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Extreme-scale many-task applications 

 Simulation of super- 
cooled glass materials 

 Protein folding using 
homology-free approaches 

 Climate model analysis and  
decision making in energy 
policy 

 Simulation of RNA-protein 
interaction 

 Multiscale subsurface 
flow modeling 

 Modeling of power grid 
for OE applications 

 A-E have published science 
results obtained using Swift 
 

T0623, 25 res., 8.2Å to 6.3Å  
(excluding tail) 

Protein loop modeling. Courtesy A. Adhikari 
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ExM: extreme-scaling for many-task computing 

 Goal: Target top-level application 
logic. Provide a simple programming 
environment at this level for 
common patterns 

 Applications: Parameter studies, 
ensembles, Monte Carlo, branch-
and-bound, stochastic programming, 
uncertainty quantification  

 Enablers: Scalable parallel 
evaluation, dynamic load balancing, 
in-RAM datasets 

 Benefits:  Programmability, fault-
recovery, power savings 

 Results: New scalable Swift 
implementation, datastore and MTC 
publications  
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Protein loop modeling. 
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Goal: Programmability for extreme scale 

 Focus is “many-task” computing: higher-level applications composed of 
many run-to-completion tasks: input→compute→output 
Message passing handled by our implementation details 

 Why is it relevant to extreme-scale computing? 

– Programmability 

• Increasing number of applications have this natural structure: material by design, 
inverse problems, stochastic programming, branch-and-bound problems, UQ. 

• Coupling extreme-scale applications to preprocessing, analysis, and visualization 

– Resilience 

• The functional programming model allows for re-execution of failed tasks 

– Power management 

• Graph structure of application upper levels may enable power scaling 

 Challenges 

– Load balancing, data movement, expressibility 

– Debugging – experimental higher-level frameworks rarely have robust 
debugging tools!  We have some work here… 



Programming model: 

all execution driven by parallel data flow 

 

 f() and g() are computed in parallel 

 myproc() returns r when they are done 

 

 This parallelism is automatic 

 Works recursively throughout the program’s call graph 
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(int r) myproc (int i, int j) 

{ 

    int f = F(i);     

    int g = G(j); 

    r = f + g; 

} 

 



Nested loops can generate massive parallelism 
  

Protein folding example: 
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Sweep( ) 

{ 

   int nSim = 1000; 

   int maxRounds = 3; 

   Protein pSet[ ] <ext; exec="Protein.map">; 

   float startTemp[ ] = [ 100.0, 200.0 ]; 

   float delT[ ] = [ 1.0, 1.5, 2.0, 5.0, 10.0 ]; 

   foreach p, pn in pSet { 

      foreach t in startTemp { 

         foreach d in delT { 

            ItFix(p, nSim, maxRounds, t, d); 

         } 

      } 

   } 

} 

Sweep(); 

10 proteins x 1000 simulations x 
3 rounds x 2 temps x 5 deltas 

= 300K tasks  



Characteristics of very large Swift programs 

7 

 The goal is to support billion-way 
concurrency: O(109) 
 

 Swift script logic will control trillions 
of variables and data dependent 
tasks 
 

 Need to distribute Swift logic 
processing over the HPC compute 
system 
 

 
 

int X = 100, Y = 100; 

int A[][]; 

int B[]; 

foreach x in [0:X-1] { 

  foreach y in [0:Y-1] { 

    if (check(x, y)) { 

      A[x][y] = g(f(x), f(y)); 

    } else { 

      A[x][y] = 0; 

    } 

  } 

  B[x] = sum(A[x]); 

} 



Centralized evaluation can be a bottleneck  
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Have this: Want this: 



Swift/T: Fully parallel evaluation  

                                 of complex scripts 
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int X = 100, Y = 100; 

int A[][]; 

int B[]; 

foreach x in [0:X-1] { 

  foreach y in [0:Y-1] { 

    if (check(x, y)) { 

      A[x][y] = g(f(x), f(y)); 

    } else { 

      A[x][y] = 0; 

    } 

  } 

  B[x] = sum(A[x]); 

} 

• Tasks managed by ADLB 



What are the challenges in applying the 

many-task model at extreme scale? 

 Dealing with high task dispatch rates: depends on task granularity but is 
commonly an obstacle 

– Load balancing 

– Global and scoped access to script variables: increasing locality 

 Handling tasks that are themselves parallel programs 

– We focus on OpenMP, MPI, and Global Arrays 

 Data management for intermediate results 

– Object based abstractions 

– POSIX-based abstractions 

– Interaction between data management and task placement 
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Parallel evaluation of Swift/T in ExM 
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Big picture 

Software components 

Run time configuration 



Swift/T: Basic scaling performance 

 Swift/T synthetic  
app: simple task loop 

– Scales to capacity of 
ADLB  
 

 

 

 

 

 

 SciSolSim: collaboration graph modeling 

– ~400 lines Swift 

– C++ graph model; simulated annealing 

– Scales well to 4K cores in initial tests 
(further tests awaiting app debugging) 



Application: Power Grid Modeling (PIPS) 
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Swift/T workPrior work

Swift/T (and the many-task, dataflow model) complements  
existing application workflows 

(SC’11)  



Application: Branch-and-Bound (Minotaur) 
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Solver

Minimize some function via recursive search,
allow only for integer solutions

Creates task
parallelism

in Swift

Builds a new, scalable application from pre-existing components 



Swift/T: PIPS scaling results 

 Scaling result for original application: 
Limited by available data from  
PIPS team 

 

 

 

 Scaling result for current application 
with parameter sweep over rounding  
parameter (integer programming) 
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“One major advantage of Swift is that its high-level 
programming language considerably shortens coding 
times, hence it allows more effort to be dedicated to 
algorithmic developments. Remarkably, using a scripting 
language has virtually no impact on the solution times and 
scaling efficiency, as recent Swift/PIPS-L runs show.”  

- Cosmin Petra 



Swift/T: Use of low-level features 

 Variable-sized tasks produce trailing tasks: 
addressed by exposing ADLB task priorities at language level 

 



CoHMM/Swift 
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CoHMM 

• 1000’s lines of  sequential C 
• Simplified MD simulator 
• Typically called as standalone  

program 
• We exposed CoMD  as a Swift   

function –  no exec() 
 

• 300 lines of  sequential C 
• Coordinates multiple sequential  

calls to CoMD 
• We rewrote this in Swift 

 

CoMD CoMD CoMD 

• Concurrency gained primarily  
by calls  to CoMD 



CoMD: Library access from Swift 

 CoMD binding: (example-1) 
 
string s = "-f data/8k.inp.gz"; 

int N = 3; 

foreach i in [0:N-1] { 

      float virial_stress = COMDSWIFT_runSim(s); 

      printf("Swift: virial_stress: %e",  

              virial_stress); 

  } 
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CoMD: Library access from CoHMM 
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Swift 
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6" 

#ifdef ZERO_TEMP_COMD 

    string command = ZERO_TEMP_COMD; 

    stressXX = COMDSWIFT_runSim(command); 

#else 

    // Just the derivative of the zero temp energy wrt A 

    stressXX = rho0*c*c*(A-1); 

#endif 

C 
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6" 
#ifdef ZERO_TEMP_COMD 

// open pipe to CoMD 

FILE *fPipe = popen(ZERO_TEMP_COMD,"r"); 

if (fPipe == NULL) { 

       … 



CoHMM: Translation from C to Swift: main() 
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C 
int main(int argc, char **argv) {  

  initializedConservedFields(); 

  for (i = 0; i < 100; i++) { 

    for (j = 0; j < 1; j++) 

      fullStep(); 

Swift 
main {  

  (A[0], p[0], e[0]) = initializedConservedFields(); 

  for (int t = 0; t < 5; t = t+1) { 

    (A[t+1], p[t+1], e[t+1]) =  

              fullStep(A[t], p[t], e[t]); 



CoHMM: Translation from C to Swift: call CoMD 
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C 
void fluxes(double *A, double *p, double *e, 

            double *f_A, double *f_p, double *f_e) { 

    for (int i = 0; i < L; i++) { 

        double stress = stressFn(A[i], e[i]); 

        double v = p[i] / rho0; 

        f_A[i] = -v; 

        f_p[i] = -stress; 

        f_e[i] = -stress*v; 

Swift 
(float f_A[], float f_p[], float f_e[]) 

fluxes(float A[], float p[], float e[]) { 

  foreach i in [0:L-1] { 

        float stress = stressFn(A[i], e[i]); 

        float v = p[i] / rho0; 

        f_A[i] = -v; 

        f_p[i] = -stress; 

        f_e[i] = -stress*v; 



Summary 

 Swift: High-level scripting for outermost programming constructs 

 Presented initial work on CoMD 

 Questions? 
 

 Papers: 

– Wozniak et al., Swift/T: Large-scale application composition via distributed-
memory dataflow processing.  Proc. CCGrid, 2013. 

– Wozniak et al., Turbine: A distributed-memory dataflow engine for high 
performance many-task applications.  Fundamentae Informaticae, 2013. 

– Wozniak et al., A model for tracing and debugging large-scale task-parallel 
programs with MPE.  Proc. LASH-C at PPoPP (extended abstract), 2013. 

– Wozniak et al., JETS: Language and system support for many-parallel-task 
applications.  J. Grid Computing, 2013. 

– Armstrong et al., ExM: High level dataflow programming for extreme-scale 
systems.  Proc. HotPar (extended abstract) 2012. 

– Wilde et al., Swift: A language for distributed parallel scripting. J. Parallel 
Computing, 2011.  
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