
The Assembly and Management of

 Scalable Computational Experiments

Justin M Wozniak

wozniak@mcs.anl.gov

The Scientific Computing Campaign

 This talk will address most of these components

2

THINK about
what to run next

RUN a battery
of tasks

COLLECT
results

IMPROVE
methods and

codes

Software for the Computing Campaign

 Assembling the compute tasks

– Code coupling

– Task communication

 Running large numbers of tasks

– Expressing complex workflows

– Deploying large workloads

 Managing experimental data

– Performing I/O on big machines

– Data organization and provenance

 Improving experimental runs

– Debugging and performance analysis for workflows

– Plotting and visualization

3

Goal: Programmability for large scale analysis

 Our solution is “many-task” computing: higher-level applications
composed of many run-to-completion tasks: input→compute→output
Message passing is handled by our implementation details

 Programmability
• Large number of applications have this natural structure at upper levels: Parameter

studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming, UQ

• Coupling extreme-scale applications to preprocessing, analysis, and visualization

 Data-driven computing
• Dataflow-based execution models

• Data organization tools in the programming languages

 Challenges
• Load balancing, data movement, expressibility

Practical context: The Swift language

Swift was designed to handle many aspects of the computing campaign

 Ability to integrate many application components into a new workflow
application

 Data structures for complex data organization

 Portability- separate site-specific configuration from application logic

 Logging, provenance, and plotting features

5

THINK RUN

COLLECT IMPROVE

SWIFT/K OVERVIEW

6

Swift programming model:

all progress driven by concurrent dataflow

 F() and G() implemented in native code or external programs

 F() and G()run in concurrently in different processes

 r is computed when they are both done

 This parallelism is automatic

 Works recursively throughout the program’s call graph

7

(int r) myproc (int i, int j)

{

 int f = F(i);

 int g = G(j);

 r = f + g;

}

8

foreach p, i in proteins {

 foreach c, j in ligands {

 (structure[i,j], log[i,j]) =

 dock(p, c, minRad, maxRad);

 }

}

scatter_plot = analyze(structure)

More concurrency: Loops and arrays

O(100K)
drug

candidates

O(10)
proteins
implicated
in a disease

Tens of fruitful
candidates for
wetlab & APS

= 1M
docking

tasks

9

Submit host (login node, laptop, Linux server)

Swift
script

Clouds:	
Amazon	EC2,	

Google	Compute,		
Microso 	Azure	

Data

Campus	
systems:	

Midway,	Beagle	
Apps

Swift/K: Swift for clusters, clouds, and grids

• Wilde et al. Swift: A language for distributed parallel scripting.
Parallel Computing 37(9), 2011.

Execution infrastructure - Coasters

 Coasters: a high task rate execution provider
(Previously developed for the Swift system)

– Automatically deploys worker agents to resources with respect to user task
queues and available resources

09/13/2011
10

JETS

– Implements the Java CoG provider
interfaces for compatibility with Swift
and other software

– Currently runs on clusters, grids, and
HPC systems

– Can move data along with task
submission

– Contains a “block” abstraction to
manage allocations containing large
numbers of CPUs

– Originally only supported sequential
tasks

Large-scale many-task applications using Swift

 Simulation of metals
under stress

 Molecular dynamics:
NAMD

 Molecular dynamics:
LAMMPS

 X-ray scattering data
aggregation

 X-ray imaging analysis

 Multiscale subsurface
flow modeling

 Modeling of the power
grid

 Climate data extraction

 … and many more

T0623, 25 res., 8.2Å to 6.3Å
(excluding tail)

Protein loop modeling. Courtesy A. Adhikari

Native
 Predicted

Initial

E

D

C

A B

F

SWIFT/K: MPI TASKS

12

NAMD - Replica Exchange Method

 Original JETS use case- sizeable batch of short parallel jobs with data
exchange

 Method extracts information about a complex molecular system through
an ensemble of concurrent, parallel simulation tasks

09/13/2011
13

JETS

 Application parameters (approx.):

• 64 concurrent jobs
x 256 cores per job =
16,384 cores

• 10-100 time steps per job =
10-60 seconds wall time

• Requires 6.4 MPI executions/sec. →
1,638 processes/sec. over
a 12-hour period =
70 million process starts

Execution infrastructure - JETS

 Stand-alone JETS: a high task rate parallel-task launcher

– User deploys worker agents via customizable, provided submit scripts

09/13/2011
14

JETS

– Currently runs on clusters, grids, and
HPC systems

– Great over SSH

– Ran on the BG/P through
ZeptoOS sockets- great for
debugging, performance studies,
ensembles

– Faster than Coasters but provides
fewer features

– Input must be a flat list of
command lines

– Limited data access features

JETS - Task rates and utilization

 Calibration: Sequential
performance on synthetic jobs:

09/13/2011

JETS

15

 Utilization for REM-like case:
not quite 90%

NAMD REM in Swift

 Constructed SwiftScript to
implement REM in NAMD

– Whole script ~ 100 lines

– Intended to substitute for
multi-thousand line Python
script (that was incompatible
with the BG/P)

 Script core structures shown
to the right

 Represents REM data flow
from previous slide as Swift
data items, statements, and
loops

09/13/2011

JETS

16

app (positions p_out, velocities v_out,

 energies e_out)

namd(positions p_in, velocities v_in)

{

 namd @p_out @v_out @p_in @v_in stdout=@e_out;

}

positions p[]<array_mapper;files=p_strings>;

velocities v[]<array_mapper;files=v_strings>;

energies e[]<array_mapper;files=e_strings>;

// Initialize first segment in each replica

foreach i in [0:replicas-1] {

 int index = i*exchanges;

 p[i] = initial_positions();

 v[i] = initial_velocities();

}

// Launch data-dependent NAMDs…

iterate j {

 foreach i in [0:replicas-1] {

 int current = i*exchanges + j+1;

 int previous = i*exchanges + j;

 (p[current], v[current], e[current]) =

 namd(p[previous], v[previous]);

 }

} until (j == exchanges);

NAMD/JETS load levels

 Allocation size: 512 nodes

09/13/2011

JETS

17

 Allocation size: 1024 nodes

 Load dips occur during
exchange & restart

• Wozniak et al. JETS: Language and system support for many-parallel-task workflows.
J. Grid Computing 11(3), 2013.

JETS - Misc. results

 Effective for short MPI jobs on
clusters

 Single-second duration jobs on
Breadboard cluster

09/13/2011

JETS

18

 JETS can survive the loss of worker
agents (BG/P)

SWIFT/T OVERVIEW

19

Swift/T: Swift for high-performance computing

20

Had this:
(Swift/K)

For extreme scale, we need this:
(Swift/T)

 Write site-independent scripts

 Automatic parallelization and data movement

 Run native code, script fragments as applications

 Rapidly subdivide large partitions for
MPI jobs

 Move work to data locations

21

www.ci.uchicago.edu/swift www.mcs.anl.gov/exm

Swift
control
process

Swift
control
process

Swift/T
control
process

Swift worker
process

C
C

++

Fortr
an

C
C

++

Fortr
an

C C++ Fortran

MPI

Swift/T worker

64K cores of Blue Waters
2 billion Python tasks
14 million Pythons/s

Swift/T: Enabling high-performance workflows

Characteristics of very large Swift programs

22

 The goal is to support billion-way
concurrency: O(109)

 Swift script logic will control trillions
of variables and data dependent
tasks

 Need to distribute Swift logic
processing over the HPC compute
system

int X = 100, Y = 100;

int A[][];

int B[];

foreach x in [0:X-1] {

 foreach y in [0:Y-1] {

 if (check(x, y)) {

 A[x][y] = g(f(x), f(y));

 } else {

 A[x][y] = 0;

 }

 }

 B[x] = sum(A[x]);

}

Basic scalability

23

• 1.5 billion tasks/s on 512K cores of Blue Waters, so far

Swift/T: Fully parallel evaluation

of complex scripts

24

int X = 100, Y = 100;

int A[][];

int B[];

foreach x in [0:X-1] {

 foreach y in [0:Y-1] {

 if (check(x, y)) {

 A[x][y] = g(f(x), f(y));

 } else {

 A[x][y] = 0;

 }

 }

 B[x] = sum(A[x]);

}

Support calls to native libraries

25

 Including MPI libraries

A[3] = g(A[2]);

Example execution

 Code

 Engines: evaluate dataflow operations

 Workers: execute tasks

26

A[2] = f(getenv(“N”));

• Perform getenv()

• Submit f

• Process f

• Store A[2]

• Subscribe to A[2]

• Submit g

• Process g

• Store A[3]

Task put Task put
Notification

• Wozniak et al. Turbine: A distributed-memory dataflow engine for high
performance many-task applications. Fundamenta Informaticae 128(3), 2013

Support calls to embedded interpreters

27

We have plugins
for Python, R, Tcl,
Julia, and QtScript

• Wozniak et al. Toward computational experiment management
via multi-language applications. Proc. ASCR SWP4XS, 2014.

STC: The Swift-Turbine Compiler

 STC translates high-level Swift
expressions into low-level
Turbine operations:

28

– Create/Store/Retrieve typed data

– Manage arrays

– Manage data-dependent tasks

• Wozniak et al. Large-scale application composition via distributed-memory
data flow processing. Proc. CCGrid 2013.

• Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.

Logging and debugging in Swift

 Traditionally, Swift programs are debugged through the log or the TUI
(text user interface)

 Logs were produced using normal methods, containing:

– Variable names and values as set with respect to thread

– Calls to Swift functions

– Calls to application code

 A restart log could be produced to restart a large Swift run after certain
fault conditions

 Methods require single Swift site: do not scale to larger runs

29

Logging in MPI

 The Message Passing Environment (MPE)

 Common approach to logging MPI programs

 Can log MPI calls or application events – can store arbitrary data

 Can visualize log with Jumpshot

 Partial logs are stored at the site of
each process

– Written as necessary to shared
file system

• in large blocks

• in parallel

– Results are merged into a big log file
(CLOG, SLOG)

 Work has been done optimize the
file format for various queries

 30

Logging in Swift & MPI

 Now, combine it together

 Allows user to track down erroneous Swift program logic

 Use MPE to log data, task operations, calls to native code

 Use MPE metadata to annotate events for later queries

 MPE cannot be used to debug native MPI programs that abort

– On program abort, the MPE log is not flushed from the process-local cache

– Cannot reconstruct final fatal events

 MPE can be used to debug Swift application programs that abort

– We finalize MPE before aborting Swift

– (Does not help much when developing Swift itself)

– But primary use case is non-fatal arithmetic/logic errors

31

Visualization of Swift/T execution

 User writes and runs Swift script

 Notices that native application code is called with nonsensical inputs

 Turns on MPE logging – visualizes with MPE

– PIPS task computation Store variable Notification (via control task)
Blue: Get next task Retrieve variable
Server process (handling of control task is highlighted in yellow)

 Color cluster is task transition:

 Simpler than visualizing messaging pattern (which is not the user’s code!)

 Represents Von Neumann computing model – load, compute, store 32

Time
Jumpshot view of PIPS application run

P
ro

ce
ss

 r
an

k

Debugging Swift/T execution

 Starting from GUI, user can identify erroneous task

– Uses time and rank coordinates from task metadata

 Can identify variables used as task inputs

 Can trace provenance of those variables back in reverse dataflow

33

erroneous task

Aha! Found script defect. ← ← ← (searching backwards)

• Wozniak et al. A model for tracing and debugging large-scale task-
parallel programs with MPE. Proc. LASH-C at PPoPP, 2013.

Other Swift/T features

 Task locality: Ability to send a task to a process

– Allows for big data –type applications

– Allows for stateful objects to remain resident in the workflow

– location L = find_data(D);

int y = @location=L f(D, x);

 Task priorities: Ability to set task priority

– Useful for tweaking load balancing

 Updateable variables

– Allow data to be modified after its initial write

– Consumer tasks may receive original or updated values when they emerge
from the work queue

34

• Wozniak et al. Language features for scalable distributed-memory
dataflow computing. Proc. Dataflow Execution Models at PACT, 2014.

SWIFT/T: MPI TASKS

35

Dataflow+data-parallel analysis/visualization

36

Analysis Library

OSUFlow

DIY

Parallel Runtime

MPI

Data
source

Dataflow-structured analysis framework
based on OSUFlow/DIY

Data
source

Parameter optimization for data-parallel analysis:

Block factor

37

Can map blocks to processes in varying ways

Parameter optimization for data-parallel analysis:

Process configurations

38

• Try all configurations to find best performance
• Goal: Rapidly develop and execute sweep of MPI executions

Refresher: MPI_Comm_create_group()

 In MPI 2, creating a subcommunicator was collective over the parent
communicator

– Required global coordination

– Scalability concern

– (Could use intercommunicator merges- somewhat slow)

 In MPI 3, the new MPI_Comm_create_group() allows the
implementation to assemble the new communicator quickly from a group
– only group members must participate

– In ADLB, servers just pass rank list for new group to workers

 Motivating investigation by Dinan et al. identified fault tolerance and
dynamic load balancing as key use cases – both relevant to Swift
(Dinan et al., EuroMPI 2011.)

39

 Swift expression: z = @par=8 f(x,y);

 When x, y are stored, Turbine releases task f with parallelism=8

 Performs ADLB_Put(f, parallelism=8)

 Each worker performs ADLB_Get(&task, &comm)

 ADLB server finds 8 available workers

 Workers receive ranks from server

– Perform MPI_Comm_create_group()

 ADLB_Get() returns:
task=f, size(comm)=8

 Workers perform user task

– communicate on comm

 comm is released by Turbine

Parallel tasks in Swift/T

40

• Wozniak et al. Dataflow coordination of data-parallel tasks via MPI 3.0.
Proc EuroMPI, 2013.

OSUFlow application

// Define call to OSUFlow feature MpiDraw

@par (float t) mpidraw(int bf) "mpidraw";

main {

 foreach b in [0:7] {

 // Block factor: 1-128

 bf = round(2**b);

 foreach n in [4:9] {

 // Number of processes/task: 16-512

 np = round(2**n);

 t = @par=np mpidraw(bf);

 printf("RESULT: bf=%i np=%i -> time=%0.3f",

 bf, np, t);

 }}}

41

 Times from 222s (blue) to 948 (red)

 Best results (fastest times) at np=256,
high block parameter

42

SWIFT/T APPLICATIONS

43

ExMatEx: Co-design for materials research

 CoHMM: Heterogeneous Multiscale Method

 CoMD: Molecular Dynamics

 Coarse-grain strain evolution using basic conservation laws

 Fine-grain molecular dynamics as necessary for physical coefficients

44

From http://www.exmatex.org

CoHMM/Swift

45

CoHMM

• 1000’s lines of sequential C
• Simplified MD simulator
• Typically called as standalone

program
• We exposed CoMD as a Swift

function – no exec()

• 300 lines of sequential C
• Coordinates multiple sequential

calls to CoMD
• We rewrote this in Swift

CoMD CoMD CoMD

• Concurrency gained primarily
by calls to CoMD

CoMD: Library access from Swift

 CoMD binding: (example-1)

string s = "-f data/8k.inp.gz";

int N = 3;

foreach i in [0:N-1] {

 float virial_stress = COMDSWIFT_runSim(s);

 printf("Swift: virial_stress: %e",

 virial_stress);

 }

46

CoMD: Library access from CoHMM

47

Swift
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"

#ifdef ZERO_TEMP_COMD

 string command = ZERO_TEMP_COMD;

 stressXX = COMDSWIFT_runSim(command);

#else

 // Just the derivative of the zero temp energy wrt A

 stressXX = rho0*c*c*(A-1);

#endif

C
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"
#ifdef ZERO_TEMP_COMD

// open pipe to CoMD

FILE *fPipe = popen(ZERO_TEMP_COMD,"r");

if (fPipe == NULL) {

 …

CoHMM: Translation from C to Swift: main()

48

C
int main(int argc, char **argv) {

 initializedConservedFields();

 for (i = 0; i < 100; i++) {

 for (j = 0; j < 1; j++)

 fullStep();

Swift
main {

 (A[0], p[0], e[0]) = initializedConservedFields();

 for (int t = 0; t < 5; t = t+1) {

 (A[t+1], p[t+1], e[t+1]) =

 fullStep(A[t], p[t], e[t]);

CoHMM: Translation from C to Swift: call CoMD

49

C
void fluxes(double *A, double *p, double *e,

 double *f_A, double *f_p, double *f_e) {

 for (int i = 0; i < L; i++) {

 double stress = stressFn(A[i], e[i]);

 double v = p[i] / rho0;

 f_A[i] = -v;

 f_p[i] = -stress;

 f_e[i] = -stress*v;

Swift
(float f_A[], float f_p[], float f_e[])

fluxes(float A[], float p[], float e[]) {

 foreach i in [0:L-1] {

 float stress = stressFn(A[i], e[i]);

 float v = p[i] / rho0;

 f_A[i] = -v;

 f_p[i] = -stress;

 f_e[i] = -stress*v;

Can we build a Makefile in Swift?

 User wants to test a variety of compiler optimizations

 Compile set of codes under wide range of possible configurations

 Run each compiled code to obtain performance numbers

 Run this at large scale on a supercomputer (Cray XE6)

 In Make you say:
CFLAGS = ...

f.o : f.c

 gcc $(CFLAGS) f.c -o f.o

In Swift you say:

string cflags[] = ...;

f_o = gcc(f_c, cflags);

50

CHEW example code

Apps
app (object_file o) gcc(c_file c, string cflags[]) {

// Example:

// gcc -c -O2 -o f.o f.c

 "gcc" "-c" cflags "-o" o c;

}

app (x_file x) ld(object_file o[], string ldflags[]) {

// Example:

// gcc -o f.x f1.o f2.o ...

 "gcc" ldflags "-o" x o;

}

app (output_file o) run(x_file x) {

 "sh" "-c" x @stdout=o;

}

app (timing_file t) extract(output_file o) {

 "tail" "-1" o "|" "cut" "-f" "2" "-d" " " @stdout=t;

}

Swift code
 string program_name = "programs/program1.c";

 c_file c = input(program_name);

 // For each

 foreach O_level in [0:3] {

 make file names…

 // Construct compiler flags

 string O_flag = sprintf("-O%i", O_level);

 string cflags[] = ["-fPIC", O_flag];

 object_file o<my_object> = gcc(c, cflags);

 object_file objects[] = [o];

 string ldflags[] = [];

 // Link the program

 x_file x<my_executable> = ld(objects, ldflags);

 // Run the program

 output_file out<my_output> = run(x);

 // Extract the run time from the program output

 timing_file t<my_time> = extract(out);

51

Swift Use of GPUs

Approach:

1) Deploy kernel to manage GPU warps
2) Manage memory
3) Integrate with workflow system (Swift/T)

GeMTC: GPU-enabled Many-Task Computing

• Krieder et al. Evaluation of Many-Task Computing on Accelerators for
High-End Systems. Proc. HPDC 2014.

DISCOVERY ENGINES LDRD:

WORKFLOWS

53

54

Advanced Photon Source (APS)

Advanced Photon Source (APS)

 Moves electrons at electrons at >99.999999% of the speed of light.

 Magnets bend electron trajectories, producing x-rays, highly focused onto
a small area

 X-rays strike targets in 35 different laboratories – each a lead-lined,
radiation-proof experiment station

55

Data management for the energy sciences

 “Despite the central role of digital data in Dept. of Energy (DOE) research,
the methods used to manage these data and to support the information
and collaboration processes that underpin DOE research are often
surprisingly primitive…”
 - DOE Workshop Report on Scientific Collaborations (2011)

 Our goals:

– Modify the operating systems of APS stations to allow real-time streaming to
a novel data storage/analysis platform.

– Converting data from the standard detector formats (usually TIFF) to HDF5
and adding metadata and provenance, based on the NeXus data format.

– Rewrite analysis operations to work in a massively parallel environment.

– Scale up simulation codes that complement analysis.

56

Data ingest/analysis/archive

57

The October run produced 104
directories containing 5M files

totaling about
27 TB.

PADS: Petascale Active Data Store

 23 higher-end nodes for data-intensive computing,
repurposed for this work (installed in 2009)
 Each node has 12-way RAID for very

fast local disk operations

 Previously, difficult to use as “Active Data Store”
 Difficult to access specific nodes through PBS scheduler

 No catalog (where is my data?)

 No way to organize/access Data Store!

 Solution: Swift/T
 Organizes distributed data using Swift data structures and mappers

 Leaves data on nodes for later access

 Allows for targeted tasks (can send work to node with data chunk)

 Integrates with Globus Catalog for metadata, provenance, archive...

 Combining unscheduled resource access with high performance data rates will allow for
real-time beamline data analysis, accelerating progress for materials science efforts

58

Interactive analysis powered by scalable storage

 Replace GUI analysis internals with operations on remote data

59

Remote matrix arithmetic: Initial results

 Initial run shows performance
issue: addition took too long

 Swift profiling isolated issue:
convert addition routine from
script to C function: obtained
10,000 X speedup

 Swift/T integrates with
MPE/Jumpshot and other
MPI-based performance analysis
techniques

60

Crystal Coordinate Transformation Workflow

61

MapReduce-like pattern expressed elegantly in Swift

CCTW: Swift/T application (C++)

bag<blob> M[];

foreach i in [1:n] {

blob b1= cctw_input(“pznpt.nxs”);

blob b2[];

int outputId[];

(outputId, b2) = cctw_transform(i, b1);
foreach b, j in b2 {

 int slot = outputId[j];

 M[slot] += b;

}}

foreach g in M {

 blob b = cctw_merge(g);
 cctw_write(b);

}}

62

Diffuse scattering and crystal analysis

 DISCUS is a general program to generate disordered atomic structures and
compute the corresponding experimental data such as single crystal
diffuse scattering (http://discus.sourceforge.net)

 Given experimental data, can we fit a modeled crystal to the
measurement?

 Experimental image:
(Billinge, 2006)

63

DIFFEV: Scaling crystal diffraction simulation

 Determines crystal configuration that produced given scattering image
through simulation and evolutionary algorithm

 Swift/T calls DISCUS via Python interfaces

64

Potential concurrency:
100,000 cores

Application by
Reinhard Neder

DIFFEV: Genetic algorithm via dataflow

65

Novel application
composed from

existing libraries by
domain expert!

R. Harder workflow: Genetic algorithm

individuals = toint(argv("individuals"));

ngenerations = toint(argv("ngenerations"));

file winners[];

winners[0] = input(“null.winner");

for (int generation = 1; generation < ngenerations;

 generation = generation+1) {

 file population[];

 foreach box_index in [0:individuals-1] {

 file d<sprintf("d-%i-%i.out",generation,box_index)>;

 file s<sprintf("d-%i-%i.score",generation,box_index)>;

 (d,s) = box(box_index, generation, winners[generation-1]);

 population[box_index] = d;

 }

 file winner_file<sprintf("d-%i.winner", generation)> =

 select(generation, population);

 winners[generation] = winner_file;

 }}

66

High-Energy Diffraction Microscopy

 Near-field high-energy diffraction microscopy discovers metal grain
shapes and structures

 The experimental results are greatly improved with the application of
Swift-based cluster computing (RED indicates higher confidence in results)

67

October 2013: Without Swift
April 2014: With Swift

NF-HEDM: Cross-lab workflow

68

FUTURE WORK

69

Extreme scale application ensembles

 Develop Swift for exascale experiment ensembles

– Deploy stateful, varying sized jobs

– Outermost, experiment-level coordination via dataflow

– Plug in experiments and human-in-the-loop models (dataflow filters)

70

Big job 1: Type A Big job 2: Type A Big job 3: Type B

Small job 1:
Type A

Small job 2:
Type A

Small job 3:
Type B

Small job 4:
Type B

Small job 4:
Type C

Small job 5:
Type D

APS

Future Work

 Develop Swift for exascale

– Continue scaling work: Study distributed dataflow for realistic patterns

– Ease integration with native code

 Application collaborations

– Materials science: APS (Osborn, Sharma)

– Molecular dynamics: NAMD (Phillips), LAMMPS (Whitmer)

 Connect with novel systems elsewhere in MCS, ALCF:

– Memcached (Isaila et al.)

– Tess (Peterka et al.)

– Filesystems (Ross et al.)

 Connect with new applications at the CI and elsewhere!

71

Summary

 Swift: High-level scripting for outermost programming constructs

– Handles many aspects of the scientific computing experience

– Described how dataflow logic is distributed

– New features for parallel tasks

 Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim Armstrong,
David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder, Ioan Raicu, Dan
Katz, Ian Foster

 Thanks to project collaborators: Tom Peterka, Jim Dinan, Ray Osborn,
Reinhard Neder, Guy Jennings, Hemant Sharma, Rachana
Ananthakrishnan, Ben Blaiszik, Kyle Chard, Tim Germann, and others

 Questions?

72

THINK RUN

COLLECT IMPROVE

