
Opportunistic  techniques  have  been 
widely  used  to  create  economical  computation 
infrastructures and have demonstrated an ability 
to deliver heterogeneous computing resources to 
large  batch  applications,  however,  batch 
turnaround  performance  is  generally 
unpredictable,  negatively  impacting  human 
experience  with  widely   shared  computing 
resources.   Scheduler prioritization schemes can 
effectively boost the share of the system given to 
particular users, but to gain a relevant benefit to 
user experience, whole batches must complete on 
a  predictable  schedule,  not  just  individual  jobs. 
Additionally,  batches may contain a dependency 
structure that must be considered when predicting 
or controlling the completion time of the whole 
workflow;  the  slowest  or  most  volatile 
prerequisite job determines performance.  

In  this  chapter,  a  probabilistic  policy 
enforcement technique is used to protect deadline 
guarantees against  grid resource unpredictability 
as  well  as  bad  estimates.   Methods  to  allocate 
processors  to  a  common  workflow  subcase, 
barrier scheduling, are also presented.  

1 Introduction

Running complex applications  on widely 
distributed resources is an unpredictable process, 
complicating  the  user  experience  with  new 
systems.   While  opportunistic  technologies  and 
grid  infrastructures  dramatically  increase  the 
resources  available  to  the  application,  they also 
increase  the  range  and  volatility  of  resulting 
behaviors.  Job turnaround time, the span between 
the time a job is ready to run and the time  results 
are  returned,  is  of  primary importance  to  users 
seeking  larger,  more  powerful  computing 

platforms,  but  is  more  difficult  to  measure  on 
conglomerations  of  heterogeneous  computation 
elements.    The  fact  that  users  cannot  easily 
achieve predictable turnaround results – even in 
the  presence  of  increased  available  parallelism, 
and when average case performance is improved 
–  can  cause  frustration  and  reduce  interest in 
new, complex distributed computing systems.  

There  is  a  fundamental  disconnect 
between short-term user objectives and long-term 
system  design  techniques  that  underlies  many 
user  frustrations  with  commodity  computing 
systems.   Users  prefer  responsive,  fast 
turnarounds for specific workloads.  Grid system 
designers  and  administrators  take  a  long  view, 
intending  to  maximize  utilization,  and  thus  the 
return  on  investment,  for  a  given  resource  set, 
given  a  wider  range  of  applications.   These 
viewpoints translate into the various technologies 
available.   For  example,  opportunistic  systems 
(Thain,  2004)  excel  at  improving  system 
utilization  start  by  locating  idle  resources  and 
employing them to perform useful work.   Real-
time systems (Murthy, 2001), contrarily, start by 
admitting acceptable workloads and ensuring that 
the results will be returned on schedule.  Ordinary 
workstations  are  a  middle  ground,  providing  a 
necessarily  available  resource  that  offers 
moderate predictability through system simplicity 
and isolation from external forces.  

1.1 Sources of Unpredictability

We  start  with  an  examination  of  the 
underlying  causes  of  unpredictable  performance 
in opportunistic systems.  

 Processor  heterogeneity:  Since  users  of 
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opportunistic  systems  often  employ 
resources owned and managed by diverse 
organizations,  heterogeneity  is  an  ever-
present  challenge.   CPU  heterogeneity 
takes  two  forms:  “hard”  heterogeneity, 
meaning  architectural  differences,  and 
“soft”  heterogeneity,  meaning 
performance differences within a class of 
compatible  architectures.   

While  users  can  benefit  from 
existing matchmaking techniques to select 
certain  processors,  opportunistic  systems 
have been designed for “compute-hungry” 
users.   These  users  are  capable  of 
consuming  an  ever-growing  number  of 
processors.   Thus,  they  are  expected  to 
overcome hard heterogeneity obstacles by 
compiling  for  multiple  architectures  or 
using  portable  interpreted  languages. 
Consequently,  the  impact  of 
heterogeneous  systems  can  be  modelled 
by  simply  considering  performance 
differences.  

 Contention:  Opportunistic  systems 
attempt  to  harness  the  aggregate 
computing  ability  of  large  numbers  of 
processors for large numbers of users. The 
requested workload for such a system can 
thus be quite variable, particularly in small 
scale, experimental settings.  For example, 
in  a  typical  university-sized  Condor 
installation,  a  user  may  initially  have 
access to all of the available machines, but 
then  unexpectedly  be  forced  to  split  the 
resources with another user.

Heterogeneous, opportunistic systems thus 
pose  two  significant  performance  predictability 
problems for users.   First,  performance analysis 
prediction for a given task on a range of potential 
architectures  is  a  labor-intensive  process  that  is 
not  standard  practice  in  distributed  computing, 
nor  is  it  appealing  to  potential  new  users  of 
complex  systems.   Second,  since 
micromanagement  of  job  distribution  is  also  a 
complex project that  must take into account the 
contention  for  resources  among  multiple  users, 

the  actual  execution  site  of  a  task  in  an 
opportunistic  system  is  often  left  to  the 
metascheduler.  Consequently, while the benefits 
of  tight  runtime  estimates  are  clear,  modern 
systems  must  recognize  that  typical  cases  will 
rely on rough estimates given by users, and are 
not  particularly  trustworthy  due  to  the 
unpredictable  allocation  of  imperfectly 
understood processors.  

1.2 Real-time Computing Approaches

The  difficulties  experienced  by  users  of 
opportunistic  systems  can  be  ameliorated  in  a 
variety of ways.  

 The  deadline  computing  model:  In  a 
typical  single  workstation  or  symmetric 
multiprocessor environment, deadlines are 
a  natural  but  often  unstated  aspect  of 
computing.   Users  are  aware  that  jobs 
must be completed within a certain known 
time  frame-  when  anomalous  runtime 
performance  appears,  given  predictable 
resources and low contention, they simply 
turn  to  software  defect  investigations. 
However,  more  complex  computing 
systems built upon an opportunistic fabric 
require autonomic schedulers to maintain 
the  expected  level  of  predictability  by 
managing  the  progress  of  jobs  and 
workflows.   These  schedulers  require  an 
explicit  user-supplied  expected  runtimes 
and  deadlines  with  which  to  operate. 
Then,  given  a  set  of  processors  and 
contending  users  and  jobs  they  can 
optimize  system  utilization  to  minimize 
unpredictability  in  the  sense  of  reducing 
deadline misses. 

 Admission  control:  Users  of  a  deadline-
aware  scheduler  gain  the  additional 
benefit of certain fail-fast behavior in the 
form of deadline rejection.  For example, 
in  a  simple  case  in  which  the  user 
provided  estimate  exceeds  the  user 
provided  deadline,  simple  job  rejection 
can  force  the  user  to  reconsider  the 
attempted workload.  In the more complex 
case  of  multiple  existing  jobs  with 



deadlines, if the new workload cannot be 
scheduled, the system can quickly inform 
the  user  that  the  work  cannot  be 
scheduled.  However, once a job has been 
admitted  to  the  system,  the  acceptance 
constitutes  a  guarantee  that  the  deadline 
will  be  met.  The  automatic  services 
provided by the scheduler must attempt to 
protect  the  deadline  by  allocating 
resources  and  managing  contention  as 
necessary.  

A scheduler  that  implements  these  real-
time  computing  concepts  may  be  called  a 
deadline-driven  system.   While  users  of  such  a 
system  can  be  expected  to  be  able  to  offer 
reasonable statistics and requirements in the form 
of estimates and deadlines, a significant semantic  
shift  in job submission must be considered from 
both a human and a technical perspective.  Real-
world  users  are  simply  not  used  to  having  to 
provide these figures along with job submission. 
Thus,  certain  systems  designers  have  begun  to 
reduce  the  required  user  work  in  this  area  by 
building historical or analytic runtime estimators. 
Technically,  these figures are not part of typical 
job submission semantics in workstation systems 
or opportunistic systems.  

A  feature  that  is  present  in  typical 
computing systems is the concept of job priority. 
Processing  resources  are  expected  to  be  fairly 
distributed, possibly with the additional ability to 
boost  performance  for  users  considered  more 
important by the scheduler or resource involved. 
However,  in  a  deadline-driven  system,  the 
outstanding  guarantees  must  be  considered, 
creating  a  second  semantic  shift.   Fair-share 
systems  are  thus  augmented  by  the  ability  to 
consider  and  prioritize  resource  allocation  with 
respect to the schedule that must be met.  

While  these  features  are  intended  to 
improve  user  experience  with  unpredictable 
resource fabrics, the pervasive unreliability of the 
resources themselves is capable of defeating the 
best  efforts  of  a  deadline-aware  job  manager. 
Additionally,  erroneous  estimates  may disrupt  a 
feasible  schedule,  pushing  many jobs  past  their 

deadlines.  First, it must be recognized that such a 
system  must  be  considered  a  soft  real-time 
system,  in  that  deadline  misses  that  are  small 
from  a  user  perspective  are  undesirable  but 
usually acceptable.  Second, it must be recognized 
that bad estimates will be offered even by well-
meaning users because of the difficulty predicting 
job runtime on complex resources, and that this 
should be tolerated and corrected by the system- 
penalizing users for rare, small errors will again 
damage the user experience.   Consequently,  the 
scheduler  must  be  capable  of  managing  the 
system in difficult  circumstances,  in  a way that 
achieves  several  objectives,  including  good 
predictability, performance, and utilization.     

1.3 Trade-offs

These  two  computing  paradigms  – 
opportunistic and real-time computing – result in 
trade-offs that must be made by system designers. 
Increasing  the  predictability  of  opportunistic 
systems  through  real-time  techniques  increases 
the set of responsibilities given to the scheduler 
and  poses  constraints  on  fair-share  processor 
allocation.   Additionally,  deadline  guarantee 
strategies  such  as  over-provisioning  reduce  the 
utilization of volunteered resources, constituting a 
direct ideological challenge to these systems.  

Improving the  predictability of  user  jobs 
on  opportunistic  resources  requires  a  careful 
balance  between  these  disciplines.   Schedulers 
intended  to  straddle  this  design  space  must  be 
capable of reducing the impact on the users and 
systems that it connects.  Studying the effects of 
such schedulers before implementation is difficult 
because the required experimental testbed would 
need  to  consist  of  a  large  number  of  machines 
comparable to those used in the desired setting. 
Additionally,  the  effects  of  heterogeneous, 
unreliable  hardware  is  difficult  to  mimic. 
Therefore, simulation is typically used as a low-
cost  first  step  in  the  trial  of  new  scheduling 
strategies.  These tests are tied to reality by the 
ability of the software to incorporate  real-world 
trace  data  from existing  computational  systems. 
Then, new strategies may be applied to real-world 
workload cases  to obtain predicted performance 
characteristics.  



The remainder of this chapter is organized 
as follows. Section 2 describes policy questions to 
be investigated in the grid computing community. 
Next,  Section  3  frames  a  simulation-based 
approach  to  exploring  the  intersection  of  these 
areas by describing  a simulator framework that 
provides  insight  into  the  effects  of  novel 
scheduler behaviors.  Then, Section 4 presents an 
investigation of probabilistic policy enforcement 
methods,  and  Section  5  describes  barrier 
scheduling.   Finally,  Section  6  offers  several 
concluding remarks.  

2 Investigations in Scheduler Policy

East  enables  scheduler  architects  and 
policy makers to bridge the gap between real-time 
computing  and  grid  computing-  areas  which 
traditionally have very different objectives.  For 
example,  in  a  hard  real-time  system,  jobs  are 
scheduled  with  respect  to  their  worst-case 
computation  time,  and  any deviation  exceeding 
schedule  limits  is  expected  to  result  in 
termination.  Therefore, some previous work has 
investigated how conservative schedulers must be 
when  computing  on  the  grid.   This  may  be 
combined with heuristic methods to approximate 
optimal workflow task placement to pack batches 
onto  the  grid,  improving  performance  and 
predictability.   Our  work,  however,  intends   to 
satisfy the grid objective of high utilization and 
prevent  job  termination  due  to  relatively  small 
runtime  fluctuations  while  providing  a  high 
guarantee ratio.  

While a variety of grid-enabled schedulers 
have  been  proposed  such  as  Globus  GRAM 
(Czajkowski, 1998), GridBus (Venugopal, 2004) , 
GrADS  (Dail,  2002),  and  others,  quality 
requirements  are  often  managed  through  strict 
business-flavored structures such as service level 
agreements,  which  have seen  rapid recent  entry 
into  grid  computing  (Yarmolenko,  2006).   The 
scheduler  model  here,  however,  intends  to  gain 
the functional benefit of timely computing while 
maintaining  the  benevolence  of  opportunistic 
computing by the construction of  a  lightweight, 
autonomic front-end scheduler.  This component 
is the object of the policy study presented here. 

3 Simulator Architecture

To  approach  these  policy  investigations, 
an  appropriate  simulator  structure  must  be 
developed.   Scheduler  simulators  must 
incorporate three major aspects of the problem as 
shown in Figure 1: 

 User input: User input to the system takes 
the form of submitted jobs, estimates, and 
deadlines.  These jobs may be presented as 
individual  executions,  batches  of 
interdependent  jobs,  or  as  structured 
workflows  of  dependent  tasks.   Such 
workloads  may  be  obtained  through 
idealized models or through traces of real-
world  workloads  that  include  execution 
information and the resulting statistics.  

 Scheduler  behavior:  The  simulated 

Figure 1.   Components of a scheduler simulator.  



scheduler is the object of study and thus 
the  heart  of  the  simulator  model. 
However, as the policy tester attempts to 
improve  scheduling  results,  it  must  be 
possible  to  plug  in  new  schedulers  for 
rapid evaluation, through parameter tuning 
as well as algorithmic overhaul.  

 Resource  fabric:  Finally,  the  resource 
fabric  must  also  be  modelled  by  the 
simulator.   These  models  may  be  quite 
simple for initial tests, but the validity of 
the  returned  results  depends  on  the 
similarity  of  the  model  to  typical  or 
specific  real-world  infrastructures, 
including the effects of heterogeneity and 
unreliability.  Additionally, resource model 
inputs  to  the  system must  be  correlated 
with any trace data used as user input to 
the system.  

System assembly is shown in Figure 1 as 
vertical  arrows  that  incorporate  subcomponents 
into  the  structure.   Internal  simulator  runtime 
interactions are shown as horizontal  arrows that 
transmit  time-dependent  events  among 
components.   Once the three-component  system 
has  been  assembled,  the  simulation  may  be 
executed over time by modelling the underlying 
events as they occur.  Since most events relevant 
to typical experiments are discrete – such as job 
start  and  stop  events  or  machine  availability 
changes  –  discrete  event  simulation  is  a  viable 
choice,  operating  at  a  relatively  high  level  on 
relatively large entities such as whole jobs.  

As  an  example  implementation  of  this 
simulation  model,  a  simulator  called  East 
(Wozniak,  2007)  was  constructed  to  allow  the 
rapid  construction  of  each  of  the  three 
components  by  a  flexible  software  architecture 
that allows subcomponents to be quickly plugged 
into the assembled system.  The system performs 
a  discrete  time  experimental  evaluation  of 
idealized or trace-based workloads.  

East  simulates  the  distributed  computing 
case  in  which  a  deadline-aware  front-end 
scheduler  accepts  client  requests  and  services 
them  by  employing  pre-existing  simple  batch 
queues.  This model is proposed as an alternative 

to a stovepipe solution because it  simplifies the 
construction of the new system and reduces the 
risk  involved  in  the  deployment  of  the 
hypothetical new metascheduler.  By controlling 
pre-existing  resources  we  intend  to  obtain  any 
required scheduling properties.  East is ultimately 
a  first  step towards  the  construction  of  the real 
system,  and  may  be  used  to  examine  the 
hypothetical behavior of future schedulers.  

4 Characteristics of Scheduler Policy 

In this  section,  we present two examples 
of deadline-driven scheduler policy that may be 
examined by simulation.  The utilization trade-off 
is presented, a property which makes it difficult to 
provide  services  meeting  multiple  performance 
demands.   Secondly,  the  quality  of  estimates  is 
considered as policing strategies may be used to 
promote  user  behavior  that  enhances  system 
characteristics.  

4.1 The Utilization Trade-off

As described in the introduction, a trade-
off  exists  between  high  utilization  systems  and 
predictable, timely systems capable of delivering 
high guarantee ratios.  Utilization is a metric that 
measures the effectiveness of the shared resource 
arrangement  as  negotiated  by  the  cooperating 
parties.  Commodity grid computing and storage 
systems intend to make the most of the available 
resources primarily by increasing their utilization. 
Once this is accomplished, other more advanced 
grid techniques are used to provide other desired 
qualities.  However, high utilization systems are 
simply too busy to provide the timely service that 
users may require in time-sensitive applications. 
An example of this is shown in Figure 2.  In this 
simulated experiment,  a range of  workloads  are 
presented  to  an  admission-regulated  scheduler 
that  provides guarantees based on user-provided 
estimates.  For each input workload,  a resulting 
utilization and guarantee ratio  may be observed 
from the resulting simulator output.  In this case, 
a  simple  cluster  of  10  homogeneous  computers 
was presented with single job submissions, each 
paired with an estimate good within 50% of the 
actual runtime.  Over-provisioning was applied at 



25%  above  the  estimated  required  computation 
time.   As  shown  in  Figure  2,  the  resulting 
behavior  forms  a  band  of  likely  characteristics 
that  decreases  as  the  workloads  degrade  the 
quality  of  the  guarantees  available  from  the 
scheduler.  

4.2 Quality of Estimates and Contention

While  it  is  assumed  that  users  of  the 
opportunistic  systems  are  generally  benevolent 
and desire to improve the user experience for all 
stakeholders, the system presented thus far is easy 
to  manipulate  if  estimate  enforcement  is  not 
applied.  Since the admission control system takes 
user  estimates  and  uses  them  to  schedule  jobs 
with respect to deadlines, erroneous or malicious 
under-estimates  can  defeat  the  whole  schedule, 
causing swaths of deadline misses and penalizing 
all users.  

Thus,  the  motivation  of  the 
following experiment  is  to  answer  the 
following question: Given an environment 
of  related  tasks  with  low  quality 
information,  how  strictly  should  policing  be 
enforced  and  what  effects  will  result  on 
throughput and deadline guarantees? In short, 
when  multiple  users  offer  bad  estimates,  who 
should pay the price?

An  estimate  enforcer  may be  applied  in 
the  scheduler  layer  to  simply terminate  all  user 
jobs  that  exceed  their  estimates,  but  given  the 
known unpredictability of grid resources and the 
sensitivity of large interdependent batches of jobs 
or workflows, killing jobs that only exceed their 
estimate by a small amount would result in poor 
results even for well-intended users.  Additionally, 
known  system  behavior  such  as  simple  over-
provisioning may be manipulated just as easily as 
no  enforcement,  by  providing  careful 
underestimates  intended  to  slip  into  a  highly 
utilized  schedule  but  abuse  the  system  by 
intentionally overrunning the alloted time.  

A probabilistic  enforcer  is  thus  applied, 
which  embraces  the  unpredictability  of  grid 
resources while preventing wild unreliability due 
to  schedule  problems.   This  component 
terminates jobs that have exceeded their estimate 
with  a  probability  proportional  to  the  estimate 
violation.   Thus,  users  that  stay  close  to  their 
estimates are likely to receive good performance, 
but  users that  attempt to  manipulate  the system 
are unlikely to receive desired results.  

To  demonstrate  the  success  of  this 
technique,  two  contending  user  groups  were 
simulated  with  the  East  simulator.   Group  A 
provided  job  estimates  centered  on  their  true 
runtimes,  while  Group  B provided  consistent 
underestimates.   Both  groups  submitted  similar 
jobs to a heterogeneous cluster of N hosts.  

As shown in  Figure  3,  both user  groups 
are simulated as they provide estimates of varying 
quality (QoE).  As the error in the given estimates 
increases,  indicating  more  unpredictable  grid 
conditions,  Group B is  able  to  maintain  a  high 
acceptance  ratio  by  simply  misrepresenting 
expected job performance.  However, a correction 
is  applied  by  the  enforcer,  resulting  in  better 
guarantee  ratios  for  the  Group  A users.   This 
guarantee ratio advantage is  maintained even in 
highly unpredictable settings.

Figure 2.   Guarantee ratio under increasing 
utilization stresses.    



The  intended  consequence  of  simulating 
proposed  advanced  scheduling  and  enforcement 
methods  is  to  moderate  the  effects  of  the 
utilization trade-off.  In the case of probabilistic 
enforcement, this is attempted by promoting good 
user input, resulting in better system performance 
as measured by multiple metrics.  

5 Barrier Scheduling

A more  complex  scheduling  example  is 
exemplified  by  barrier-dependent  computations. 
A  multiprocessor  barrier  operation  is  a 
programmatic step which must be passed by all 
processes within a barrier group at the same time. 
This  method may used to begin a synchronized 
all-to-all  communication  or,  in  a  Monte  Carlo 
setting,  to  allow  intermediate  processing  to 
interleave rounds of parallel computation.   This 
operation  may  be  phrased  in  deadline-driven 
terms by specifying that the deadline for a batch 
is  the  time  that  the  fastest  job  hits  the  barrier. 
Executing barriers on the grid is challenging for a 
variety of reasons, including 1) heterogeneity of 
computation  resources,  2)  resource  unreliability, 
and 3) the potentially high cost of job migration. 
As  a  motivating  example,  previous  work 
scheduling  a  barrier-dependent  molecular 
dynamics  computation  in  an  opportunistic 
computing  system  used  dedicated  clusters  of 

faster  processors  to  advance  jobs  that  were 
lagging behind or encountered resource problems 
(Woods, 2005).  In this section, we will describe 
how this concept may be simulated with respect 
to arbitrary system parameters.  

The  barrier  scheduling  problem  may  be 
generalized  for  an  arbitrary  case  in  which 
multiple  competing  users  schedule  these 
workloads.   In  these  complex,  unpredictable 
cases, certain user jobs will lag behind their peers, 
resulting  in  potential  lost  utilization.   The 
simulated  model  for  barrier  dependent  jobs  in 
East,  consists  of  a  batch  of  jobs.   Within  each 
batch,  all  jobs  must  pass  a  certain  number  of 
barrier in a synchronized manner, thus all jobs in 
the batch are part of the same barrier group.  Jobs 
are  further  divided  -  as  if  by  a  checkpoint 
technique  –  into  segments  that  may be  quickly 
examined  to  determine  which  jobs  are  lagging 
behind.  

The first technique that may be applied in 
such a case is for a job to block upon reaching the 
barrier  until  all  other  jobs  in  the  group  have 
reached  the  barrier,  at  which  point  all  proceed. 
However, this is highly deadlock-prone: as each 
job reaches the barrier,  the number of available 
processors decreases, increasing the probability of 
the system running out of free processors.  

Assuming  a  small  number  of  high 

      

Figure 3.   Schedule results for contending users.  



performance  processors  are  available  for  use, 
these may be isolated into a cluster reserved for 
jobs  that  lag  behind  in  an  attempt  to  provide 
timely performance  near  the  barrier.   However, 
this architecture removes nodes from general use, 
thus  trading  utilization  for  timeliness  in  an 
attempt  to  improve  overall  throughput.   This 
setting  was  modelled  in  East  by  in  a 
homogeneous cluster of 24 hosts augmented by a 
high  performance  cluster  of  8  hosts  that  run  4 
times  as  fast  as  the  normal  hosts.   A varying 
number  of  the  high  performance  hosts  were 
reserved for specialized usage.  

As  shown  in  Figure  4,  however,  this 
architectural method can fail in seemingly useful 
cases.   In  this  case,  batches  of  jobs  varying  in 
runtime by up to a factor of 10 were submitted to 
the cluster.  Jobs that were found to be delaying a 
barrier  transition were promoted to the reserved 
cluster.  However, this strategy did not succeed in 
enhancing  overall  batch  completion  time.   Any 
gains that were made by promoting the timeliness 
of lagging jobs were lost to the underutilization of 
the fastest hosts in the cluster.  It should be noted 
that the model used here did not take into account 
job  migration  time,  which  could  additionally 
impact scheduling strategies.  

6 Conclusion

Overall, the matter of integrating concepts 
from  grid  computing  and  real-time  computing 
involves trade-offs.  Common real-time strategies 
such as reservations and overprovisioning result 
in  low  resource  utilization.   Grid  computing 
performance  strategies  such  as  global  job-data 
locality  improve  system  throughput  but  do  not 
benefit individual jobs directly or take a schedule 
into  account;  additionally,  while  the  grid  may 
function  under  partial  failure  and  resource 
heterogeneity  it  does  not  protect  the  schedule 
from these effects.  New methods to be developed 
through  simulation  must  combine  the  ability  to 
work with high-utilization average case estimates 
and  probabilistic  policies  to  promote  schedule 
predictability in competitive settings.  
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