
Rapid development of highly

concurrent multi-scale simulators

with Swift

Justin M. Wozniak

http://exm.xstack.org wozniak@mcs.anl.gov

Extreme-scale many-task applications

 Simulation of super-
cooled glass materials

 Protein folding using
homology-free approaches

 Climate model analysis and
decision making in energy
policy

 Simulation of RNA-protein
interaction

 Multiscale subsurface
flow modeling

 Modeling of power grid
for OE applications

 A-E have published science
results obtained using Swift

T0623, 25 res., 8.2Å to 6.3Å
(excluding tail)

Protein loop modeling. Courtesy A. Adhikari

Native
 Predicted

Initial

E

D

C

A B

A

B

C

D

E

F
F

>

ExM: extreme-scaling for many-task computing

 Goal: Target top-level application
logic. Provide a simple programming
environment at this level for
common patterns

 Applications: Parameter studies,
ensembles, Monte Carlo, branch-
and-bound, stochastic programming,
uncertainty quantification

 Enablers: Scalable parallel
evaluation, dynamic load balancing,
in-RAM datasets

 Benefits: Programmability, fault-
recovery, power savings

 Results: New scalable Swift
implementation, datastore and MTC
publications

3

Protein loop modeling.
Courtesy A. Adhikari

E

D

C

A B

F

Goal: Programmability for extreme scale

 Focus is “many-task” computing: higher-level applications composed of
many run-to-completion tasks: input→compute→output
Message passing handled by our implementation details

 Why is it relevant to extreme-scale computing?

– Programmability

• Increasing number of applications have this natural structure: material by design,
inverse problems, stochastic programming, branch-and-bound problems, UQ.

• Coupling extreme-scale applications to preprocessing, analysis, and visualization

– Resilience

• The functional programming model allows for re-execution of failed tasks

– Power management

• Graph structure of application upper levels may enable power scaling

 Challenges

– Load balancing, data movement, expressibility

– Debugging – experimental higher-level frameworks rarely have robust
debugging tools! We have some work here…

Programming model:

all execution driven by parallel data flow

 f() and g() are computed in parallel

 myproc() returns r when they are done

 This parallelism is automatic

 Works recursively throughout the program’s call graph

 5

(int r) myproc (int i, int j)

{

 int f = F(i);

 int g = G(j);

 r = f + g;

}

Nested loops can generate massive parallelism

Protein folding example:

6

Sweep()

{

 int nSim = 1000;

 int maxRounds = 3;

 Protein pSet[] <ext; exec="Protein.map">;

 float startTemp[] = [100.0, 200.0];

 float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];

 foreach p, pn in pSet {

 foreach t in startTemp {

 foreach d in delT {

 ItFix(p, nSim, maxRounds, t, d);

 }

 }

 }

}

Sweep();

10 proteins x 1000 simulations x
3 rounds x 2 temps x 5 deltas

= 300K tasks

Characteristics of very large Swift programs

7

 The goal is to support billion-way
concurrency: O(109)

 Swift script logic will control trillions
of variables and data dependent
tasks

 Need to distribute Swift logic
processing over the HPC compute
system

int X = 100, Y = 100;

int A[][];

int B[];

foreach x in [0:X-1] {

 foreach y in [0:Y-1] {

 if (check(x, y)) {

 A[x][y] = g(f(x), f(y));

 } else {

 A[x][y] = 0;

 }

 }

 B[x] = sum(A[x]);

}

Centralized evaluation can be a bottleneck

8

Have this: Want this:

Swift/T: Fully parallel evaluation

 of complex scripts

9

int X = 100, Y = 100;

int A[][];

int B[];

foreach x in [0:X-1] {

 foreach y in [0:Y-1] {

 if (check(x, y)) {

 A[x][y] = g(f(x), f(y));

 } else {

 A[x][y] = 0;

 }

 }

 B[x] = sum(A[x]);

}

• Tasks managed by ADLB

What are the challenges in applying the

many-task model at extreme scale?

 Dealing with high task dispatch rates: depends on task granularity but is
commonly an obstacle

– Load balancing

– Global and scoped access to script variables: increasing locality

 Handling tasks that are themselves parallel programs

– We focus on OpenMP, MPI, and Global Arrays

 Data management for intermediate results

– Object based abstractions

– POSIX-based abstractions

– Interaction between data management and task placement

10

Parallel evaluation of Swift/T in ExM

11

Big picture

Software components

Run time configuration

Swift/T: Basic scaling performance

 Swift/T synthetic
app: simple task loop

– Scales to capacity of
ADLB

 SciSolSim: collaboration graph modeling

– ~400 lines Swift

– C++ graph model; simulated annealing

– Scales well to 4K cores in initial tests
(further tests awaiting app debugging)

Application: Power Grid Modeling (PIPS)

13

scenario
evalution
scenario
evalution

scenario
evalution
scenario
evalution

scenario
evaluation
scenario

evaluation
potential
solution
potential
solution

resultsresults

analysisanalysis

scenariosscenariosscenariosscenariosscenariosscenarios

PIPS
massively

parallel
numerics

PIPS
massively

parallel
numerics massive

task
parallelism

Swift/T workPrior work

Swift/T (and the many-task, dataflow model) complements
existing application workflows

(SC’11)

Application: Branch-and-Bound (Minotaur)

14

scenario
evalution
scenario
evalution

scenario
evalution
scenario
evalution

BranchesBranches

Initial
Problem

Initial
Problem

SolutionsSolutionsBranch/PruneBranch/Prune
Relaxation

Solver
Relaxation

Solver

Minimize some function via recursive search,
allow only for integer solutions

Creates task
parallelism

in Swift

Builds a new, scalable application from pre-existing components

Swift/T: PIPS scaling results

 Scaling result for original application:
Limited by available data from
PIPS team

 Scaling result for current application
with parameter sweep over rounding
parameter (integer programming)

15

“One major advantage of Swift is that its high-level
programming language considerably shortens coding
times, hence it allows more effort to be dedicated to
algorithmic developments. Remarkably, using a scripting
language has virtually no impact on the solution times and
scaling efficiency, as recent Swift/PIPS-L runs show.”

- Cosmin Petra

Swift/T: Use of low-level features

 Variable-sized tasks produce trailing tasks:
addressed by exposing ADLB task priorities at language level

CoHMM/Swift

17

CoHMM

• 1000’s lines of sequential C
• Simplified MD simulator
• Typically called as standalone

program
• We exposed CoMD as a Swift

function – no exec()

• 300 lines of sequential C
• Coordinates multiple sequential

calls to CoMD
• We rewrote this in Swift

CoMD CoMD CoMD

• Concurrency gained primarily
by calls to CoMD

CoMD: Library access from Swift

 CoMD binding: (example-1)

string s = "-f data/8k.inp.gz";

int N = 3;

foreach i in [0:N-1] {

 float virial_stress = COMDSWIFT_runSim(s);

 printf("Swift: virial_stress: %e",

 virial_stress);

 }

18

CoMD: Library access from CoHMM

19

Swift
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"

#ifdef ZERO_TEMP_COMD

 string command = ZERO_TEMP_COMD;

 stressXX = COMDSWIFT_runSim(command);

#else

 // Just the derivative of the zero temp energy wrt A

 stressXX = rho0*c*c*(A-1);

#endif

C
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"
#ifdef ZERO_TEMP_COMD

// open pipe to CoMD

FILE *fPipe = popen(ZERO_TEMP_COMD,"r");

if (fPipe == NULL) {

 …

CoHMM: Translation from C to Swift: main()

20

C
int main(int argc, char **argv) {

 initializedConservedFields();

 for (i = 0; i < 100; i++) {

 for (j = 0; j < 1; j++)

 fullStep();

Swift
main {

 (A[0], p[0], e[0]) = initializedConservedFields();

 for (int t = 0; t < 5; t = t+1) {

 (A[t+1], p[t+1], e[t+1]) =

 fullStep(A[t], p[t], e[t]);

CoHMM: Translation from C to Swift: call CoMD

21

C
void fluxes(double *A, double *p, double *e,

 double *f_A, double *f_p, double *f_e) {

 for (int i = 0; i < L; i++) {

 double stress = stressFn(A[i], e[i]);

 double v = p[i] / rho0;

 f_A[i] = -v;

 f_p[i] = -stress;

 f_e[i] = -stress*v;

Swift
(float f_A[], float f_p[], float f_e[])

fluxes(float A[], float p[], float e[]) {

 foreach i in [0:L-1] {

 float stress = stressFn(A[i], e[i]);

 float v = p[i] / rho0;

 f_A[i] = -v;

 f_p[i] = -stress;

 f_e[i] = -stress*v;

Summary

 Swift: High-level scripting for outermost programming constructs

 Presented initial work on CoMD

 Questions?

 Papers:

– Wozniak et al., Swift/T: Large-scale application composition via distributed-
memory dataflow processing. Proc. CCGrid, 2013.

– Wozniak et al., Turbine: A distributed-memory dataflow engine for high
performance many-task applications. Fundamentae Informaticae, 2013.

– Wozniak et al., A model for tracing and debugging large-scale task-parallel
programs with MPE. Proc. LASH-C at PPoPP (extended abstract), 2013.

– Wozniak et al., JETS: Language and system support for many-parallel-task
applications. J. Grid Computing, 2013.

– Armstrong et al., ExM: High level dataflow programming for extreme-scale
systems. Proc. HotPar (extended abstract) 2012.

– Wilde et al., Swift: A language for distributed parallel scripting. J. Parallel
Computing, 2011.

22

