the system by providing misleading estimates.

Tests performed with a new grid scheduling simulator
showed that killing jobs that exceed their estimates can
greatly reduce throughput, especially in complex environ-
ments. A more balanced approach is required. We offered a
probabilistic policy that reduces the throughput penalty by
probabilistically forgiving users extra time for over-running
jobs. The new policy is also difficult to manipulate, and of-
fers the best results to users that provide the best estimates.
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Figure 2. Acceptance and guarantee ratios for batches of jobs without enforcement. Batches of
PolyDevice jobs.
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Figure 3. Acceptance and guarantee ratios for batches of jobs with hard enforcement. Batches of
PolyDevice jobs.
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Figure 4. Acceptance and guarantee ratios for batches of jobs without enforcement. Batches of
NS-Device jobs.
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Figure 5. Acceptance and guarantee ratios for batches of jobs with hard enforcement. Batches of
NS-Device jobs.
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Figure 6. Acceptance and guarantee ratios for batches of jobs with enforcement level K. Batches of
PolyDevice jobs.
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Figure 7. Acceptance and guarantee ratios for batches of jobs with probabilistic enforcement.
Batches of NS-Device jobs.
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Figure 8. Acceptance and guarantee ratios for batches of jobs with probabilistic enforcement.
Batches of NS-Device jobs. Data with dots indicates the Group A users, who provided estimates
centered on the correct running time, undotted lines indicate Group B users, who provided con-
sistent underestimates. This enforcement method demonstrates an intermediate approach between
hard enforcement and no enforcement, with intermediate guarantee ratios as a result. As shown, if
users can keep their running times within 50% of the estimate, they achieve similar acceptance ra-
tios to users that deliberately underestimate, while obtaining much better guarantee ratios on their
batches. (Standard deviation information removed for clarity.)
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Figure 9. Guarantee ratios for batches of jobs with probabilistic enforcement. Batches of NS-Device
jobs, N = 32, QoE = 50%. Data compiled from previous diagrams. All users Group A: unbiased esti-
mates. In summary, no enforcement allows for most jobs to complete on time, because of necessary
over-estimation for worst case input parameter sets. Since this policy is easily abused, this policy
is compared against the probabilistic enforcement method and the hard enforcement method. This
illustrates the trade-off between deadline enforcement and high throughput.



