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a b s t r a c t

Computationally complex and data intensive atomic scale biomolecular simulation is
enabled via processing in network storage (PINS): a novel distributed system framework
to overcome bandwidth, compute, storage, organizational, and security challenges inherent
to the wide-area computation and storage grid. PINS is presented as an effective and scal-
able scientific simulation framework to meet the unbounded requirements of a ‘user of
infinite need’. The novel hybrid database–filesystem architecture enables the high
throughput computation and data generation required by our scientific target. Biomolecu-
lar simulation methods are correlated with the primary PINS components, including: client
tools, hybrid database/file management service (GEMS), computation engine (Condor), vir-
tual file system adapter (Parrot), and local file servers (Chirp). Performance for the PINS
prototype is reported for the committor probability calculation of a solvated protein
domain requiring 500 independent simulations and the generation of over 1,000,000 out-
put files.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The design of scalable modular frameworks to meet grand challenge computational efforts such as those referenced in the
National Science Foundation report ‘‘Cyberinfrastructure Vision for 21st Century Discovery” [1] requires design based on the
recognition of new challenges in computational science. The identification and analysis of atomic scale reaction coordinates
relevant to the molecular function of a protein is a pertinent example. This process requires exploratory simulation using
numerous targeted algorithms and reaction coordinates. The example simulation set discussed here required the generation
of 500 trajectories and over 1 million output files; however, it is only a small portion of the superset of simulations under-
taken in the investigation of this protein by the authors and our collaborators. For scientific challenges such as these, it is
clear that a conceptual ‘user of infinite need’ is a practical and scientifically essential target. For this user, the incites revealed
through computational simulation and analysis are bounded only by the limitations in resources, interfaces, and scalability
correlations between the science and computational framework.

Computationally complex and highly parallel simulation and post-processing frameworks such as SETI@home [2] and
Folding@home [3] have been successfully mapped to wide-area resources in order to overcome computational resource lim-
itations of individual scientists with particular requirements. However, characteristics such as heterogeneous resources
(compute, storage, network), autonomous owners, and segmented organizational authentication present special challenges
for application agnostic frameworks to efficiently produce and manage large data sets. The design of modular frameworks to
. All rights reserved.
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meet these computational efforts will require architectures built on common core components, each designed to function in
heterogeneous deployments.

To meet this challenge we introduce processing in network storage (PINS) a novel and practical distributed framework to
address the many scientific ‘users of infinite need’ faced with a real world of limited finite resources. PINS holds a unique
position in the spectrum of scientific computation frameworks between homogeneous high performance computing
(HPC) and specialized application wide-area implementations. PINS is a hybrid offering high throughput scientific compu-
tation by effectively and efficiently utilizing shared HPC and wide-area resources in an application agnostic manner.

In this work, we first introduce our target scientific application of atomic scale biomolecular simulation, specifically, com-
mittor probability calculation of the WW protein domain. We then present the PINS model which allows a novel and efficient
mapping of simulation to grid computation and storage, facilitating high throughput data creation and analysis. Our imple-
mentation of the framework is described, followed by a discussion of the improved simulation scalability through decentral-
ized storage and utilization of heterogeneous resources. Current committor probability results for our target protein are
presented. In conclusion, the novel PINS capabilities are summarized in a brief review of related work.

2. Protein domain simulation

Atomic scale biomolecular simulation based on molecular dynamics is the primary scientific application of our team’s
computational scientists. This simulation method has already proven to be a crucial tool in the revelation of fundamental
protein, nucleic acid, and cell boundary properties. A promising future holds hope for longer time scale analysis enabled
through computational advances in architecture and algorithms [4–6]. Two areas of intense research in the field are biomo-
lecular sampling and transition path analysis [7–12]. Both are computation and data intensive since they involve long tra-
jectories with expensive inter-atomic force computations at each time step. In this work we present distributed transition
simulations of a protein domain, focused on the calculation of committor probabilities.

The protein under analysis is the WW protein domain of the PIN1 enzyme. The PIN1 enzyme binds to a subset of proteins,
playing a role in the regulation of their function. Most notably the up-regulation of PIN1 may be involved in certain cancers,
and the down-regulation may be involved in Alzheimer’s disease [13]. Similar WW domains are found as components of
many larger proteins and participate in binding reactions affecting protein regulation of a variety of functions [14]. We
are studying the motion and rates of the domain’s recognition loop (Fig. 1). The test system for simulation consists of an
explicitly solvated 551 atom domain with 1469 TIP3P water molecules for a total size of 4958 atoms.

Sampling of the system was performed using the replica exchange method [15–17] with a target temperature of 278 K for
subsequent correlation with experimental NMR results. Fig. 2a shows the ARG12 (amino acid cf. Fig. 1) dihedral distribution
results of one such test. One dominant state A is apparent along with a path to a second state C populated only marginally
greater than the intermediate points found along the connecting path. The designation of a state B is reserved for a separa-
tion of state A into two adjacent states as observed in separate sampling tests. In Fig. 2b the states are overlaid on a
Fig. 1. WW domain with ARG12 shown. PDB ID 1I6C. Six residues have been truncated off the flexible linker end [18–20].
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Fig. 2. (a) WW domain ARG12 dihedral distribution from explicitly solvated replica exchange simulation with a target temperature of 278 K. (b) Labeled
Ramachandran for WW domain ARG12. The five intermediate conformations are ordered from state A to state C. The circles in state A represent the ARG12
value as found in the 1I6C PDB structure and the arrow represents movement to a new value after equilibration of the initial PDB structure.
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Ramachandran plot marked with the standard expected population as observed for the set of all residues. In addition, five
intermediate points along the path between states A and C are denoted and serve as the points from which the committor
probabilities are calculated as described in the next section.

2.1. Committor probability calculation

The target of these biomolecular simulations is to analyze a highly probable path of motion along a given set of reaction
coordinates, and estimate the respective rates of this motion. To define a path, we focus on the motion of the ARG12 residue
with respect to its U and W backbone dihedral angles. More specifically, our study centers on the motion of the WW domain’s
unbound state for later comparison to that of the bound state when the ligand is present. The committor probability calcu-
lations are made based on the work by Du et al. [21,22] and subsequent related evolutions of the concept [23,24]. The results
provide a strong validation of the distributions achieved via sampling and insight into the free energy surface along this
pathway.

The committor probability p is defined for each of the five designated intermediate states as the probability of arriving at
state A before arriving at state C. To compute p we ran numerous trajectories and determined first arrival in either A or C. The
larger the number of trajectories the greater the accuracy. The notation pac denotes the probability of arriving at A before C
and pca denotes C before A, respectively. The value serves as an indication of the kinetic proximity of the intermediate state to
the stable state. Note that multiple intermediate states can have similar probabilities, forming an ensemble of states of sim-
ilar kinetic distance. Because each trajectory’s contribution to p is not qualified by time, the distribution of p can indicate
either a plateau in the energy surface or a free energy maxima. This statement is conditional that the simulation time is suf-
ficiently long for a high percentage of all trajectories to arrive at either A or C. A high percentage of trajectories not arriving at
either state may indicate insufficient trajectory lengths, the presence of intermediate stable states, or an energy surface dom-
inated by reaction coordinates sufficiently decoupled from those used in the current state definitions.

3. PINS framework

The PINS framework is built upon the close integration of multiple independent software components designed to pro-
vide client interface, file management, computation management, storage resource access, compute resource access, and se-
cure authentication over the heterogeneous wide-area computational grid. A scientist can directly harness these
components, according to their respective APIs, through their scripting language of choice. The simulation execution is con-
trolled via an interactive client side script and an ‘in network’ PINS script. A simple abstraction of the control script is shown
in Fig. 3. Fully detailed example scripts specific to the molecular simulation reported here are available on-line.1

Fig. 4 provides a high level overview of the components and functionality. The user composes a client side script which
creates a relevant directory structure from which to serve input files and submit jobs to Condor. The data generating com-
putation (molecular dynamics) is matched with a computation resource followed by the storage of the data in the grid. A
1 http://gipse.cse.nd.edu/GEMS.

http://gipse.cse.nd.edu/GEMS


Fig. 3. Abstract simulation control.

Fig. 4. PINS enabled simulation on heterogeneous resources in the wide-area.
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subsequent data analysis computation initiated via client side script uses GEMS to locate the stored files and automatically
selects the available computation resource within the closest proximity. Bandwidth utilization to the remote client is re-
duced to communication with Condor daemons and the small output files from post-processing the large distributed data
sets. To make this abstract representation more concrete we describe the following core components utilized in our PINS
implementation. Note that the scientist’s interface with each of these components is through his or her chosen scripting lan-
guage and the majority of underlying functionality behind the component interfaces is abstracted to allow focus on imple-
mentation of the simulation algorithm.

� File management
File management is enabled via the grid enabled molecular simulation (GEMS) hybrid file system/database [25]. GEMS
provides client tools to store, query, and retrieve data over heterogeneous and autonomous storage resources. The GEMS
server efficiently manages replicated files and their associated metadata to provide fault-tolerant large-capacity storage
[26]. The GEMS client tools can be run on the scientist’s host machine or, as in the PINS framework, called as part of
the remote computation thus handling file movement and access within the grid distributed resources. While GEMS
was originally designed as a repository for molecular structure data sets, it has been fully generalized to support multiple
modes of data services, including usage as a localized, streaming data service or a widely replicated tertiary archive. Dur-
ing committor calculation all files: input, output, and post-processing were stored in GEMS.

� Parameterized data repository
A fundamental feature of the GEMS repository is the ability to tag individual data sets in a scientifically meaningful man-
ner. Thus, a previous simulation stored in the system may be located by providing the parameters used to create it. Bor-
rowing from previous work in virtual data systems [27], this capability is expanded in the PINS framework through the use
of a distributed, in-place storage fabric. The construction of scripts is simplified by the ability to refer to, look up, and even
browse other data sets. The user can employ a parameterized programming and data access model, unaware of the com-
plexity of the underlying dynamic replica placement system and corresponding name resolution and data movement
details. Further the repository functions not only as an interface to the simulation engine but as a stand alone repository
for archival and data sharing. Both command line and GUI Interfaces to directly access and manage data are available via
command line and the GEMSview GUI client as shown in Fig. 5. In this work scripts were greatly simplified by the ability
to reference files via filenames or associated metadata without consideration of low level details such as the physical loca-
tion and descriptors.



Fig. 5. Record browsing in the general-purpose GEMSview client tool. By simply specifying a batch name, all records created by that batch are obtained,
including parameterized metadata and file information. Users may then iteratively specify additional key/value pairs to reduce the quantity of returned
results before downloading the correct data set from a remote replica site.
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� Storage access
The heterogeneous and autonomous storage resources are made available by the Chirp file server [28] which provides
secure authenticated access to files residing in space allocated by the storage owner through the user level installation
of a Chirp server. Remote access to the distributed files is enabled by the Parrot personal file system adapter [29] which
allows applications to utilize the remote files directly without modification. File access for the trajectory post-processing
was automatically optimized. The user generated post-processing script simply modified calls for otherwise local trajec-
tory files with a Parrot call. GEMS automatically located the closest file and informed Parrot accordingly.

� Workflow management and matchmaking
Grid distributed compute resources are matched and authenticated to our simulation processes through the Condor [30]
grid engine. PINS scripts which manage the storage and computation in a fault-tolerant manner are executed as Condor
jobs. Intermittent job failures resulting from inherent resource faults are overcome through automatic restarts from the
last regularly saved simulation progress point, aided by a transactional record-keeping model.

� Secure authentication
Authentication and security are enabled uniformly by each component. At the highest level GEMS enforces storage and
access permissions on all files over multiple domains, while Condor and Chirp provide diverse authentication methods
including Globus certificates, hostname verification, and Unix techniques [31]. The trajectory and post-processing files
in this work were limited to read access only by the collaborators.

� High throughput data generation
Data intensive grid distributed simulation must acknowledge practical bandwidth and centralized storage limitations. The
GEMS replica location service automatically utilizes storage and computation locality information minimizing both total
and peak bandwidth consumption. Computation producing new data is correlated with distributed storage in the network
– on or near to the computation host – allowing high throughput computation to produce high throughput data without
concern for overloading centralized storage. This unique capability is a highlight in this phase of our PINS mapping to bio-
molecular simulation. Trajectory files were written locally first in all cases and the majority of post-process computation
was able to be correlated with the location of a trajectory replica.

� Cooperation and dynamism
As resources in large scale computing are often owned or managed by disparate groups, we enable resource sharing and
cooperation while respecting the authority of the machine owner. This authority allows changes in the available resources
that are uncontrollable by the system as a whole. Operations within the system may be represented as combinations of
operation type, job type, data sources, job location, and replica location. These combinations are created dynamically by
the job scheduler and replica location system, enabling the effective use of uncontrolled remote resources. Throughout the
weeks of simulation associated with these data sets all storage and computation was achieved by capitalizing on compute
and storage resources owned by and prioritized for scientists other than the simulation owner. Although resource avail-
ability was stochastic, trajectory generation proceeded without intervention.

The synthesis of these features comprises a viable framework with good scaling properties for computational experi-
ments. The provided tool set allows ‘users of infinite need’ to approach larger problems by integrating additional resources
into the cooperative framework. As the data sets grow, file management and parameterized organization are required to pro-
vide record-keeping capabilities. This enables seamless storage access utilities and restartable work flows. Expanding user



Table 1
Four selected subsets of heterogeneous volunteer resources used in the PINS experiment

Category CPUs Jobs MIPS Description Util. (%) I/O (%)

LOCO 32 272 1500 Homogeneous cluster 72 5.2
HELIOS 86 355 2500 Desktops in student labs 54 12
SC0 64 364 3100 Homogeneous cluster 59 9.4
CVRL 64 62 2200 Homogeneous cluster 87 5.2

Each category of machines executed the given number of jobs as selected by the Condor system. Utilization is defined as the ratio of time spent doing useful
work versus the time spent idling. The I/O ratio is the ratio of time spent performing data location or movement activity versus time spent performing a
simulation. Statistics are obtained from the experiment diagrammed in Fig. 6.
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groups are not centrally managed, enabling user-managed distributed access control. Data movement is contained within
local networks where possible. These features, implemented in a lightweight manner on multiple-use resources, promote
cooperative infrastructure models in which it is easy to integrate additional heterogeneous hardware to handle more users,
more problems, and larger workloads.

4. Experimental results

4.1. PINS statistics

4.1.1. Simulation requirements
The protein analysis performed consisted of 500 molecular dynamics simulations. Each simulation requires approxi-

mately 84 h of uninterrupted computation time on a Pentium 4 system. For a homogeneous system of such machines this
would yield a total computation time estimate of 42,000 CPU hours. Utilizing heterogeneous and autonomous resources
yields significant variance in the computation average as jobs run on numerous architectures and are subject to resource
eviction. Each simulation was segmented into automatically restarting segments such that the maximum computational
overhead from a single eviction was approximately 1 h. The client side and ‘in network’ scripts included control logic specific
to the submission of MD trajectories, segmentation of these trajectories, and subsequent post-processing to calculate com-
mittor probabilities.

The total storage is estimated at 500 MD trajectories �100 segments �28 files �3 replicas2 resulting in the requirement to
storage, catalog, and manage 4,200,000 input and output files. For this particular simulation the output file of dominant size (the
trajectory file) was reduced in size by removing the explicit waters as their positions were not necessary for the desired calcu-
lation. The removal of explicit water from the trajectory file reduced the file size by an order of magnitude bringing the total
replicated storage requirement for this simulation to roughly 50 GB as opposed to 500 GB. In this case the primary benefit in
reduced file size relates to improved performance of the external post-processing applications.

The PINS framework enables this high throughput data generation by reducing bandwidth consumption through the effi-
cient utilization of distributed storage. During simulation the output data is stored and replicated across the distributed stor-
age in a location aware manner. Storage is first attempted on the compute host, the fall back option looks for a storage host in
the same domain, and finally any available storage host. For the initial storage of all simulations we observe negligible band-
width utilization as opposed to an over network store of 50 GB for all 1.4 million original files. Subsequent distributed rep-
lication can be managed asynchronously at off peak times [26], in a pairwise manner that utilizes the parallelism of the
network.

4.1.2. Performance observations
Researchers intending to obtain the highest utility from their available resources must consider the utilization of the sys-

tems on which they are operating. Jobs running in the PINS framework may be clearly dissected into component tasks, and a
consideration of the time spent in each will indicate to the programmer the performance value of the use of the target vol-
unteer resources.

A sample of the jobs in this study were analyzed further to determine the utilization of computation and communication
resources. Jobs spend their time in one of three significant states: time spent processing, time spent storing or reading sim-
ulation data, and idle time. Idle time – as perceived by the PINS user – may be caused by a variety of factors including eviction
or suspension of the computation resource by the owner, or other problems. Idle time varies among different machine cat-
egories or clusters; for example, the heavily used, regularly rebooted desktops in a university laboratory (HELIOS) are only
available to PINS 46% of the time. The sum of the component times gives the overall turnaround or wall-clock time, measured
as the difference between two timestamped records in the GEMS system. Thus the idle time considered here is only the time
that counts as interruption and delay between segments of batch runs.

Of the whole experiment, 1053 jobs were isolated for further analysis. Each job produced a segment, a span in simulation
time for the appropriate trajectory corresponding to roughly two hours of computation time. The resulting segment is stored
2 GEMS asynchronously and dynamically obtains storage space and creates file replicas to provide data survivability on uncontrolled resources [25].
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in the system, so that a complete simulation may be obtained by concatenating a list of consecutive segments or restarting a
simulation from a given segment. The jobs were found to have executed on 120 of the available computation sites, 94 of
which were members of sizable categories of similar hardware. Four categories were chosen corresponding to the compu-
tational capability measured by Condor in million instructions per second (MIPS) and location, as described in Table 1.

Results are diagrammed in Fig. 6. The most notable result is that I/O operations are nearly insignificant compared to the
time spent idling. This indicates that the implementation of the database-like distributed storage system adds no significant
overhead to the overall turnaround time of each segment. Performance penalties are largely due to the idle time mandated
by system owners, an unavoidable occurrence on a shared resource fabric. For example, note that the SC0 processors outper-
form the CVRL processors, yet better user experience is enjoyed on the CVRL system due to its high availability and resulting
low turnaround time. The CVRL results indicate that the framework can make good utilization of an isolated highly available
cluster, while maintaining the flexibility to integrate multiple clusters into a unified infrastructure. However, the unpredict-
able HELIOS machines produced a greater number of completed jobs (355), showing that the ability to integrate large num-
bers of unreliable computational resources is beneficial.

4.2. WWd committor probabilities

In Table 2 the calculated committor probabilities are shown based on one hundred, 1 ns trajectories for each of the five
intermediate points. The simulations were carried out in the canonical ensemble at a temperature of 278 K, using explicit
solvation. The data columns indicate the values for the probability of committing to state A before C (pac), and committing
to state C before A (pca). In this particular case the number of observed trajectories which committed to neither state was zero
for all intermediate points. This indicates sufficiently unhindered mobility along the reaction coordinate and validates the
selection of a 1 ns trajectory to observe committors. Of key interest is the finding that intermediate points 1 and 2 always
commit first to state A whereas points 3, 4, and 5 all exhibit similar behaviors in terms of the percentage split between com-
mitments to A or C. This significant difference in the mobility between points 1,2 and 3,4,5 may indicate an additional reac-
tion coordinate (hydrogen bonding) present in initial conformations 3,4,5 that facilitates motion along the ARG12 dihedral
coordinates.

In a visual interpretation of the observed motion, Fig. 7a superimposes the dihedral motion from all trajectories starting at
intermediate point 3, onto the distribution obtained from the REM sampling shown previously. Fig. 7b shows the same tra-
jectory data from point 3 in contour form. We observe the highest density of dihedral values for the trajectory set is found
near the initial point, and note that despite that nearly 80% of trajectories commit first to state A, the majority of dihedral
values lie on the path from point 3 toward state C. This prompts further investigation into additional reaction coordinates
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Fig. 6. Performance profile of PINS operation.

Table 2
Calculated committor probability values for five intermediate initial points

pac pca

Intermediate point 1 100 0
Intermediate point 2 100 0
Intermediate point 3 79.2 20.8
Intermediate point 4 77 23
Intermediate point 5 79 21

Based on 100 trajectories computed from each point. Values are a percentage.
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that might enable what appears to be relatively fast diffusive motion along the path and away from the dominant state A low
energy well.

5. Related work

There are multiple grid utilities and middleware components which could be selected to build a PINS framework. The effi-
ciency with respect to how PINS enables computation, storage, and bandwidth utilization is highly dependent on these com-
ponents. We reference the following research projects with respect to their PINS relative function and or application for
biomolecular simulation.

The storage resource broker (SRB) [32] allows for the construction of unified data grids, from a variety of storage sys-
tems. SRB provides multiple user-configurable replication techniques, with appropriate metadata managed in a database
[33].

The Globus [34] replica location service (RLS) [35] provides the ability to map logical file names to physical file
locations. Systems built upon the RLS must manage user metadata externally. Another Globus project, GASS [36], exem-
plifies the data staging model of job submission, using cache management strategies to reduce network bandwidth
consumption.

The GFARM project [37] addresses possible collocation opportunities to enhance the I/O performance of a fully POSIX
capable grid distributed file system. To meet their performance and scalability objectives, efficient replication algorithms
are employed to improve data preservation and collocation over the wide- (intercontinental) area.

While these distributed architectures provide capabilities suitable for use in a PINS framework, we chose to implement
PINS on top of the cited components based on the following novel utilities. First is the minimal impact on existing client
applications, resources, and institutional authentication as enabled by the Parrot/Chirp [28] system. In addition, the Parrot
interface design allows for a great deal of flexibility running simulation scripts because of the location independence and
virtual file system that Parrot creates. Second, GEMS allows for heterogeneous and flexible scalability with no requirements
for application recompilations, root privileges, or kernel modifications. Further, the hybrid architecture between a file data-
base and a file system targets the core scientific tasks of data creation, analysis, and archive browsing allowing for optimi-
zations not feasible in a full featured file system. Finally, Condor has a robust interface for matchmaking and job eviction
ideally suited for a highly heterogeneous and autonomous set of compute resources.

A storage system designed for the application area of molecular dynamics is BioSimGrid [38]. Built upon the provision for
a unified format trajectory database, BioSimGrid provides tools to perform analysis on its libraries of simulation data. The
software architecture combines a standard database with an underlying SRB storage system. The primary differences be-
tween BioSimGrid and PINS are: the PINS distributed computation interface and resiliency in the face of uncontrolled, vol-
unteered resources, which subsequently drives a divergence in the grid distributed storage design.
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