
Interlanguage Parallel Scripting for
Distributed-Memory Scientific Computing

Justin M. Wozniak
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
wozniak@mcs.anl.gov

Timothy G. Armstrong
Computer Science

Department
University of Chicago

Chicago, IL USA
tga@uchicago.edu

Ketan C. Maheshwari
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
ketan@mcs.anl.gov

Daniel S. Katz
Computation Institute

University of Chicago &
Argonne National Laboratory

Chicago, IL USA
d.katz@ieee.org

Michael Wilde
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
wilde@mcs.anl.gov

Ian T. Foster
Mathematics and Computer

Science Division
Argonne National Laboratory

Argonne, IL USA
foster@mcs.anl.gov

ABSTRACT
Scripting languages such as Python and R have been widely
adopted as tools for the development of scientific software
because of the expressiveness of the languages and their
available libraries. However, deploying scripted applications
on large-scale parallel computer systems such as the IBM
Blue Gene/Q or Cray XE6 is a challenge because of is-
sues including operating system limitations, interoperabil-
ity challenges, and parallel filesystem overheads due to the
small file system accesses common in scripted approaches.
We present a new approach to these problems in which the
Swift scripting system is used to integrate high-level scripts
written in Python, R, and Tcl with native code developed
in C, C++, and Fortran, by linking Swift to the library in-
terfaces to the script interpreters. We present a technique
to efficiently launch scripted applications on supercomput-
ers, and we demonstrate high performance, such as invoking
14M Python interpreters per second on Blue Waters.

1. INTRODUCTION
An increasing number of modern scientific applications

and tools are built by using a variety of languages and li-
braries. These complex software products combine performance-
critical libraries implemented in native code (C, C++, For-
tran) with high-level functionality expressed in rapidly de-
veloped and modified scripts. Additional specialized language-
specific features may be used for concurrency, I/O, the use of
accelerators, and so on. These development techniques have
been used in a wide range of application domains, from ma-
terials science and protein analysis to power grid simulation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, Austin, Texas USA
© 2015 ACM. ISBN 978-1-4503-3989-6.

DOI: 10.1145/2822332.2822338

Such applications and tools are commonly developed as
follows. First, a native code library is built or repurposed
for the core processing. Second, a collection of scripts is built
up around the core library or program to express the com-
plex, often dynamic, but less performance-critical coordina-
tion logic. Such “wrapper scripts” may be developed with
shell, Python, Tcl, or other tools. Third, when additional
scalability is required, native code or additional scripts are
developed to deploy the application in some distributed com-
puting model such as MPI, Swift, some other grid workflow
system or with custom wrapper scripts that submit jobs to
a scheduler such as PBS.

Swift [23] is a programming language and runtime de-
signed to ease this software development methodology. Swift
has a well-defined concept of wrapper scripts, the ability to
coordinate calls to tools through its programming model,
and built-in support for many schedulers and data move-
ment protocols. The latest implementation, Swift/T [26],
generates an MPI program from the Swift script and pro-
vides tools to run that program on various scheduled re-
sources. This approach has allowed Swift/T to scale the ex-
ecution of scripted applications to hundreds of thousands of
cores [2]. In this approach, Swift handles data management,
movement, and marshaling among distributed-memory pro-
cesses without direct user manipulation of low-level commu-
nication libraries such as MPI.

The Swift/T framework supports direct calls to native
code through library loading and access. Modern scien-
tific applications, however, are built not only with native
code but also with scripts and scripting interfaces to core li-
braries. Thus, to ease the coordination of calls to tools in the
Swift programming model, we wish to support direct calls
to script code without calling external programs or forcing
the user to master complex linking techniques.

In this work, we report on new features in Swift that sup-
port direct calls to Python, R, and Tcl. These features,
which could easily be extended to other scripting languages,
allow Swift scripts to orchestrate distributed execution of
code written in a wide variety of languages, currently in-
cluding C, C++, Fortran, Python, R, Tcl, and the shell.

Indeed, any external program may be called through the
shell-based technique.

The method presented here is a more approachable soft-
ware development technique for distributed-memory com-
puting than are traditional techniques. Using MPI, the de-
veloper could write MPI code in C and call to an application
component script (say, in Python). In this technique, the
user would have to manage the call to the script, possibly
using an internal API specific to that language. Application
data would have to be marshaled to and from the component
and among processes in a laborious manner. The developer
would have to build significant infrastructure to manage load
balancing and other distributed computing challenges. Al-
ternatively, the developer could try a scripting language-
specific MPI implementation, which might ease some but
not all of the described challenges. Additionally, that ap-
proach would limit the number of languages that could be
used; it is unlikely that communicating among MPI pro-
cesses in multiple languages would work as desired.

In our method, the developer starts with a Swift script
that describes the calls to application components in a con-
venient syntax. Swift data is passed among language-specific
components implicitly as the script progresses; no user data
marshaling is required. (MPI messaging is used internally
by the Swift/T runtime.) Multiple components written in
different languages may be brought together. Progress and
load balancing are managed by the Swift runtime. Overall,
the approach provides a coherent programming model, al-
lows for compatibility among multiple languages, provides
high scalability, and is compatible with advanced architec-
tures such as the Cray XE6 and Blue Gene/Q.

The rest of this paper is organized as follows. In Section 2
we describe relevant application models. In Section 3 we
describe the architecture of Swift/T, and in Section 4 we
describe the interlanguage features that are the focus of this
paper. In Section 5 we present performance results from
Swift/T running on Blue Gene and Cray systems. In Sec-
tion 6, we describe related work and in Section 7 we offer
concluding remarks and a glimpse of future work.

2. APPLICATIONS
In this section, we describe some interlanguage applica-

tions that have motivated this work. We use them to define
a general application model.

2.1 NeXus: Storage and processing
for materials science

Our first motivating application concerns the distributed
storage and analysis of large materials science datasets. These
datasets are too large to move in their entirety for process-
ing and visualization; instead, we want to be able to ex-
tract, transfer, and manipulate selected subsets. Interlan-
guage support allows us to combine Swift for distribution
with Python for analysis and visualization.

NeXus [11] is an HDF-based [8] file format for X-ray, neu-
tron, and muon scattering data. By standardizing discipline-
specific metadata stored in the HDF file, NeXus makes X-ray
scattering data easier to distribute and analyze by differ-
ent research groups. A typical NeXus dataset may include
multiple large (up to 30 GB) multidimensional (up to 4D)
arrays. Datasets are typically processed repeatedly for co-
ordinate transformation, analysis, and visualization. Frag-
ments of the underlying data variables may be processed

concurrently in a task-oriented model.
NeXpy [16] is a Python-based GUI and scripting suite

for operating on NeXus data. Many important data trans-
formations, analysis routines, and visualization capabilities
are made available through its scripted Python API. NeXpy
users can, for example, easily rotate NeXus scattering data
and perform common visualization operations. Underlying
numerical operations are performed with NumPy [22], a nu-
merical library for Python, as shown in Figure 1.

Swift analysis job

Array arithmetic distributed as tasks
for NumPy/Python processing

Remote Cluster

C[3] =
A[3]+B[3]

C = A+B
.........

NumPy arrays

SSH

Figure 1: Parallel data analysis via Swift/NumPy
processing in cluster.

Recent work in scaling NeXpy processing to larger datasets
(30 GB) has motivated us to leave the bulk data on the re-
mote cluster for processing and to transfer only the resultant
plots back to the user workstation. This approach requires
that the array processing be broken into tasks for distributed
processing via Swift. To reuse as much existing NeXpy code
as possible, we want to be able to call relevant functionality
as Python tasks from Swift. To do so effectively, we need in-
terlanguage support to pass NeXus/NumPy data from Swift
to Python and back.

2.2 OOPS: Protein simulation
The development of molecular dynamics simulation en-

sembles can benefit greatly from the application of dynamic
languages [18]. While the core force computations and timestep-
ping must be performed with native code, experiment-level
control is best performed in a high-level script.

The Open Protein Simulator (OOPS) is an interlanguage
implementation of a protein folding simulation code [1]. At
its core OOPS is built on the C Protein Folding Library,
also known as protlib, a minimal library of C functions and
data structures intended for generating folding simulations
of proteins. The modular OOPS architecture allows the use
of different sampling algorithms and energy functions. In
addition, protlib provides a Python interface to use within
the Bio.PDB module of the Biopython library. OOPS reads
a collection of protein configuration files through Biopython
and makes core calls to protlib. OOPS leverages Swift to
run across many nodes for a large-scale protein folding sim-
ulation solution. The OOPS interlanguage software stack is
shown in Figure 2.

Recent work aims to enable OOPS to make use of hard-
ware accelerators including NVIDIA GPUs and the Intel
Xeon Phi [12]. In this effort, the OOPS libraries are being
refactored to allow Swift to manage calls to the Python, C,
and GPU-based features. This arrangement will make use of
the advanced performance available on the GPU while also

using higher-level features in the Python libraries.

OOPS Swift script

Ensemble experiment tasks

OOPS Swift script

Ensemble experiment tasks

Python toolkitPython toolkit

C protein
library

C protein
library BioBio

GPU

Python toolkitPython toolkit

C protein
library

C protein
library BioBio

GPU

Python toolkitPython toolkit

C protein
library

C protein
library BioBio

GPU

Figure 2: Component architecture of OOPS appli-
cation.

2.3 Electrical power price analysis
The electrical power prices in a region are a result of

combination of many stochastic and temporal factors, in-
cluding variation in supply and demand due to market, so-
cial, and environmental factors. Evaluating the feasibility
of future-generation power grid networks and renewable en-
ergy sources requires modeling and simulation of this com-
plex system. In particular, the power grid application de-
scribed here is used to statistically infer the changes in the
unit commitment prices with respect to small variations in
random factors. The software to carry out these studies
combines performance-critical mathematical programming
(AMPL [9]) with a higher level branch-and-bound frame-
work. While AMPL is a native code library, many application-
specific scripts written in Python generate sample scenarios
(weather, etc.). Thus, a distributed-memory tool to conve-
niently manage these codes and organize the overall appli-
cation is desirable.

The application involves running a stochastic model for a
large number of elements generated via a three-level nested
foreach loop, as shown in the Swift code snippet below:

1 int nS[] = [10, 100, 1000, 10000, 100000];
2 foreach S, idxs in nS {
3 sample0 = gensample(wind_data);
4 obj[idxs] = ampl(sample0);
5 foreach B, idxb in [10:40:10] {
6 foreach k in [0:B]{
7 sample1 = gensample(S, wind_data);
8 obj_l[idxs][idxb][k] = ampl_L(sample1);
9 sample2 = gensample(S, wind_data);

10 obj_u[idxs][idxb][k] = ampl_U(sample2,
11 obj[idxs]);
12 }}}

In this code, gensample() is not a pure function— it uses
random numbers produced by the underlying task, produc-
ing different samples each time. Then, the numerical algo-
rithm is run to compute lower (L) and upper (U) bounds,
which converge for large enough S. (Only the upper bound
computation consumes the output of function ampl().)

A moderate sample size of five samples can generate hun-
dreds of thousands of application calls. Each application call
uses the Python-implemented sample generator (gensample())
and the AMPL models, making it an interlanguage imple-
mentation spanning Python and AMPL interpreters, as de-
picted in Figure 3.

Power Grid Swift script

Scenario evaluation tasks

Power Grid Swift script

Scenario evaluation tasks

Python wrapperPython wrapper

AMPL AMPL

NumpyNumpy ScipyScipy

Python wrapperPython wrapper

AMPL AMPL

NumpyNumpy ScipyScipy

Python wrapperPython wrapper

AMPL AMPL

NumpyNumpy ScipyScipy

Figure 3: Electrical power price analysis application
components.

2.4 DISCUS: Crystal structure scattering
simulation

DISCUS [21] is a Fortran-based program for computing
diffuse scattering of a simulated input crystal structure. DIS-
CUS allows a user to run artificial experiments on crystal
structures and produce outputs analogous to those of real
experiments, for example the images that would be produced
from an X-ray scattering experiment.

A recent effort involved using DISCUS to fit input pa-
rameters (crystal configurations) to experimental data. The
output of a simulated DISCUS experiment is compared for
fit with results of a real experiment, allowing the accuracy
of the input parameters to be gauged. An evolutionary al-
gorithm is used [20] in order to iteratively adjust the param-
eters to improve the fit, as shown in Figure 4.

Swift loopSwift loop

X-ray beamline products

FSFS

comparecompare

selectselect

simulatesimulatesimulatesimulatesimulate simulate

populatepopulate

Successive crystal structure fits

OMP

Py

Py

Py

Py

Figure 4: Multilevel parallelism in DISCUS.

Two levels of parallelism have been identified in this compute-
intensive process. First, each individual DISCUS run can
be improved through the application of thread parallelism
in OpenMP. Second, the runs can be called concurrently.
Initial efforts by the DISCUS team ran into development
issues when attempting to fit complex DISCUS parame-
ter data into an ad hoc master-worker parameter passing
scheme. This is an ideal use case for the work presented
in this paper because Swift includes a load balancer in a
scalable master-worker scheme with multiple masters, along
with flexible interlanguage data handling.

In the Swift model, we applied interlanguage processing.
Features from the DISCUS package were wrapped with Python
via f2py. Then the application was rapidly constructed as

shown.
Computationally, this algorithm is an exciting use case for

the application of HPC for diffuse scattering. While we have
run up to 512 concurrent simulations in the evolutionary
population (see §5.2), the method can make use of at least
5000 concurrent simulations. Furthermore, we have incorpo-
rated OpenMP support into a performance-critical DISCUS
method, allowing each simulation to use ∼20 threads. Thus,
we can use ∼100,000 cores concurrently on a large-scale su-
percomputer.

2.5 Generic application models
We generalize from these four real-world applications to

define a general model for interlanguage scientific applica-
tions.

Swift script

Tasks produced by dataflow processing

Swift script

Tasks produced by dataflow processing

Script interpreterScript interpreter

Native code Native code

Script interpreterScript interpreter

Native code Native code

Script interpreterScript interpreter

Native code Native code

External programs

Figure 5: Existing software model previously sup-
ported by Swift.

In the model shown in Figure 5, existing application com-
ponents of native code libraries wrapped in high-level lan-
guages are then expressed by Swift. This approach allows
the reuse of application logic while providing concurrency at
the task level.

A subtle change is introduced in the model shown in Fig-
ure 6. In this model, high-level language components are
brought conceptually close to the Swift level as a result of
tight interlanguage support. It also offers a performance
boost due to linking to the language library (as opposed
to calling the interpreter as an external program).

Swift script

Tasks produced by dataflow processing

Swift script

Tasks produced by dataflow processing

Script librariesScript libraries

Native code Native code

Script librariesScript libraries

Native code Native code

Script librariesScript libraries

Native code Native code

Inline interlanguage script fragments

Embedded interpreters

Figure 6: New software model supported by present
work. High-level languages (Python, R, etc.) are
integrated closely with the Swift script but access
existing script or native code components.

3. ARCHITECTURE
We next provide some background on the Swift language,

describe the Swift/T architecture, and discuss how Swift/T
calls application components.

3.1 Swift language
Swift is a scripting language with C-like syntax, with per-

vasive, automatic concurrency built into the language. Con-
currency is achieved through dataflow processing, in which
progress depends on the availability of input data, not state-
ment ordering. For example, in the code fragment

1 int x;
2 x = f(3);
3 int y1 = g(x,1);
4 int y2 = g(x,2);

the declaration int x; creates a future x. Subsequent func-
tion calls to g() block until a value is stored in x. When f()

completes, both calls to g() are eligible to run concurrently
on different processors.

Massive concurrency can be achieved in Swift with rela-
tively little code. For example, in the code fragment

1 foreach i in [0:9] {
2 int t = f(i);
3 if (g(t) == 0) { printf("g(%i)==0", t); }
4 }

the foreach loop executes each loop body for a unique value
of i from 0...9 concurrently. Each execution of f() may be
run concurrently, but each g(t) is blocked on the corre-
sponding f(i) via t. The code implies the dataflow depen-
dencies shown in Figure 7, where several parallel pipelines
of tasks are present. Swift will construct and execute these
pipelines in parallel on any available resources.

loop

i t g(t)

{}

0

1

.
.
.

9

f

f

f

g

g

g

Figure 7: Diagram of implicit dataflow of Swift loop.

In the Swift model, bulk user computation is performed
in leaf tasks: user code outside of Swift, such as libraries or
external programs. These are load-balanced between avail-
able processors by dispatching tasks on demand. If f() and
g() are compute-intensive functions with varying runtimes,
the asynchronous, load-balanced Swift model is an excellent
fit.

3.2 Swift/T runtime
Swift/T [26] is a reimplementation of the Swift/K [23]

framework for high-performance computing.
Swift/K excels at distributed, grid, and cloud computing

and offers wide-ranging support for schedulers (PBS, LSF,
SLURM, SGE, Condor, Cobalt, SSH) and data transfer,
fault tolerance, and other features useful for that environ-
ment. K indicates that the language is implemented atop
the Karajan workflow engine.

ServerServer

WorkerWorker

WorkerWorkerWorkerWorker

WorkerWorker

WorkerWorkerWorkerWorker

WorkerWorkerWorkerWorker

WorkerWorker

Leaf tasks / Input Output / Notifications

Turbine
code

Turbine
code

WorkerWorker

Load balancer / Data store

ServerServer ServerServer ServerServer
Work

stealing

EngineEngine EngineEngine EngineEngine EngineEngine EngineEngine

Dataflow evaluation

Figure 8: Swift/T runtime architecture.

Swift/T is designed for high-performance computing at
the largest scale. T indicates that the key features are im-
plemented by the Turbine dataflow engine [24]. In this im-
plementation of Swift, the Swift script is translated into a
runtime framework based on the MPI-based Asynchronous
Dynamic Load Balancer (ADLB) [14] and Turbine libraries,
which evaluate Swift semantics in a distributed manner (no
bottleneck). Thus, at run time, Swift/T programs are MPI
programs.

The Swift/T architecture is diagrammed in Figure 8. Each
MPI process operates as an engine, ADLB server, or worker.
Engines carry out Swift logic, creating leaf tasks for execu-
tion. ADLB servers, shown as an opaque subsystem, dis-
tribute tasks to workers, which execute user work (such as
f() and g() in our example above). Typically the vast ma-
jority of processes (99%+) are designated as workers. The
engine and server processes are called control processes and
collectively orchestrate script execution.

4. INTERLANGUAGE OPERATIONS
Swift/T has multiple new methods not reported previ-

ously for calling to user code. In this section, we consider
these in detail.

4.1 Calling the shell
In Swift/K, leaf tasks were intended primarily to be de-

veloped as calls to qsub on remote systems. Following the
monolithic MPI model, however, Swift/T interacts with the
shell as a local library, because the Swift/T worker is just
another process in the MPI run. Interaction with the shell
is defined in Swift by using a function annotated with app

(for “application”).
Consider the following Swift function definition and call:

1 app (file o) prog1 (string S[][], int i) {
2 "/bin/prog1" (S[0]) "-" (S[1]) i o;
3 }
4 ...
5 file f<"output.txt"> =
6 prog1([["-v"], ["foo","bar"]], 42);

User program /bin/prog1 is made available to Swift as func-
tion prog1(), with a type signature that indicates it accepts
a two-dimensional array of strings and an integer, and pro-
duces one file as output. (In Swift, files may also be used
as part of the dataflow structure.) Elsewhere, in the Swift
script, a file f is defined as the output of prog1 and mapped
to a location in the filesystem, output.txt. The user passes
prog1 a two-dimensional string array literal and an integer
literal. Following the app definition, Swift converts these
variables to the shell command

1 /bin/prog1 -v - foo bar 42 output.txt

Swift does not attempt to open output.txt itself; it assumes
that the user program will create that file.

This functionality packages multiple features that allow
the expression of complex interlanguage issues between Swift
and the shell.

First, note that the shell command line is unstructured
compared with the ability of Swift to represent structured
data. All command lines must fit the C-based argc/argv
model. Thus, Swift data structures are flattened into simple
strings for the command line. Note, however, that the ability
of Swift to evaluate arbitrary code while constructing the
command line (here, indexing into the array S) allows clean
separation of flags and arguments, as is conventional, with
the use of the - symbol.

Second, note that the shell command line does not support
typed data. Thus, Swift converts various types to strings;
in this case, an integer and a file variable are placed on the
command line. Since Swift does support types, including
subtyping on file to create specific file types, many type-
related errors common in shell scripting are easily avoided.

4.2 Calling Tcl
The Swift/T compiler (STC) translates user Swift code

to a representation (Turbine code) that uses the Turbine,
ADLB, MPI, and user libraries, all of which are written in
C. While STC could generate C code, we desired a compiler
target with the following properties: (1) a straightforward
way to ship code fragments through ADLB for load balanc-
ing and evaluation elsewhere, (2) a textual, easily readable
format, and (3) an interpreter that does not require the user
to run the C compiler in order to avoid complexities on ad-
vanced systems. Thus, we chose Tcl to represent Turbine
code, and we made use of the ease of calling C from Tcl in
order to bind the system together.

Since Swift/T runs on Tcl, calling from Swift to Tcl is the
most advanced interlanguage feature in Swift/T. Consider
the Swift code fragment

1 (int o) f(int i, int j)
2 "my_package" "1.0"
3 ["set <<o>> [f <<i>> <<j>>]"];
4 ...
5 int x = f(2, 3);

In this code, Tcl procedure f is made available to Swift
with the given signature. When inputs i and j are avail-
able, the Tcl code (line 3) is executed. The Tcl package
my_package 1.0 is loaded on the assumption that f will be
found in that package. The Swift/T runtime supports user
additions to TCLLIBPATH so that arbitrary Tcl code may be
attached to a Swift/T run.

Interlanguage operation is supported by (1) inserting dataflow
semantics to the interface between Swift/T and Tcl and (2)
automatic type conversion. The Tcl code on line 3 cannot
execute until inputs i and j are set and transmitted to the
worker on which the code will be executed, and storage for
output o has been allocated. This code is automatically in-
serted into the compiler output by STC and is hidden from
the user (by default). The programmer provides a template
for the Tcl code. Double angle brackets << · >> indi-
cate that a variable should appear in that location. Swift/T
variables are automatically converted to the appropriate Tcl
types, which are oriented toward string representations.

The ease of interlanguage operation here offers multiple
beneficial features to Swift/T development and application
users. First, the ease of exposing simple Tcl snippets to
Swift allows for the rapid development of Swift builtin func-
tions such as printf(), strcat(), etc. Many Tcl features
can easily be brought into Swift this way. Second, Swift
users often express a desire to mix dataflow programming
with short fragments of imperative code. This is easily done
by extending the Tcl fragment on line 3 to a multiline script
snippet, using the Swift multiline string syntax. Certain
arithmetical or string expressions may be easier to perform
in Tcl than in Swift, especially for experienced Tcl or shell
programmers. Third, existing components built in Tcl can
easily be brought into Swift by using Swift support for Tcl
packages. Fourth, the strength of Tcl support for calling
native code is easily brought into Swift as well, as described
in the following subsection.

4.3 Calling native code
A primary goal of Swift/T is to speed the development

process for scaling existing codes in compiled languages (C,
C++, Fortran) to high-performance systems. Thus, good
support for calling these languages is paramount. Tcl pro-
vides good support for calling native code, and good tools
such as SWIG [3] are available. This approach has demon-
strated the ability to successfully call native code in many
applications, including applications that may be expressed
as MPI libraries [27].

In order to call into an existing native code program from
Swift, the following steps are necessary. First, the user iden-
tifies the key functions to be called. Simple types (numbers,
strings) must be used to ensure compatibility with Swift.
Second, the program is compiled as a loadable library - any
use of main() must be removed through conditional compi-
lation. Third, the library headers are processed by SWIG
to generate Tcl bindings for the C/C++ functions; in the
case of Fortran, a C++-formatted header is first created
with FortWrap [15], then processed by SWIG. Fourth, the
user writes Swift bindings for the generated Tcl bindings
as described in the previous subsection. Fifth, a Tcl pack-
age is constructed containing the native code library and
any additional Tcl scripts that the user desires to include.
Figure 9 illustrates the process of binding a C code with
Tcl using SWIG. The functions in object afunc.o become
callable from within the Swift/T code.

The interlanguage complications here are more challeng-
ing than that in the Tcl case because more language consid-
erations must be taken into account. Our approach has been
to delegate complexities and conventions to SWIG, since it
is a general-purpose tool (i.e., learning SWIG has broader
utility than learning a Swift-specific tool). Thus, type con-
version conventions are delegated to SWIG conventions.

In addition to simple types, scientific users of native code
languages often desire to operate on bulk data in arrays. The
Swift approach to these is to handle pointers to byte arrays
as a novel type: blob (binary large object). The Swift/T
runtime handles blobs in a similar manner to strings, but
with appropriate handling for binary data. This approach
allows users to write dataflow scripts that operate on C-
formatted strings and arrays, contiguous binary data struc-
tures, and even multidimensional Fortran arrays.

SWIG supports operations functions that consume and
produce pointers as represented by Tcl variables. Thus,

ensemble.swiftensemble.swift

libcompute.solibcompute.so

ScriptsScripts

Core numerics
compute.c

Core numerics
compute.c

Helper script
compute.tcl

Helper script
compute.tcl

Importable package

STCSTC Runtime code
ensemble.tic

Runtime code
ensemble.tic

SWIGSWIG CCCC

load

wrap.cwrap.c

compute.swiftcompute.swift

User code Build process Runtime
configuration

Script
interpreter

Figure 9: SWIG providing Tcl bindings for C func-
tions callable from Swift/T.

Swift/T provides a small library called blobutils to han-
dle transmission of the Swift/T blob type to raw pointers
compatible with SWIG. Type conversion routines are pro-
vided to handle many common cases. For example, SWIG
will not automatically convert void∗ to double∗ – instead,
blobutils provides tools to handle the simple but myriad
interlanguage complexities found when operating on binary
data.

4.4 Calling Python or R
As described above, many modern scientific applications

have key components or interfaces built in Python, R, or
other high-level languages. Previous workflow programming
systems typically call external languages by executing the
external interpreter executables. This strategy is undesir-
able for Swift/T, however, because at large scale the filesys-
tem overheads are unacceptable. Additionally, on special-
ized supercomputers such as the Blue Gene/Q, launching
external programs is not possible.

Our approach, based in Swift/T, treats the external in-
terpreters for Python and R as native code libraries. Thus,
the complexity of calling them is reduced to the complexity
of calling a C library from Swift/T, which was addressed
in the previous section. First, a Tcl extension for each lan-
guage was constructed. (These can conceivably be reused
by non-Swift developers who simply desire to call Python
or R from Tcl.) Then, a Swift/T leaf function was writ-
ten that evaluates fragments of code. Users interact only
with the high-level Swift/T leaf function, greatly reducing
complexity.

In the Swift model, each task is started without state;
only the well-defined Swift inputs are available. When call-
ing into an external interpreter, however, old state from the
previous task could be available and cause confusion or de-
bugging issues (this is not a security issue, since all this state
is inside the Swift/T MPI run). One approach is to final-
ize the interpreter at the end of each task and reinitialize it
when the next task is started, thus clearing any state. This
approach raises concerns about performance and possible re-
source leaks. Thus, we provide options to either retain the
interpreter or reinitialize it. (Old interpreter state can also
be used to store useful data if the programmer is careful.)

4.5 Calling Python and R
In addition to supporting rapid, concurrent calls to scripted

application components, Swift/T supports the ability to run
tasks from multiple languages in a single script and pass
data among them. This allows the unique opportunity to
combine these languages in large-scale applications.

In the case study described here, we construct several ma-
trices and find the biggest parallelepiped volume via NumPy
and R. First, we use NumPy to create NumPy arrays and
perform simple matrix arithmetic. Then, we compute de-
terminants in parallel with NumPy. Next, we reduce to the
maximal determinant using R. This basic procedure is de-
picted in Figure 10.

Figure 10: Graphical depiction of algorithm com-
bining NumPy and R.

The Swift definition of NumPy features is packaged in a
Swift header file for reuse. This Swift code performs minor
transformations to convert the operation on Swift data to
Python code that uses NumPy, then evaluates the string in
the Python interpreter and returns the result. A represen-
tative function, eye(int N), is shown in Figure 11. This
function simply creates a code fragment to call the NumPy
function eye() (which returns IN) and returns the result.
The matrix is represented in Swift as a string.

1 global const string numpy = "from numpy import *\n\n";
2 typedef matrix string;
3 (matrix A) eye(int n) {
4 command = sprintf("repr(eye(%i))", n);
5 code = numpy+command;
6 A = python(code);
7 }

Figure 11: Fragment of Swift header to provide
NumPy features.

The Swift code for the parallelepiped application is shown
in Figure 12. First, the NumPy library is imported (line 1).
Second, each matrix is constructed as A = IN ∗ i + 1, and
A[2,0] is set to a different number for each iteration (lines
5-8). Third, the determinants are computed (concurrently),
made positive, and stored in a Swift array of float. Fourth,
the R function max() is used to obtain the maximal value.

This method could be extended to call to C, C++, or For-
tran numerical libraries as well. The various Swift data may

1 import numpy;
2 // Define our collection of determinants:
3 float dets[];
4 foreach i in [1:U-1] {
5 // For U, i, construct a matrix via Numpy:
6 A = matrix_add(matrix_scale(eye(N), itof(i)),
7 ones(N));
8 B = matrix_set(A, 2, 0, (U-i+1)**3);
9 // Obtain its determinant via Numpy:

10 v = determinant(B);
11 // Store the determinant in a Swift array:
12 dets[i] = abs_float(v);
13 printf("dets[%i]=%.2f", i, v);
14 }
15 // Build a fragment of R code with the determinants:
16 code = sprintf("max(%s)", string_from_floats(dets));
17 r = R(code);
18 printf("dets: max: %f", r);

Figure 12: Swift script for algorithm combining
NumPy and R.

be used, including raw binary data. Note that in practice,
one normally would call to application components, not nu-
merical libraries, but this example illustrates the generality
of our approach.

One current deficiency in this technique relative to the
direct use of NumPy or R is that Swift does not provide the
convenient mathematical syntax available in NumPy or R
(for example, in NumPy, one may multiply matrices A and
B with A*B using the provided overloaded operator). Future
work will address this deficiency.

4.6 Calling Julia
Julia [4] is a mathematically oriented scripting language

notable for its high performance, ease of calling from Julia to
C, and natural parallel capabilities. One can also call from
C to Julia. Julia is thus an important target for Swift/T,
which can be used to organize large numbers of Julia runs
in a composite, interlanguage application.

Julia provides a C header file and set of functions that
may be used to initialize a Julia interpreter and evaluate
string commands in that interpreter. A use of Julia from
Swift is shown in Figure 13, which simply increments the
given integer after a 1-second delay.

1 f =
2 """
3 begin
4 f(x) = begin
5 sleep(1)
6 x+1
7 end
8 f(%s)
9 end

10 """;
11 s1 = julia(sprintf(f, 1));

Figure 13: Swift script for use of Julia.

4.7 Addressing filesystem contention
with static packages

A significant concern when using a scripted approach on
large supercomputers is the impact on the parallel file sys-
tem. Although such file systems are optimized for large data
transfers, they are easily overwhelmed by large numbers of
small file operations issued by many nodes simultaneously.

In a typical scripted approach, many system and user script
files are dynamically located and interpreted at runtime, in
addition to myriad interpreter and user libraries. Small ap-
plication configuration files may also be read, possibly for
each task in the workflow.

Supercomputers such the Cray XE6 and Blue Gene/Q use
specialized techniques to broadcast the executable to com-
pute nodes before execution, but this feature is not exposed
to the user. Our approach is to make use of this feature by
bundling everything into a static executable, piggybacking
on the broadcast feature, unpacking into node-local storage
(e.g., RAM drive), and running from there. We can pack
everything into this executable, including user scripts and
small data files.

The user follows this procedure at build time:

1. Fill in a Swift/T manifest file that contains any de-
sired scripts, libraries, or data files to be placed in the
executable.

2. Run the provided mkstatic script that generates a sin-
gle C file, containing a main() function. This file in-
cludes user scripts and all Swift/T supporting scripts
(about 24 Tcl files) and is encoded for the C compiler
by xxd -i.

3. Compile the generated C file into a generated object
file.

4. Link the object file with a provided list of Swift/T run-
time libraries and any user libraries. In some cases,
this produces a pure static executable. On some sys-
tems, some static libraries are not available, but the
linker options are available to link as many static li-
braries as possible.

Then, at run time, the following occurs:

1. The executable is distributed to all compute nodes by
the efficient broadcast mechanism.

2. If the executable was not a pure static executable, any
dynamic libraries are loaded by the OS.

3. Swift/T runtime scripts are interpreted from the strings
encoded in the generated C source code.

4. User scripts and data are unpacked from the encoded
data into local storage.

5. The Swift/T program begins. User tasks may access
local storage to interpret scripts and configuration files,
or load small data.

Following this approach, an ad hoc, scripted approach is
able to execute efficiently on a large-scale machine.

5. PERFORMANCE
Swift/T performance has been reported elsewhere [26, 27].

In this work, we report on the capability of Swift/T to
rapidly launch many Python and R tasks.

1 main {
2 N = toint(argv("N"));
3 printf("N: %i\n", N);
4 foreach i in [0:N-1] {
5 python("’{0}’.format(2+2)");
6 }
7 }

Figure 14: Swift script used for Python task rate
measurements.

Figure 15: Rates for Python tasks on Vesta - varying
worker processes.

5.1 Plain Python
The script in Figure 14 simply performs a parallel Swift

foreach loop around a call into Python to render the result
of 2+2 as a string. Each call to python() instantiates a fresh
Python instance to capture the full cost of using Python
from Swift.

The Python execution occurs only on Swift/T worker pro-
cesses. In other words, each task is produced by foreach

evaluation on an engine, load balanced by an ADLB server,
and executed on a worker.

In our first tests, we used Vesta, a 2,048-node, 32,768-core
Blue Gene/Q at the Argonne Leadership Computing Facility
(ALCF). Each node contains 16 PowerPC A2 cores running
at 1.6 GHz and 16 GB RAM, connected to a low-latency 5D
torus interconnect.

In this test, we measured the ability of Swift/T to rapidly
launch Python interpreters for an increasing number of work-
ers up to 8,192 and a varying number of control process pairs:
for C=1, there is one engine and one server, and so on (see
§ 3.2).

Results are shown in Figure 15. We can see that for each
control number C, the performance is the same for any num-
ber of workers (on the x axis). This indicates that perfor-
mance is limited by the control processes and not by launch-
ing Python.

In the next test, shown in Figure 16, we fixed the number
of workers W and increased C. For W = 4,096, performance
scales linearly up to 64 engines and servers, after which per-
formance degrades. For W = 8,192, up to 128 engines and
servers may be used.

In the final test, we measured the ability of Swift/T to
rapidly launch Python interpreters on many processors of
Blue Waters, a combination Cray XE6 and XK7 system.

Figure 16: Rates for Python tasks on Vesta - varying
control processes.

Figure 17: Rates for Python tasks on Blue Waters -
varying total processes.

In the XE component, each of the 22,640 nodes contains
16 AMD Interlagos cores running at 2.3 GHz and 64 GB
RAM, connected by a low latency 3D torus interconnect. We
performed this loop for an increasing number of processors
up to 65,536 (on the x axis) and a varying number of control
processes: for each number of total processes P , the number
of control processes C is configured such that C = P/32.

The results in Figure 17 show that using Swift/T, our
script was able to utilize 65,536 cores well, instantiating ap-
proximately 14 million Python interpreters per second. Blue
Waters contains only 33,792 XK cores in nodes with GPUs,
so this demonstrates that the model proposed for the OOPS
application in § 2.2 is viable.

5.2 DISCUS evolutionary algorithm
The DISCUS application was described in §2.4. We ran

this application on Beagle, a Cray XE6 at the University
of Chicago. The application was run without OpenMP en-
abled (since OpenMP parallelism does not stress Swift task
distribution), and ran it on up to 512 processes. Tasks in
the run perform computation for varying lengths of time.
As shown in Figure 18, the application scales as expected.

Figure 18: Rates for DISCUS tasks on Beagle - vary-
ing total processes.

6. RELATED WORK
Along with ever-growing popularity and support of an ac-

tive developer community, the Python language enjoys a
significant following in the scientific computing community.
Packages such as NumPy, SciPy, and matplotlib offer useful
numeric, scientific, and visualization utilities. These pack-
ages became a strong foundation for Python-based platforms
for scientific computing such as IPython Parallel [17]. The
IPython system is a Python package that evolved from an al-
ternative interactive Python terminal (from the SciPy com-
munity) into a message-based parallel and distributed com-
puting platform. IPython provides many features suitable
for scientific computing such as interactive visualization.

The Celery [5, 13] project provides parallel programming
methods for multi- and many-core node architectures. Cel-
ery, based in Python, offers an implementation of task-queue
with tools that provide mechanisms to define workflows,
monitoring, and cron-like task scheduling. Celery can use
a third-party messaging library such as RabbitMQ or Mon-
goDB for inter-task and task-client communications.

Language interoperability is an invaluable capability for
legacy codes because it allows existing code to be reused
for new, advanced systems without tedious and error-prone
code rewrites. Many tools for language interoperability ex-
ist. SWIG [3] is a tool that offers the ability to interface code
written in low-level languages with high-level scripting lan-
guages. It allows language-level invocations such as function
calls to be exposed as external callable functions. Similarly,
the Java Native Interface (JNI) [10] offers a Java API to in-
terface with C/C++ code. Swift/T uses the same concepts
to bring lower-level code into the Swift/T framework.

Babel [7] is a high performance language interoperability
tool based on the Scientific Interface Description Language
(SIDL), allowing transmission of typed data among lan-
guages. Swift/T differs from Babel/SIDL in that it started
as a scalable dataflow framework that is now adding inter-
language features. We will investigate the compatibility of
Babel/SIDL concepts with Swift/T in future work. Babel
was used to extend Chapel [6] to call traditional program-
ming languages (but did not investigate scripting languages
such as Python in detail) [19].

7. CONCLUSION
Modern scientific application development is trending to-

ward greater software complexity and more demanding per-
formance requirements. These applications blend structured
and unstructured computing patterns, features for distributed
and parallel computing, and the use of specialized libraries
for everything from numerics to I/O. For continued progress
in scientific computing, tools must be developed and adopted
that enable rapid prototyping and development of complex,
large scale applications. This paper extended a previous
short paper [25] with additional language coverage and all
performance results.

In this work, we provided a broad overview of relevant sci-
entific computing applications that combine computing pat-
terns and use multiple languages. We described the Swift/T
system for high-performance computing, highlighted its new
features to support scripting languages such as Python and
R, and showed how these can be combined to solve numerical
problems. We described our use of embedded script inter-
preters, making interlanguage programming relatively easy
while remaining compatible with systems having restricted
OS functionality such as the IBM Blue Gene/Q. Addition-
ally, we addressed the many small file problem common in
scripted solutions with our support for creating static exe-
cutables.

We then provided performance results from large-scale
synthetic runs using these technologies, running on two Cray
systems and an Blue Gene/Q . We also addressed the prob-
lem of many small file accesses typical of scripted approaches,
and described our solution in detail. In addition, we pre-
sented a scaling result for a real-world X-ray science appli-
cation.

In future work, we intend to improve support for external
languages by improving support for automatically translat-
ing more complex data types. Future applications are sure
to challenge the current performance envelope, and we will
improve and apply our techniques to solve bigger problems
with more advanced tools on the largest scale machines.

Swift/T is available at http://swift-lang.org/Swift-T.

Acknowledgments
This material was based upon work supported by the U.S.
Dept. of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research, under Contract DE-AC02-06CH11357.
We thank Ray Osborn for collaboration on NeXus, Victor
Zavala for collaboration on power grid, and Reinhard Neder
for collaboration on DISCUS.

Work by Katz was supported by the National Science
Foundation while working at the Foundation. Any opin-
ion, finding, and conclusions or recommendations expressed
in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation.

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Sci-
ence Foundation (award number OCI 07-25070) and the
state of Illinois. Blue Waters is a joint effort of the Uni-
versity of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications.

8. REFERENCES
[1] A. N. Adhikari, J. Peng, M. Wilde, J. Xu, K. F. Freed,

and T. R. Sosnick. Modeling large regions in proteins:
Applications to loops, termini, and folding. Protein
Science, 21(1):107–121, 2012.

[2] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T.
Foster. Compiler techniques for massively scalable
implicit task parallelism. In Proc. SC, 2014.

[3] D. M. Beazley. SWIG: An easy to use tool for
integrating scripting languages with C and C++. In
Proc. USENIX Tcl/Tk Workshop, 1996.

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B.
Shah. Julia: A fresh approach to numerical
computing, 2014. http://arxiv.org/abs/1411.1607.

[5] Celery: Distributed Task Queue. celeryproject.org.

[6] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the Chapel language. Int. J.
High Perform. Comput. Appl., 21(3):291–312, 2007.

[7] T. W. Epperly, G. Kumfert, T. Dahlgren, D. Ebner,
J. Leek, A. Prantl, and S. Kohn. High-performance
language interoperability for scientific computing
through Babel. J. of High-performance Computing
Applications, 26(3), 2012.

[8] M. Folk, R. McGrath, and N. Yeager. HDF: An
update and future directions. In Proc. Geoscience and
Remote Sensing Symposium, 1999.

[9] R. Fourer, D. M. Gay, and B. Kernighan. AMPL: a
mathematical programming language. In S. W.
Wallace, editor, Algorithms and model formulations in
mathematical programming, pages 150–151.
Springer-Verlag New York, Inc., New York, NY, USA,
1989.

[10] R. Gordon. Essential JNI: Java Native Interface.
Prentice-Hall, Inc., 1998.

[11] P. Klosowski, M. Koennecke, J. Tischler, and
R. Osborn. NeXus: A common format for the
exchange of neutron and synchrotron data. Physica B:
Condensed Matter, 241âĂŞ243:151 – 153, 1997.

[12] S. J. Krieder and I. Raicu. Towards the support for
many-task computing on many-core computing
platforms. Doctoral Showcase, IEEE/ACM
Supercomputing/SC, 2012.

[13] M. Lunacek, J. Braden, and T. Hauser. The scaling of
many-task computing approaches in Python on cluster
supercomputers. In Proc. CLUSTER, 2013.

[14] E. L. Lusk, S. C. Pieper, and R. M. Butler. More
scalability, less pain: A simple programming model
and its implementation for extreme computing.
SciDAC Review, 17:30–37, January 2010.

[15] J. McFarland. FortWrap web site.
http://fortwrap.sourceforge.net.

[16] R. Osborn. NeXpy web site.
http://nexpy.github.io/nexpy.

[17] F. Pérez and B. E. Granger. IPython: A system for
interactive scientific computing. Comput. Sci. Eng.,
9(3):21–29, May 2007.

[18] J. C. Phillips, J. E. Stone, K. L. Vandivort, T. G.
Armstrong, J. M. Wozniak, M. Wilde, and
K. Schulten. Petascale Tcl with NAMD, VMD, and
Swift/T. In Proc. High Performance Technical
Computing in Dynamic Languages at SC, 2014.

[19] A. Prantl, T. Epperly, S. Imam, and V. Sarkar.
Interfacing Chapel with traditional HPC programming
languages. In Proc. Partitioned Global Address Space
Programming Models, 2011.

[20] K. Price, R. Storn, and J. Lampinen. Differential
evolution. Springer, 2005.

[21] T. Proffen and R. Neder. DISCUS: A program for
diffuse scattering and defect-structure simulation.
Journal of Applied Crystallography, 30(2):171–175,
1997.

[22] S. van der Walt, S. Colbert, and G. Varoquaux. The
NumPy array: A structure for efficient numerical
computation. Computing in Science Engineering,
13(2):22–30, 2011.

[23] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Parallel Computing,
37:633–652, 2011.

[24] J. M. Wozniak, T. G. Armstrong, K. Maheshwari,
E. L. Lusk, D. S. Katz, M. Wilde, and I. T. Foster.
Turbine: A distributed-memory dataflow engine for
high performance many-task applications.
Fundamenta Informaticae, 28(3), 2013.

[25] J. M. Wozniak, T. G. Armstrong, K. C. Maheshwari,
D. S. Katz, M. Wilde, and I. T. Foster. Toward
interlanguage parallel scripting for distributed-memory
scientific computing. In Proc. CLUSTER, 2015.

[26] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S.
Katz, E. Lusk, and I. T. Foster. Swift/T: Scalable
data flow programming for many-task applications. In
Proc. CCGrid, 2013.

[27] J. M. Wozniak, T. Peterka, T. G. Armstrong,
J. Dinan, E. Lusk, M. Wilde, and I. Foster. Dataflow
coordination of data-parallel tasks via MPI 3.0. In
Proc. EuroMPI, 2013.

