Rapid development of highly
concurrent multi-scale simulators
with Swift

Justin M. Wozniak

http://exm.xstack.org wozniak@mcs.anl.gov

EEEEEEEEEEEEEE

Extreme-scale many-task applications

T0623, 25 res., 8.2A to 6.3A

Simulation of super- it
cooled glass materials |

— IPL

—KALJi

— WCA |

S = N w &
T T T T T

(excluding tail)

Protein folding using

homology-free approaches

Climate model analysis and
decision making in energy

>Nmo®

policy

Simulation of RNA-protein =
interaction)

IS
=

Multiscale subsurface
flow modeling

° Latitude N
-y
o

(]
©

38

Modeling of power grid =

-92

for OE applications

A-E have published science
results obtained using Swift

I Predicted
I Native

EXM: extreme-scaling for many-task computing

e Ko

plcin _— = Goal: Target top-level application
I /““““‘”"' febson logic. Provide a simple programming
m_ = environment at this level for
m:fw ", | Gophosan common patterns
nofe -
trame-5ca .':': H H ° H
o \,mﬁm_/ = Applications: Parameter studies,

ensembles, Monte Carlo, branch-
and-bound, stochastic programming,
uncertainty quantification

= Enablers: Scalable parallel
evaluation, dynamic load balancing,
in-RAM datasets

= Benefits: Programmability, fault-
recovery, power savings

= Results: New scalable Swift
implementation, datastore and MTC
publications

Lourtesy A. A

Goal: Programmability for extreme scale

= Focus is “many-task” computing: higher-level applications composed of
many run-to-completion tasks: input->compute—> output
Message passing handled by our implementation details

= Why is it relevant to extreme-scale computing?
— Programmability

* Increasing number of applications have this natural structure: material by design,
inverse problems, stochastic programming, branch-and-bound problems, UQ.

e Coupling extreme-scale applications to preprocessing, analysis, and visualization

— Resilience

e The functional programming model allows for re-execution of failed tasks
— Power management
e Graph structure of application upper levels may enable power scaling
= Challenges
— Load balancing, data movement, expressibility

— Debugging — experimental higher-level frameworks rarely have robust
debugging tools! We have some work here...

Programming model:
all execution driven by parallel data flow

(Int r) myproc (int 1, 1nt 7Jj)
{

int £ = F(1);

int g = G(J);

r =1t + g;

= f() andg () arecomputed in parallel
" myproc () returns r when they are done

= This parallelism is automatic
= Works recursively throughout the program’s call graph

Nested loops can generate massive parallelism
Protein folding example:

Sweep ()

{
int nSim = 1000;

int maxRounds = 3;

Protein pSet[] <ext; exec="Protelin.map">;
float startTemp[] = [100.0, 200.0];

float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];

foreach p, pn 1n pSet {
foreach t 1n startTemp {
foreach d in delT {
ItFix (p, nSim, maxRounds, t, d);

} 10 proteins x 1000 simulations x
} 3 rounds x 2 temps x 5 deltas
Sweep () ; = 300K tasks

Characteristics of very large Swift programs

= The goal is to support billion-way

int X = 100, Y = 100; i 9
int A[][]; concurrency: 0(10°)
int B[];
foreach x in [0:X-1] ({ = Swift script logic will control trillions
foreach y in [0:Y-1] of variables and data dependent
if (check(x, v)) { tasks
Alx] [yl = g(f(x), £(y));
} else {
Alx]ly]l = 0; = Need to distribute Swift logic
J processing over the HPC compute
}
Blx] = sum(A[x]); system

Centralized evaluation can be a bottleneck

Have this: Want this:

program

program

evaluator

[evaluator]

|

+ 500 taskals I'

+ 200,000 tasks/s *

Centralized evaluation Distributed evaluation

Swift/T: Fully parallel evaluation

int X = 100, Y = 100;
int A[][];
int BI[];
foreach x in [0:X-1]
foreach y in [0:Y-1
if (check(x, v))
Alx][y] = g(f(x
} else {
Alx][y] = 0;
}
}
B[x] = sum(A[x]);

{
]
{
)

14

f(y))

of complex scripts

Start Q
Outer P AN
Loops Q” dé&)@b
Inner AN S
—D0FS T RRR5Y
check() Mo e W
then / else
10 O Task
a() [Data
=Spawn
sum() Task
— Data
wait/write

e Tasks managed by ADLB

What are the challenges in applying the
many-task model at extreme scale?

= Dealing with high task dispatch rates: depends on task granularity but is
commonly an obstacle

— Load balancing

— Global and scoped access to script variables: increasing locality
= Handling tasks that are themselves parallel programs

— We focus on OpenMP, MPI, and Global Arrays
= Data management for intermediate results

— Object based abstractions

— POSIX-based abstractions

— Interaction between data management and task placement

10

Parallel evaluation of Swift/T in ExM

1 me

Legend
~ Process

—®» Task flow

s Control Load Task
£ Flow Balancing | Execution
Ewvaluator] |Ftu|a anging Rule 'D»J:Hj 'D
. <4—P Server
riatle D ‘\‘\i‘ﬂb/ ralificafiors Engine
store
| Task pool dispaicher (ADLB)
Turbine J Eﬁ;il:e -4—» Server
Big picture
Run time configuration
- P ~ - . ~

Swift sTC Turbine EIurbme
Script Code ecution
Data Semantic Task / Data

Definitions Analysis Dependency ~ Interpreter

Data Flow Flattening & Memory | | | Turbine

Expressions Optimization Management libraries

External Code Library ADLE

Functions Generation Access User
Libraries

Software components

11

Swift/T: Basic scaling performance

102.54

= Swift/T synthetic 100,01

app: simple task loop :;3

92.51
90.0 4
87.51
85.01
B2.51
80.0 4 128K cares
T71.51
75.01
72.54
70,04

64K cores

— Scales to capacity of
ADLB

utilization (%)

200 1000 10000 100000
cores

= SciSolSim: collaboration graph modeling
— ~400 lines Swift

— C++ graph model; simulated annealing

utilization (%)

— Scales well to 4K cores in initial tests 92
(further tests awaiting app debugging) 900

100 200 1000
processes

e
Application: Power Grid Modeling (PIPS)

Prior work Swift/T work
| '
PIPS potential scenario)} .
massively solution evaluation > analysis
parallel U

numerics massive
\ @ o
' scenarios

(sC’11) parallelism
\E) results

Swift/T (and the many-task, dataflow model) complements
existing application workflows

13

Application: Branch-and-Bound (Minotaur)

Initial
Problem

~ Relaxation 1, Branch/Prune '—{ Solutions \
N Solver

Creates task

Branches <1l parallelism
In Swift

Minimize some function via recursive search,
allow only for integer solutions

Builds a new, scalable application from pre-existing components

14

Swift/T: PIPS scaling results

1,000 A
= Scaling result for original application: 2 750/
Limited by available data from T 500,
PIPS team @ 2501

’ 0 250 500 750 1,000

Processor cores
Measured Ideal

= Scaling result for current application m 7500 k
with parameter sweep over rounding = %%
parameter (integer programming) @ 2,500

2,500 5,000 7,500
Processor cores

“One major advantage of Swift is that its high-level
programming language considerably shortens coding
times, hence it allows more effort to be dedicated to
algorithmic developments. Remarkably, using a scripting
language has virtually no impact on the solution times and
scaling efficiency, as recent Swift/PIPS-L runs show.”

- Cosmin Petra

® Measured Ideal

Swift/T: Use of low-level features

= Variable-sized tasks produce trailing tasks:
addressed by exposing ADLB task priorities at language level

B R L
o o

load (processes)
5 5

Ln

0-, . . : . . :
1,400 1,425 1,450 1,475 1,500 1,525 1,550 1,575 1,600
time (seconds)

— Load without priorities -e Load with priorities

CoHMM/Swift

CoHMM

> CoMD

l

l

n

* Concurrency gained primarily

by calls to CoMD

300 lines of sequential C
Coordinates multiple sequential
calls to CoMD

We rewrote this in Swift

1000’s lines of sequential C
Simplified MD simulator
Typically called as standalone
program

We exposed CoMD as a Swift
function — no exec()

17

CoMD: Library access from Swift

= CoMD binding: (example-1)

string s = "-f data/8k.inp.gz";
int N = 3;
foreach 1 in [0:N-1] {
float virial stress = COMDSWIFT runSim(s);
printf ("Swift: virial stress: %e",
virial stress);

18

CoMD: Library access from CoHMM

C

#define ZERO TEMP COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"
#ifdef ZERO TEMP COMD

// open pipe to CoMD

FILE *fPipe = popen (ZERO TEMP COMD, "r");

1f (fPipe == NULL) {
Swift
#define ZERO TEMP COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"

#ifdef ZERO TEMP COMD
string command = ZERO TEMP COMD;
stressXX = COMDSWIFT runSim(command) ;

felse
// Just the derivative of the zero temp energy wrt A
stressXX = rhoO*c*c* (A-1);

#endif

19

e
CoHMM: Translation from C to Swift: main()

C

int main(int argc, char **argv) {
initializedConservedFields () ;
for (i = 0; 1 < 100; i++) {
for (3 = 0; 3 < 1; J++)
fullStep() ;

Swift

main {
(A[O], pl0], e[0]) = initializedConservedFields()
for (int t = 0; t < 5; t = t+1) {

(A[t+1], plt+l], elt+l]) =
fullStep(A[t], p[t], e[t]);

20

CoHMM: Translation from C to Swift: call CoMD

C

vold fluxes (double *A, double *p,

double *f A, double *f p,

double *e,
double *f e) {

for (int 1 = 0; 1 < L; 1++) |
double stress = stressFn(A[i], e[i]);
double v pli] / rhoO;
f A[1] = -v;
f pl[i] = -stress;
f e[1] = -stress*v;
Swift
(float £ A[], float £ pl], float £ e[])
fluxes (float A[], float pl[], float e[]) {

foreach i1 in [0:L-171 {
float stress = stressFn(A[i],
float v = p[i] / rhoO;
f Al1] = -v;
f p[i] = -stress;
f e[1] = -stress*v;

e[i]);

21

Summary

Swift: High-level scripting for outermost programming constructs

Presented initial work on CoMD

Questions?

Papers:

Wozniak et al., Swift/T: Large-scale application composition via distributed-
memory dataflow processing. Proc. CCGrid, 2013.

Wozniak et al., Turbine: A distributed-memory dataflow engine for high
performance many-task applications. Fundamentae Informaticae, 2013.

Wozniak et al., A model for tracing and debugging large-scale task-parallel
programs with MPE. Proc. LASH-C at PPoPP (extended abstract), 2013.

Wozniak et al., JETS: Language and system support for many-parallel-task
applications. J. Grid Computing, 2013.

Armstrong et al., ExM: High level dataflow programming for extreme-scale
systems. Proc. HotPar (extended abstract) 2012.

Wilde et al., Swift: A language for distributed parallel scripting. J. Parallel
Computing, 2011.

22

