
Opportunistic techniques have been
widely used to create economical computation
infrastructures and have demonstrated an ability
to deliver heterogeneous computing resources to
large batch applications, however, batch
turnaround performance is generally
unpredictable, negatively impacting human
experience with widely shared computing
resources. Scheduler prioritization schemes can
effectively boost the share of the system given to
particular users, but to gain a relevant benefit to
user experience, whole batches must complete on
a predictable schedule, not just individual jobs.
Additionally, batches may contain a dependency
structure that must be considered when predicting
or controlling the completion time of the whole
workflow; the slowest or most volatile
prerequisite job determines performance.

In this chapter, a probabilistic policy
enforcement technique is used to protect deadline
guarantees against grid resource unpredictability
as well as bad estimates. Methods to allocate
processors to a common workflow subcase,
barrier scheduling, are also presented.

1 Introduction

Running complex applications on widely
distributed resources is an unpredictable process,
complicating the user experience with new
systems. While opportunistic technologies and
grid infrastructures dramatically increase the
resources available to the application, they also
increase the range and volatility of resulting
behaviors. Job turnaround time, the span between
the time a job is ready to run and the time results
are returned, is of primary importance to users
seeking larger, more powerful computing

platforms, but is more difficult to measure on
conglomerations of heterogeneous computation
elements. The fact that users cannot easily
achieve predictable turnaround results – even in
the presence of increased available parallelism,
and when average case performance is improved
– can cause frustration and reduce interest in
new, complex distributed computing systems.

There is a fundamental disconnect
between short-term user objectives and long-term
system design techniques that underlies many
user frustrations with commodity computing
systems. Users prefer responsive, fast
turnarounds for specific workloads. Grid system
designers and administrators take a long view,
intending to maximize utilization, and thus the
return on investment, for a given resource set,
given a wider range of applications. These
viewpoints translate into the various technologies
available. For example, opportunistic systems
(Thain, 2004) excel at improving system
utilization start by locating idle resources and
employing them to perform useful work. Real-
time systems (Murthy, 2001), contrarily, start by
admitting acceptable workloads and ensuring that
the results will be returned on schedule. Ordinary
workstations are a middle ground, providing a
necessarily available resource that offers
moderate predictability through system simplicity
and isolation from external forces.

1.1 Sources of Unpredictability

We start with an examination of the
underlying causes of unpredictable performance
in opportunistic systems.

 Processor heterogeneity: Since users of

Investigating Deadline-Driven Scheduling Policy
via Simulation with East

Justin M. Wozniak and Aaron Striegel
University of Notre Dame

May 10, 2008

opportunistic systems often employ
resources owned and managed by diverse
organizations, heterogeneity is an ever-
present challenge. CPU heterogeneity
takes two forms: “hard” heterogeneity,
meaning architectural differences, and
“soft” heterogeneity, meaning
performance differences within a class of
compatible architectures.

While users can benefit from
existing matchmaking techniques to select
certain processors, opportunistic systems
have been designed for “compute-hungry”
users. These users are capable of
consuming an ever-growing number of
processors. Thus, they are expected to
overcome hard heterogeneity obstacles by
compiling for multiple architectures or
using portable interpreted languages.
Consequently, the impact of
heterogeneous systems can be modelled
by simply considering performance
differences.

 Contention: Opportunistic systems
attempt to harness the aggregate
computing ability of large numbers of
processors for large numbers of users. The
requested workload for such a system can
thus be quite variable, particularly in small
scale, experimental settings. For example,
in a typical university-sized Condor
installation, a user may initially have
access to all of the available machines, but
then unexpectedly be forced to split the
resources with another user.

Heterogeneous, opportunistic systems thus
pose two significant performance predictability
problems for users. First, performance analysis
prediction for a given task on a range of potential
architectures is a labor-intensive process that is
not standard practice in distributed computing,
nor is it appealing to potential new users of
complex systems. Second, since
micromanagement of job distribution is also a
complex project that must take into account the
contention for resources among multiple users,

the actual execution site of a task in an
opportunistic system is often left to the
metascheduler. Consequently, while the benefits
of tight runtime estimates are clear, modern
systems must recognize that typical cases will
rely on rough estimates given by users, and are
not particularly trustworthy due to the
unpredictable allocation of imperfectly
understood processors.

1.2 Real-time Computing Approaches

The difficulties experienced by users of
opportunistic systems can be ameliorated in a
variety of ways.

 The deadline computing model: In a
typical single workstation or symmetric
multiprocessor environment, deadlines are
a natural but often unstated aspect of
computing. Users are aware that jobs
must be completed within a certain known
time frame- when anomalous runtime
performance appears, given predictable
resources and low contention, they simply
turn to software defect investigations.
However, more complex computing
systems built upon an opportunistic fabric
require autonomic schedulers to maintain
the expected level of predictability by
managing the progress of jobs and
workflows. These schedulers require an
explicit user-supplied expected runtimes
and deadlines with which to operate.
Then, given a set of processors and
contending users and jobs they can
optimize system utilization to minimize
unpredictability in the sense of reducing
deadline misses.

 Admission control: Users of a deadline-
aware scheduler gain the additional
benefit of certain fail-fast behavior in the
form of deadline rejection. For example,
in a simple case in which the user
provided estimate exceeds the user
provided deadline, simple job rejection
can force the user to reconsider the
attempted workload. In the more complex
case of multiple existing jobs with

deadlines, if the new workload cannot be
scheduled, the system can quickly inform
the user that the work cannot be
scheduled. However, once a job has been
admitted to the system, the acceptance
constitutes a guarantee that the deadline
will be met. The automatic services
provided by the scheduler must attempt to
protect the deadline by allocating
resources and managing contention as
necessary.

A scheduler that implements these real-
time computing concepts may be called a
deadline-driven system. While users of such a
system can be expected to be able to offer
reasonable statistics and requirements in the form
of estimates and deadlines, a significant semantic
shift in job submission must be considered from
both a human and a technical perspective. Real-
world users are simply not used to having to
provide these figures along with job submission.
Thus, certain systems designers have begun to
reduce the required user work in this area by
building historical or analytic runtime estimators.
Technically, these figures are not part of typical
job submission semantics in workstation systems
or opportunistic systems.

A feature that is present in typical
computing systems is the concept of job priority.
Processing resources are expected to be fairly
distributed, possibly with the additional ability to
boost performance for users considered more
important by the scheduler or resource involved.
However, in a deadline-driven system, the
outstanding guarantees must be considered,
creating a second semantic shift. Fair-share
systems are thus augmented by the ability to
consider and prioritize resource allocation with
respect to the schedule that must be met.

While these features are intended to
improve user experience with unpredictable
resource fabrics, the pervasive unreliability of the
resources themselves is capable of defeating the
best efforts of a deadline-aware job manager.
Additionally, erroneous estimates may disrupt a
feasible schedule, pushing many jobs past their

deadlines. First, it must be recognized that such a
system must be considered a soft real-time
system, in that deadline misses that are small
from a user perspective are undesirable but
usually acceptable. Second, it must be recognized
that bad estimates will be offered even by well-
meaning users because of the difficulty predicting
job runtime on complex resources, and that this
should be tolerated and corrected by the system-
penalizing users for rare, small errors will again
damage the user experience. Consequently, the
scheduler must be capable of managing the
system in difficult circumstances, in a way that
achieves several objectives, including good
predictability, performance, and utilization.

1.3 Trade-offs

These two computing paradigms –
opportunistic and real-time computing – result in
trade-offs that must be made by system designers.
Increasing the predictability of opportunistic
systems through real-time techniques increases
the set of responsibilities given to the scheduler
and poses constraints on fair-share processor
allocation. Additionally, deadline guarantee
strategies such as over-provisioning reduce the
utilization of volunteered resources, constituting a
direct ideological challenge to these systems.

Improving the predictability of user jobs
on opportunistic resources requires a careful
balance between these disciplines. Schedulers
intended to straddle this design space must be
capable of reducing the impact on the users and
systems that it connects. Studying the effects of
such schedulers before implementation is difficult
because the required experimental testbed would
need to consist of a large number of machines
comparable to those used in the desired setting.
Additionally, the effects of heterogeneous,
unreliable hardware is difficult to mimic.
Therefore, simulation is typically used as a low-
cost first step in the trial of new scheduling
strategies. These tests are tied to reality by the
ability of the software to incorporate real-world
trace data from existing computational systems.
Then, new strategies may be applied to real-world
workload cases to obtain predicted performance
characteristics.

The remainder of this chapter is organized
as follows. Section 2 describes policy questions to
be investigated in the grid computing community.
Next, Section 3 frames a simulation-based
approach to exploring the intersection of these
areas by describing a simulator framework that
provides insight into the effects of novel
scheduler behaviors. Then, Section 4 presents an
investigation of probabilistic policy enforcement
methods, and Section 5 describes barrier
scheduling. Finally, Section 6 offers several
concluding remarks.

2 Investigations in Scheduler Policy

East enables scheduler architects and
policy makers to bridge the gap between real-time
computing and grid computing- areas which
traditionally have very different objectives. For
example, in a hard real-time system, jobs are
scheduled with respect to their worst-case
computation time, and any deviation exceeding
schedule limits is expected to result in
termination. Therefore, some previous work has
investigated how conservative schedulers must be
when computing on the grid. This may be
combined with heuristic methods to approximate
optimal workflow task placement to pack batches
onto the grid, improving performance and
predictability. Our work, however, intends to
satisfy the grid objective of high utilization and
prevent job termination due to relatively small
runtime fluctuations while providing a high
guarantee ratio.

While a variety of grid-enabled schedulers
have been proposed such as Globus GRAM
(Czajkowski, 1998), GridBus (Venugopal, 2004) ,
GrADS (Dail, 2002), and others, quality
requirements are often managed through strict
business-flavored structures such as service level
agreements, which have seen rapid recent entry
into grid computing (Yarmolenko, 2006). The
scheduler model here, however, intends to gain
the functional benefit of timely computing while
maintaining the benevolence of opportunistic
computing by the construction of a lightweight,
autonomic front-end scheduler. This component
is the object of the policy study presented here.

3 Simulator Architecture

To approach these policy investigations,
an appropriate simulator structure must be
developed. Scheduler simulators must
incorporate three major aspects of the problem as
shown in Figure 1:

 User input: User input to the system takes
the form of submitted jobs, estimates, and
deadlines. These jobs may be presented as
individual executions, batches of
interdependent jobs, or as structured
workflows of dependent tasks. Such
workloads may be obtained through
idealized models or through traces of real-
world workloads that include execution
information and the resulting statistics.

 Scheduler behavior: The simulated

Figure 1. Components of a scheduler simulator.

scheduler is the object of study and thus
the heart of the simulator model.
However, as the policy tester attempts to
improve scheduling results, it must be
possible to plug in new schedulers for
rapid evaluation, through parameter tuning
as well as algorithmic overhaul.

 Resource fabric: Finally, the resource
fabric must also be modelled by the
simulator. These models may be quite
simple for initial tests, but the validity of
the returned results depends on the
similarity of the model to typical or
specific real-world infrastructures,
including the effects of heterogeneity and
unreliability. Additionally, resource model
inputs to the system must be correlated
with any trace data used as user input to
the system.

System assembly is shown in Figure 1 as
vertical arrows that incorporate subcomponents
into the structure. Internal simulator runtime
interactions are shown as horizontal arrows that
transmit time-dependent events among
components. Once the three-component system
has been assembled, the simulation may be
executed over time by modelling the underlying
events as they occur. Since most events relevant
to typical experiments are discrete – such as job
start and stop events or machine availability
changes – discrete event simulation is a viable
choice, operating at a relatively high level on
relatively large entities such as whole jobs.

As an example implementation of this
simulation model, a simulator called East
(Wozniak, 2007) was constructed to allow the
rapid construction of each of the three
components by a flexible software architecture
that allows subcomponents to be quickly plugged
into the assembled system. The system performs
a discrete time experimental evaluation of
idealized or trace-based workloads.

East simulates the distributed computing
case in which a deadline-aware front-end
scheduler accepts client requests and services
them by employing pre-existing simple batch
queues. This model is proposed as an alternative

to a stovepipe solution because it simplifies the
construction of the new system and reduces the
risk involved in the deployment of the
hypothetical new metascheduler. By controlling
pre-existing resources we intend to obtain any
required scheduling properties. East is ultimately
a first step towards the construction of the real
system, and may be used to examine the
hypothetical behavior of future schedulers.

4 Characteristics of Scheduler Policy

In this section, we present two examples
of deadline-driven scheduler policy that may be
examined by simulation. The utilization trade-off
is presented, a property which makes it difficult to
provide services meeting multiple performance
demands. Secondly, the quality of estimates is
considered as policing strategies may be used to
promote user behavior that enhances system
characteristics.

4.1 The Utilization Trade-off

As described in the introduction, a trade-
off exists between high utilization systems and
predictable, timely systems capable of delivering
high guarantee ratios. Utilization is a metric that
measures the effectiveness of the shared resource
arrangement as negotiated by the cooperating
parties. Commodity grid computing and storage
systems intend to make the most of the available
resources primarily by increasing their utilization.
Once this is accomplished, other more advanced
grid techniques are used to provide other desired
qualities. However, high utilization systems are
simply too busy to provide the timely service that
users may require in time-sensitive applications.
An example of this is shown in Figure 2. In this
simulated experiment, a range of workloads are
presented to an admission-regulated scheduler
that provides guarantees based on user-provided
estimates. For each input workload, a resulting
utilization and guarantee ratio may be observed
from the resulting simulator output. In this case,
a simple cluster of 10 homogeneous computers
was presented with single job submissions, each
paired with an estimate good within 50% of the
actual runtime. Over-provisioning was applied at

25% above the estimated required computation
time. As shown in Figure 2, the resulting
behavior forms a band of likely characteristics
that decreases as the workloads degrade the
quality of the guarantees available from the
scheduler.

4.2 Quality of Estimates and Contention

While it is assumed that users of the
opportunistic systems are generally benevolent
and desire to improve the user experience for all
stakeholders, the system presented thus far is easy
to manipulate if estimate enforcement is not
applied. Since the admission control system takes
user estimates and uses them to schedule jobs
with respect to deadlines, erroneous or malicious
under-estimates can defeat the whole schedule,
causing swaths of deadline misses and penalizing
all users.

Thus, the motivation of the
following experiment is to answer the
following question: Given an environment
of related tasks with low quality
information, how strictly should policing be
enforced and what effects will result on
throughput and deadline guarantees? In short,
when multiple users offer bad estimates, who
should pay the price?

An estimate enforcer may be applied in
the scheduler layer to simply terminate all user
jobs that exceed their estimates, but given the
known unpredictability of grid resources and the
sensitivity of large interdependent batches of jobs
or workflows, killing jobs that only exceed their
estimate by a small amount would result in poor
results even for well-intended users. Additionally,
known system behavior such as simple over-
provisioning may be manipulated just as easily as
no enforcement, by providing careful
underestimates intended to slip into a highly
utilized schedule but abuse the system by
intentionally overrunning the alloted time.

A probabilistic enforcer is thus applied,
which embraces the unpredictability of grid
resources while preventing wild unreliability due
to schedule problems. This component
terminates jobs that have exceeded their estimate
with a probability proportional to the estimate
violation. Thus, users that stay close to their
estimates are likely to receive good performance,
but users that attempt to manipulate the system
are unlikely to receive desired results.

To demonstrate the success of this
technique, two contending user groups were
simulated with the East simulator. Group A
provided job estimates centered on their true
runtimes, while Group B provided consistent
underestimates. Both groups submitted similar
jobs to a heterogeneous cluster of N hosts.

As shown in Figure 3, both user groups
are simulated as they provide estimates of varying
quality (QoE). As the error in the given estimates
increases, indicating more unpredictable grid
conditions, Group B is able to maintain a high
acceptance ratio by simply misrepresenting
expected job performance. However, a correction
is applied by the enforcer, resulting in better
guarantee ratios for the Group A users. This
guarantee ratio advantage is maintained even in
highly unpredictable settings.

Figure 2. Guarantee ratio under increasing
utilization stresses.

The intended consequence of simulating
proposed advanced scheduling and enforcement
methods is to moderate the effects of the
utilization trade-off. In the case of probabilistic
enforcement, this is attempted by promoting good
user input, resulting in better system performance
as measured by multiple metrics.

5 Barrier Scheduling

A more complex scheduling example is
exemplified by barrier-dependent computations.
A multiprocessor barrier operation is a
programmatic step which must be passed by all
processes within a barrier group at the same time.
This method may used to begin a synchronized
all-to-all communication or, in a Monte Carlo
setting, to allow intermediate processing to
interleave rounds of parallel computation. This
operation may be phrased in deadline-driven
terms by specifying that the deadline for a batch
is the time that the fastest job hits the barrier.
Executing barriers on the grid is challenging for a
variety of reasons, including 1) heterogeneity of
computation resources, 2) resource unreliability,
and 3) the potentially high cost of job migration.
As a motivating example, previous work
scheduling a barrier-dependent molecular
dynamics computation in an opportunistic
computing system used dedicated clusters of

faster processors to advance jobs that were
lagging behind or encountered resource problems
(Woods, 2005). In this section, we will describe
how this concept may be simulated with respect
to arbitrary system parameters.

The barrier scheduling problem may be
generalized for an arbitrary case in which
multiple competing users schedule these
workloads. In these complex, unpredictable
cases, certain user jobs will lag behind their peers,
resulting in potential lost utilization. The
simulated model for barrier dependent jobs in
East, consists of a batch of jobs. Within each
batch, all jobs must pass a certain number of
barrier in a synchronized manner, thus all jobs in
the batch are part of the same barrier group. Jobs
are further divided - as if by a checkpoint
technique – into segments that may be quickly
examined to determine which jobs are lagging
behind.

The first technique that may be applied in
such a case is for a job to block upon reaching the
barrier until all other jobs in the group have
reached the barrier, at which point all proceed.
However, this is highly deadlock-prone: as each
job reaches the barrier, the number of available
processors decreases, increasing the probability of
the system running out of free processors.

Assuming a small number of high

Figure 3. Schedule results for contending users.

performance processors are available for use,
these may be isolated into a cluster reserved for
jobs that lag behind in an attempt to provide
timely performance near the barrier. However,
this architecture removes nodes from general use,
thus trading utilization for timeliness in an
attempt to improve overall throughput. This
setting was modelled in East by in a
homogeneous cluster of 24 hosts augmented by a
high performance cluster of 8 hosts that run 4
times as fast as the normal hosts. A varying
number of the high performance hosts were
reserved for specialized usage.

As shown in Figure 4, however, this
architectural method can fail in seemingly useful
cases. In this case, batches of jobs varying in
runtime by up to a factor of 10 were submitted to
the cluster. Jobs that were found to be delaying a
barrier transition were promoted to the reserved
cluster. However, this strategy did not succeed in
enhancing overall batch completion time. Any
gains that were made by promoting the timeliness
of lagging jobs were lost to the underutilization of
the fastest hosts in the cluster. It should be noted
that the model used here did not take into account
job migration time, which could additionally
impact scheduling strategies.

6 Conclusion

Overall, the matter of integrating concepts
from grid computing and real-time computing
involves trade-offs. Common real-time strategies
such as reservations and overprovisioning result
in low resource utilization. Grid computing
performance strategies such as global job-data
locality improve system throughput but do not
benefit individual jobs directly or take a schedule
into account; additionally, while the grid may
function under partial failure and resource
heterogeneity it does not protect the schedule
from these effects. New methods to be developed
through simulation must combine the ability to
work with high-utilization average case estimates
and probabilistic policies to promote schedule
predictability in competitive settings.

References
 (Czajkowski, 1998) Karl Czajkowski, Ian Foster,

Nick Karonis, Carl Kesselman, Stuart Martin,
Warren Smith, and Steven Tuecke, “A Resource
Management Architecture for Metacomputing
Systems,” Lecture Notes in Computer Science
1459, Pages 62-82, 1998.

 (Dail, 2002) Holly Dail, Henri Casanova, and Fran
Berman, “A Decoupled Scheduling Approach for
the GrADS Program Development Environment,”
Proc. Supercomputing, Page 55, November 2002.

 (Murthy, 2001) C. Siva Ram Murthy and G.
Manimaran, "Resource Management in Real-time
Systems and Networks," MIT Press, USA, April
2001.

 (Thain, 2004) Douglas Thain, Todd Tannenbaum,
and Miron Livny, “Distributed Computing in
Practice: The Condor Experience,” Concurrency
and Computation: Practice and Experience,
Volume 17, Issue 2-4, Pages 323-356, February-
April 2005.

 (Venugopal, 2004) Srikumar Venugopal, Rajkumar
Buyya, and Lyle Winton, “A Grid Service Broker
for Scheduling Distributed Data-Oriented
Applications on Global Grids,” Proc. Workshop on
Middleware in Grid Computing, Pages 75-80,
October 2004.

 (Woods, 2005) Christopher J. Woods et. al., “Grid
Computing and Biomolecular Simulation,”
Philosophical Transactions of the Royal Society A,
Volume 363, Number 1833, Pages 2017-2035,
August 2005.

 (Wozniak, 2007) Justin M. Wozniak, Yingxin
Jiang, and Aaron Striegel, “Effects of Low-Quality
Computation Time Estimates in Policed

Figure 4. Barrier scheduling performance

Schedulers,” Proc. Annual Simulation Symposium,
Pages 283-292, March 2007.

 (Yarmolenko, 2006) Viktor Yarmolenko, Rizos
Sakellariou, “An Evaluation of Heuristics for SLA
Based Parallel Job Scheduling,” Proc. High
Performance Grid Computing Workshop, April
2006.

