
Big Data Staging with MPI-IO

 for Interactive X-ray Science

Justin M Wozniak, Hemant Sharma, Timothy G. Armstrong,

Michael Wilde, Jonathan D. Almer, Ian Foster

http://mcs.anl.gov/exm wozniak@mcs.anl.gov

Goal: Programmability for large scale analysis

 Many-task computing: Higher-level applications composed of many

run-to-completion tasks: input→compute→output
Message passing handled by our implementation details

 Programmability
• Large number of applications have this natural structure at upper levels: Parameter

studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming, UQ

 Data access optimizations
• Provide rich features for data-location-aware scheduling and collective operations

 Experiment management

– Address workflow-scale issues: data transfer, application invocation, and
metadata management

 Write site-independent scripts

 Automatic parallelization and data movement

 Run native code, script fragments as applications

 Rapidly subdivide large partitions for
MPI jobs

 Move work to data locations

3

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Swift
control
process

Swift
control
process

Swift/T
control
process

Swift worker
process

C
C

++

Fortr
an

C
C

++

Fortr
an

C C++ Fortran

MPI

Swift/T worker

64K cores of Blue Waters
2 billion Python tasks
14 million Pythons/s

Swift/T: Enabling high-performance workflows

Basic scalability

4

• 1.5 billion tasks/s on 512K cores of Blue Waters, so far

• Armstrong et al. Compiler techniques for massively scalable
implicit task parallelism. Proc. SC 2014.

Swift programming model:

all progress driven by concurrent dataflow

 F() and G() implemented in native code

 F() and G()run in concurrently in different processes

 r is computed when they are both done

 This parallelism is automatic

 Works recursively throughout the program’s call graph

5

(int r) myproc (int i, int j)

{

 int f = F(i);

 int g = G(j);

 r = f + g;

}

Characteristics of very large Swift programs

6

 The goal is to support billion-way
concurrency: O(109)

 Swift script logic will control trillions
of variables and data dependent
tasks

 Need to distribute Swift logic
processing over the HPC compute
system

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) {
 A[x][y] = g(f(x), f(y));
 } else {
 A[x][y] = 0;
 }
 }
 B[x] = sum(A[x]);
}

Swift/T: Fully parallel evaluation

of complex scripts

7

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) {
 A[x][y] = g(f(x), f(y));
 } else {
 A[x][y] = 0;
 }
 }
 B[x] = sum(A[x]);
}

• Wozniak et al. Large-scale application composition via distributed-memory
data flow processing. Proc. CCGrid 2013.

A[3] = g(A[2]);

Example execution

 Code

 Engines: evaluate dataflow operations

 Workers: execute tasks

8

A[2] = f(getenv(“N”));

• Perform getenv()

• Submit f

• Process f

• Store A[2]

• Subscribe to A[2]

• Submit g

• Process g

• Store A[3]

Task put Task put
Notification

• Wozniak et al. Turbine: A distributed-memory dataflow engine for high
performance many-task applications. Fundamenta Informaticae 128(3), 2013

STC: The Swift-Turbine Compiler

 STC translates high-level Swift
expressions into low-level
Turbine operations:

9

– Create/Store/Retrieve typed data

– Manage arrays

– Manage data-dependent tasks

Support calls to native libraries

10

 Including MPI libraries

Support calls to embedded interpreters

11

We have plugins
for Python, R, Tcl,
Julia, and QtScript

• Wozniak et al. Toward computational experiment management
via multi-language applications. Proc. ASCR SWP4XS, 2014.

Application
Dataflow,
annotations

Features for Big Data analysis

12

• Location-aware scheduling
User and runtime coordinate data/task
locations

• Collective I/O
User and runtime coordinate data/task
locations

Runtime
Hard/soft locations

Distributed data

Application
I/O hook

Runtime
MPI-IO transfers

Distributed data

Parallel FS
• F. Duro et al. Exploiting data locality in

Swift/T workflows using Hercules .
Proc. NESUS Workshop, 2014.

13

Advanced Photon Source (APS)

Advanced Photon Source (APS)

 Moves electrons at electrons at >99.999999% of the speed of light.

 Magnets bend electron trajectories, producing x-rays, highly focused onto
a small area

 X-rays strike targets in 35 different laboratories – each a lead-lined,
radiation-proof experiment station

14

Data management for the energy sciences

 “Despite the central role of digital data in Dept. of Energy (DOE) research,
the methods used to manage these data and to support the information
and collaboration processes that underpin DOE research are often
surprisingly primitive…”
 - DOE Workshop Report on Scientific Collaborations (2011)

 Our goals:

– Modify the operating systems of APS stations to allow real-time streaming to
a novel data storage/analysis platform.

– Converting data from the standard detector formats (usually TIFF) to HDF5
and adding metadata and provenance, based on the NeXus data format.

– Rewrite analysis operations to work in a massively parallel environment.

– Scale up simulation codes that complement analysis.

15

Data ingest/analysis/archive

16

The October 2013 run
produced 104 directories

containing 5M files totalling

about 27 TB.

PADS: Petascale Active Data Store

 23 higher-end nodes for data-intensive computing,
repurposed for this work (installed in 2009)
 Each node has 12-way RAID for very

fast local disk operations

 Previously, difficult to use as “Active Data Store”
 Difficult to access specific nodes through PBS scheduler

 No catalog (where is my data?)

 No way to organize/access Data Store!

 Solution: Swift/T
 Organizes distributed data using Swift data structures and mappers

 Leaves data on nodes for later access

 Allows for targeted tasks (can send work to node with data chunk)

 Integrates with Globus Catalog for metadata, provenance, archive...

 Combining unscheduled resource access with high performance data rates will allow for
real-time beamline data analysis, accelerating progress for materials science efforts

17

Interactive analysis powered by scalable storage

 Replace GUI analysis internals with operations on remote data

18

Example Remote Numpy Operations

with NXFileRemote("tukey.alcf.anl.gov",

 "sample123.nexus") as nxfr:

 # Step through NeXus metadata:

 # Obtain the top-level entry:

 f1 = nxfr["/entry"]

 # Obtain the data entry:

 f2 = f1["data"]

 # Obtain the 3D bulk data variable:

 v = nxfr["/entry/data/v"]

 # Obtain a slice of the variable (a plane)

 v = f[0,0]

 # Obtain a single element in the variable:

 v = f[0,0,0]

 # Do all of this in one stroke:

 v = nxfr["/entry/data/v"][0,0,0]

Remote matrix arithmetic: Initial results

 Initial run shows performance
issue: addition took too long

 Swift profiling isolated issue:
convert addition routine from
script to C function: obtained
10,000 X speedup

 Swift/T integrates with
MPE/Jumpshot and other
MPI-based performance analysis
techniques

20

Crystal Coordinate Transformation Workflow

21

CCTW: Swift/T application (C++)

bag<blob> M[];

foreach i in [1:n] {

blob b1= cctw_input(“pznpt.nxs”);

blob b2[];

int outputId[];

(outputId, b2) = cctw_transform(i, b1);
foreach b, j in b2 {

 int slot = outputId[j];

 M[slot] += b;

}}

foreach g in M {

 blob b = cctw_merge(g);
 cctw_write(b);

}}

22

Abstract, extensible MapReduce in Swift

main {

 file d[];

 int N = string2int(argv("N"));

 // Map phase

 foreach i in [0:N-1] {

 file a = find_file(i);

 d[i] = map_function(a);

 }

 // Reduce phase

 file final <"final.data"> = merge(d, 0, tasks-1);

}

(file o) merge(file d[], int start, int stop) {

 if (stop-start == 1) {

 // Base case: merge pair

 o = merge_pair(d[start], d[stop]);

 } else {

 // Merge pair of recursive calls

 n = stop-start;

 s = n % 2;

 o = merge_pair(merge(d, start, start+s),

 merge(d, start+s+1, stop));

 }}

23

• User needs to implement
map_function() and merge()

• These may be implemented

in native code, Python, etc.

DIFFEV: Scaling crystal diffraction simulation

 Determines crystal configuration that produced given scattering image
through simulation and evolutionary algorithm

 Swift/T calls DISCUS via Python interfaces

24

Potential concurrency:
100,000 cores

Application by
Reinhard Neder

DIFFEV: Genetic algorithm via dataflow

25

Novel application
composed from

existing libraries by
domain expert!

Real-time beamline analysis

 Goal: Transfer data from APS to HPC while experiment is running

 Use ALCF Mira, an IBM Blue Gene/Q: 786,432 cores @ 10 PF

 Challenges

– Data transfer (15 TB / week or
more)

– Co-scheduling HPC time with
beam time

– Rapidly scaling existing
prototypical analysis codes to
~100K cores

– Staging experimental data
(577 MB) from GPFS to the
compute nodes

 Can use 22 M CPU hours / week!

High-Energy Diffraction Microscopy

 Near-field high-energy diffraction microscopy discovers metal grain
shapes and structures

 The experimental results are greatly improved with the application of
Swift-based cluster computing (RED indicates higher confidence in results)

27

October 2013: Without Swift
April 2014: With Swift

NF-HEDM

28

Task-based HPC

 Existing C code (NFHEDM) assembled into scalable HPC program with
Swift/T

 Problem: Each task must consume ~500 MB of experimental data – each
task does uncoordinated I/O

Intended use of broadcast operation

 Grain orientation optimization workflow runs on BG/Q once data is there

 Each task needs to read all input from a given dataset

 Desire to use MPI-IO before running tasks

NF-HEDM application Swift code

main {

 parameterFile = argv("p");

 microstructureFile = argv("m");

 start = toint(argp(1));

 end = toint(argp(2));

 foreach row in [start:end] {

 FitOrientation(parameterFile, row,
 microstructureFile);

 }

}

31

• FitOrientation() is linked to a C function
• Each task reads the same data
• Output is inserted into the microstructure

file

broadcast to /tmp files {

 ~/dataset-1/*.cfg

}

broadcast to /tmp/bulk files {

 ~/dataset-1/bulk/file1.index

 ~/dataset-1/bulk/file2.index

 ~/dataset-1/bulk/*.bin

}

• Executed by Swift at startup

• Swift dataflow • Swift I/O hook specification

Big Data Staging with MPI-IO

 Solution: Broadcast experimental data on HPC system with MPI-IO

 Tasks consume data normally from node-local storage

Scalability result: End-to-end

 21 GB/s

101 GB/s

8K cores

Scalability result: Stage+Write

34

 134 GB/s

8K cores

• This plot breaks I/O hook into 1) stage+write and 2) read phases
• Read phase is node-local: consistently 10.8 ±0.1 s

Big Data Staging: Conclusions

 Blue Gene/Q can be used for big data problems and a many-task
programming model

– Just broadcast the data to compute nodes first with MPI-IO

 The Swift I/O hook enables efficient I/O in a many-task model

– Reduces I/O time by factor of 4.7!

 Connecting HPC to a real-time experiment saved an experiment by
detecting a loose cable

 Code is now being reused by about 5 different groups

– Now must accommodate extra users on HPC resources!

Summary

 Swift: High-level scripting for outermost programming constructs

 Described features for big data computing on clusters and
supercomputers

 Thanks to the organizers

 Thanks to the Swift team

 Thanks to application collaborators

 Questions?

36

