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Goal: Programmability for large scale analysis 

 Many-task computing: Higher-level applications composed of many  

run-to-completion tasks:   input→compute→output 
Message passing handled by our implementation details 

 

 Programmability 
• Large number of applications have this natural structure at upper levels: Parameter 

studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming,  UQ 

 

 Data access optimizations 
• Provide rich features for data-location-aware scheduling and collective operations 

 

 Experiment management 

– Address workflow-scale issues: data transfer, application invocation, and 
metadata management 



 Write site-independent scripts  

 Automatic parallelization and data movement 

 Run native code, script fragments as applications 

 Rapidly subdivide large partitions for  
MPI jobs 

 Move work to data locations 
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www.ci.uchicago.edu/swift    www.mcs.anl.gov/exm 
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64K cores of Blue Waters 
2 billion Python tasks 
14 million Pythons/s 

Swift/T: Enabling high-performance workflows 



Basic scalability 
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• 1.5 billion tasks/s on 512K cores of Blue Waters, so far 
 

• Armstrong et al. Compiler techniques for massively scalable 
implicit task parallelism. Proc. SC 2014. 



Swift programming model: 

all progress driven by concurrent dataflow 

 

 F() and G() implemented in native code 

 F() and G()run in concurrently in different processes 

 r is computed when they are both done 

 

 This parallelism is automatic 

 Works recursively throughout the program’s call graph 
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(int r) myproc (int i, int j) 

{ 

    int f = F(i);     

    int g = G(j); 

    r = f + g; 

} 

 



Characteristics of very large Swift programs 
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 The goal is to support billion-way 
concurrency: O(109) 
 

 Swift script logic will control trillions 
of variables and data dependent 
tasks 
 

 Need to distribute Swift logic 
processing over the HPC compute 
system 
 

 
 

int X = 100, Y = 100; 
int A[][]; 
int B[]; 
foreach x in [0:X-1] { 
  foreach y in [0:Y-1] { 
    if (check(x, y)) { 
      A[x][y] = g(f(x), f(y)); 
    } else { 
      A[x][y] = 0; 
    } 
  } 
  B[x] = sum(A[x]); 
} 



Swift/T: Fully parallel evaluation                                  

of complex scripts 

7 

int X = 100, Y = 100; 
int A[][]; 
int B[]; 
foreach x in [0:X-1] { 
  foreach y in [0:Y-1] { 
    if (check(x, y)) { 
      A[x][y] = g(f(x), f(y)); 
    } else { 
      A[x][y] = 0; 
    } 
  } 
  B[x] = sum(A[x]); 
} 

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013.  



A[3] = g(A[2]); 

Example execution 

 Code 

 

 

 

 Engines: evaluate dataflow operations 
 

 

 

 Workers: execute tasks 
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A[2] = f(getenv(“N”)); 

• Perform getenv() 

• Submit f 

• Process f 

• Store A[2] 

• Subscribe to A[2] 

• Submit g  

• Process g 

• Store A[3] 

Task put Task put 
Notification 

• Wozniak et al. Turbine: A distributed-memory dataflow engine for high 
performance many-task applications. Fundamenta Informaticae 128(3), 2013 



STC: The Swift-Turbine Compiler 

 STC translates high-level Swift 
expressions into low-level  
Turbine operations: 
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– Create/Store/Retrieve typed data 

– Manage arrays 

– Manage data-dependent tasks 



Support calls to native libraries 
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 Including MPI libraries 



Support calls to embedded interpreters 
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We have plugins 
for Python, R, Tcl, 
Julia, and QtScript 

• Wozniak et al. Toward computational experiment management 
via multi-language applications. Proc. ASCR SWP4XS, 2014.  



Application 
Dataflow,  
annotations 

Features for Big Data analysis 
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• Location-aware scheduling 
User and runtime coordinate data/task 
locations 

• Collective I/O 
User and runtime coordinate data/task 
locations 

Runtime 
Hard/soft locations 

Distributed data 

Application 
I/O hook 

Runtime 
MPI-IO transfers 

Distributed data 

Parallel FS 
• F. Duro et al.  Exploiting data locality in 

Swift/T workflows using Hercules . 
Proc. NESUS Workshop, 2014.  
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Advanced Photon Source (APS) 



Advanced Photon Source (APS) 

 Moves electrons at electrons at >99.999999% of the speed of light. 

 Magnets bend electron trajectories, producing x-rays, highly focused onto 
a small area 

 X-rays strike targets in 35 different laboratories – each a lead-lined,  
radiation-proof experiment station 
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Data management for the energy sciences 

 “Despite the central role of digital data in Dept. of Energy (DOE) research, 
the methods used to manage these data and to support the information 
and collaboration processes that underpin DOE research are often 
surprisingly primitive…”  
               - DOE Workshop Report on Scientific Collaborations (2011)  
 

 Our goals:  

– Modify the operating systems of APS stations to allow real-time streaming to 
a novel data storage/analysis platform. 

– Converting data from the standard detector formats (usually TIFF) to HDF5 
and adding metadata and provenance, based on the NeXus data format. 

– Rewrite analysis operations to work in a massively parallel environment. 

– Scale up simulation codes that complement analysis. 
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Data ingest/analysis/archive 
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The October 2013 run 
produced 104 directories 

containing 5M files totalling 

about 27 TB.  



PADS: Petascale Active Data Store 

 

 23 higher-end nodes for data-intensive computing,  
repurposed for this work (installed in 2009) 
 Each node has 12-way RAID for very  

fast local disk operations 

 Previously, difficult to use as “Active Data Store” 
 Difficult to access specific nodes through PBS scheduler 

 No catalog (where is my data?) 

 No way to organize/access Data Store! 

 Solution: Swift/T 
 Organizes distributed data using Swift data structures and mappers 

 Leaves data on nodes for later access 

 Allows for targeted tasks (can send work to node with data chunk) 

 Integrates with Globus Catalog for metadata, provenance, archive... 

 Combining unscheduled resource access with high performance data rates will allow for 
real-time beamline data analysis, accelerating progress for materials science efforts  
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Interactive analysis powered by scalable storage 

 

 

 

 

 

 

 

 

 

 

 

 Replace GUI analysis internals with operations on remote data 
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Example Remote Numpy Operations 

with NXFileRemote("tukey.alcf.anl.gov",  

                  "sample123.nexus") as nxfr: 

 

    # Step through NeXus metadata:  

    # Obtain the top-level entry: 

    f1 = nxfr["/entry"] 

    # Obtain the data entry: 

    f2 = f1["data"] 

    # Obtain the 3D bulk data variable:  

    v = nxfr["/entry/data/v"] 

    # Obtain a slice of the variable (a plane) 

    v = f[0,0] 

    # Obtain a single element in the variable: 

    v = f[0,0,0] 

    # Do all of this in one stroke:  

    v = nxfr["/entry/data/v"][0,0,0] 

 



Remote matrix arithmetic: Initial results  

 Initial run shows performance 
issue: addition took too long 
 

 Swift profiling isolated issue: 
convert addition routine from 
script to C function: obtained 
10,000 X speedup 
 

 Swift/T integrates with 
MPE/Jumpshot and other  
MPI-based performance analysis 
techniques 
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Crystal Coordinate Transformation Workflow 
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CCTW: Swift/T application (C++) 

bag<blob> M[];  

foreach i in [1:n] {  

blob b1= cctw_input(“pznpt.nxs”); 

blob b2[];  

int outputId[];  

(outputId, b2) = cctw_transform(i, b1);  
foreach b, j in b2 {  

    int slot = outputId[j];  

 M[slot] += b;  

}}  

foreach g in M {  

 blob b = cctw_merge(g); 
 cctw_write(b);  

}} 
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Abstract, extensible MapReduce in Swift 

main { 

  file d[]; 

  int N = string2int(argv("N")); 

  // Map phase 

  foreach i in [0:N-1] { 

    file a = find_file(i); 

    d[i] = map_function(a); 

  } 

  // Reduce phase 

  file final <"final.data"> = merge(d, 0, tasks-1); 

} 

 

(file o) merge(file d[], int start, int stop) { 

  if (stop-start == 1) { 

    // Base case: merge pair 

    o = merge_pair(d[start], d[stop]); 

  } else { 

    // Merge pair of recursive calls 

    n = stop-start; 

    s = n % 2; 

    o = merge_pair(merge(d, start,     start+s), 

                   merge(d, start+s+1, stop)); 

  }} 
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• User needs to implement  
map_function() and merge() 

• These may be implemented  

in native code, Python, etc. 



DIFFEV: Scaling crystal diffraction simulation 

 

 

 

 

 

 

 

 

 

 Determines crystal configuration that produced given scattering image 
through simulation and evolutionary algorithm 

 Swift/T calls DISCUS via Python interfaces 

24 



 

Potential concurrency:  
100,000 cores 

 
Application by  
Reinhard Neder 

DIFFEV: Genetic algorithm via dataflow 
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Novel application 
composed from 

existing libraries by 
domain expert! 



Real-time beamline analysis  

 Goal: Transfer data from APS to HPC while experiment is running 

 Use ALCF Mira, an IBM Blue Gene/Q:  786,432 cores @ 10 PF 

 Challenges  

– Data transfer (15 TB / week or 
more) 

– Co-scheduling HPC time with 
beam time 

– Rapidly scaling existing 
prototypical analysis codes to  
~100K cores 

– Staging experimental data  
(577 MB) from GPFS to the 
compute nodes 

 

 Can use 22 M CPU hours / week! 

 



High-Energy Diffraction Microscopy 

 

 

 

 

 

 

 

 

 

 Near-field high-energy diffraction microscopy discovers metal grain 
shapes and structures 

 The experimental results are greatly improved with the application of 
Swift-based cluster computing (RED indicates higher confidence in results)  
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October 2013: Without Swift 
April 2014: With Swift 



NF-HEDM 
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Task-based HPC 

 

 

 

 Existing C code (NFHEDM) assembled into scalable HPC program with 
Swift/T 

 Problem: Each task must consume ~500 MB of experimental data – each 
task does uncoordinated I/O 

 



Intended use of broadcast operation 

 Grain orientation optimization workflow runs on BG/Q once data is there 

 Each task needs to read all input from a given dataset 

 Desire to use MPI-IO before running tasks 



NF-HEDM application Swift code 

main { 

  parameterFile = argv("p"); 

  microstructureFile = argv("m"); 

  start = toint(argp(1)); 

  end   = toint(argp(2)); 

  foreach row in [start:end] { 

    FitOrientation(parameterFile, row,                     
                   microstructureFile); 

  } 

} 
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• FitOrientation() is linked to a C function 
• Each task reads the same data 
• Output is inserted into the microstructure  

file 
 

broadcast to /tmp files { 

  ~/dataset-1/*.cfg 

} 

 

broadcast to /tmp/bulk files { 

    ~/dataset-1/bulk/file1.index 

    ~/dataset-1/bulk/file2.index 

    ~/dataset-1/bulk/*.bin 

} 

 

• Executed by Swift at startup 

• Swift dataflow • Swift I/O hook specification 



Big Data Staging with MPI-IO 

 Solution: Broadcast experimental data on HPC system with MPI-IO 

 Tasks consume data normally from node-local storage  



Scalability result: End-to-end 

 

 21 GB/s 

101 GB/s 

8K cores 



Scalability result: Stage+Write 
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 134 GB/s 

8K cores 

• This plot breaks I/O hook into 1) stage+write and 2) read phases 
• Read phase is node-local: consistently 10.8  ±0.1 s 



Big Data Staging: Conclusions 

 Blue Gene/Q can be used for big data problems and a many-task 
programming model 

– Just broadcast the data to compute nodes first with MPI-IO 

 

 The Swift I/O hook enables efficient I/O in a many-task model 

– Reduces I/O time by factor of 4.7! 

 

 

 Connecting HPC to a real-time experiment saved an experiment by 
detecting a loose cable 

 

 Code is now being reused by about 5 different groups 

– Now must accommodate extra users on HPC resources!  

 

 



Summary 

 Swift: High-level scripting for outermost programming constructs 

 Described features for big data computing on clusters and 
supercomputers 

 

 Thanks to the organizers 

 Thanks to the Swift team 

 Thanks to application collaborators 

  

 Questions? 
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