The Assembly and Management of Scalable Computational Experiments

Justin M Wozniak
wozniak@mcs.anl.gov
The Scientific Computing Campaign

- THINK about what to run next
- RUN a battery of tasks
- IMPROVE methods and codes
- COLLECT results

- This talk will address most of these components
Software for the Computing Campaign

- Assembling the compute tasks
 - Code coupling
 - Task communication
- Running large numbers of tasks
 - Expressing complex workflows
 - Deploying large workloads
- Managing experimental data
 - Performing I/O on big machines
 - Data organization and provenance
- Improving experimental runs
 - Debugging and performance analysis for workflows
 - Plotting and visualization
Goal: Programmability for large scale analysis

- Our solution is “many-task” computing: higher-level applications composed of many run-to-completion tasks: `input → compute → output`
 Message passing is handled by our implementation details

- Programmability
 - Large number of applications have this natural structure at upper levels: Parameter studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming, UQ
 - Coupling extreme-scale applications to preprocessing, analysis, and visualization

- Data-driven computing
 - Dataflow-based execution models
 - Data organization tools in the programming languages

- Challenges
 - Load balancing, data movement, expressibility
Practical context: The Swift language

Swift was designed to handle many aspects of the computing campaign

- Ability to integrate many application components into a new workflow application
- Data structures for complex data organization
- Portability - separate site-specific configuration from application logic
- Logging, provenance, and plotting features
Swift programming model: all progress driven by concurrent dataflow

```swift
(int r) myproc (int i, int j) {
    int f = F(i);
    int g = G(j);
    r = f + g;
}
```

- F() and G() implemented in native code or external programs
- F() and G() run in concurrently in different processes
- r is computed when they are both done

- This parallelism is *automatic*
- Works recursively throughout the program’s call graph
More concurrency: Loops and arrays

foreach p, i in proteins {
 foreach c, j in ligands {
 (structure[i,j], log[i,j]) =
 dock(p, c, minRad, maxRad);
 }
}
scatter_plot = analyze(structure)

$O(10)$ proteins implicated in a disease

$O(100K)$ drug candidates

$O(10)$

Tens of fruitful candidates for wetlab & APS

= 1M docking tasks
Swift/K: Swift for clusters, clouds, and grids

Execution infrastructure - Coasters

- Coasters: a high task rate execution provider
 (Previously developed for the Swift system)

 - Automatically deploys worker agents to resources with respect to user task queues and available resources
 - Implements the Java CoG provider interfaces for compatibility with Swift and other software
 - Currently runs on clusters, grids, and HPC systems
 - Can move data along with task submission
 - Contains a “block” abstraction to manage allocations containing large numbers of CPUs
 - **Originally only supported sequential tasks**

![Diagram showing the execution process with Coasters](image-url)
Large-scale many-task applications using Swift

- Simulation of metals under stress
- Molecular dynamics: NAMD
- Molecular dynamics: LAMMPS
- X-ray scattering data aggregation
- X-ray imaging analysis
- Multiscale subsurface flow modeling
- Modeling of the power grid
- Climate data extraction
- ... and many more
SWIFT/K: MPI TASKS
NAMD - Replica Exchange Method

- Original JETS use case - sizeable batch of short parallel jobs with data exchange

- Method extracts information about a complex molecular system through an *ensemble* of concurrent, parallel simulation tasks

Application parameters (approx.):

- 64 concurrent jobs x 256 cores per job = 16,384 cores
- 10-100 time steps per job = 10-60 seconds wall time
- Requires 6.4 MPI executions/sec. → 1,638 processes/sec. over a 12-hour period = 70 million process starts
Execution infrastructure - JETS

- Stand-alone JETS: a high task rate parallel-task launcher
 - User deploys worker agents via customizable, provided submit scripts
 - Currently runs on clusters, grids, and HPC systems
 - Great over SSH
 - Ran on the BG/P through ZeptoOS sockets- great for debugging, performance studies, ensembles
 - Faster than Coasters but provides fewer features
 - Input must be a flat list of command lines
 - Limited data access features
JETS - Task rates and utilization

- Calibration: Sequential performance on synthetic jobs:

- Utilization for REM-like case: not quite 90%
NAMD REM in Swift

- Constructed SwiftScript to implement REM in NAMD
 - Whole script ~ 100 lines
 - Intended to substitute for multi-thousand line Python script (that was incompatible with the BG/P)
- Script core structures shown to the right
- Represents REM data flow from previous slide as Swift data items, statements, and loops

```swift
app (positions p_out, velocities v_out, energies e_out)
namd(positions p_in, velocities v_in)
{
    namd @p_out @v_out @p_in @v_in stdout=@e_out;
}

positions p[]<array_mapper;files=p_strings>;
velocities v[]<array_mapper;files=v_strings>;
energies e[]<array_mapper;files=e_strings>;

// Initialize first segment in each replica
foreach i in [0:replicas-1] {
    int index = i*exchanges;
    p[i] = initial_positions();
    v[i] = initial_velocities();
}

// Launch data-dependent NAMDs...
iterate j {
    foreach i in [0:replicas-1] {
        int current = i*exchanges + j+1;
        int previous = i*exchanges + j;
        (p[current], v[current], e[current]) = 
            namd(p[previous], v[previous]);
    }
} until (j == exchanges);
```
NAMD/JETS load levels

- Allocation size: 512 nodes

- Allocation size: 1024 nodes

- Load dips occur during exchange & restart

JETS - Misc. results

- Effective for short MPI jobs on clusters
- Single-second duration jobs on Breadboard cluster
- JETS can survive the loss of worker agents (BG/P)
SWIFT/T OVERVIEW
Swift/T: Swift for high-performance computing

Had this: (Swift/K)

Data flow program

Data flow engine

500 tasks/s

Task ... Task

For extreme scale, we need this: (Swift/T)

Data flow program

Engine

Control tasks

Task ... Task

500,000 tasks/s

Centralized evaluation

Distributed evaluation
Swift/T: Enabling high-performance workflows

- Write site-independent scripts
- Automatic parallelization and data movement
- Run native code, script fragments as applications
- Rapidly subdivide large partitions for MPI jobs
- Move work to data locations

64K cores of Blue Waters
2 billion Python tasks
14 million Pythons/s

Swift/T worker

Swift/T control process

C C++ Fortran

MPI

Python R Julia Telik
Characteristics of very large Swift programs

- The goal is to support billion-way concurrency: \(O(10^9)\)
- Swift script logic will control trillions of variables and data dependent tasks
- Need to distribute Swift logic processing over the HPC compute system

```swift
int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
    foreach y in [0:Y-1] {
        if (check(x, y)) {
            A[x][y] = g(f(x), f(y));
        } else {
            A[x][y] = 0;
        }
    }
    B[x] = sum(A[x]);
}
```
Basic scalability

- 1.5 billion tasks/s on 512K cores of Blue Waters, so far
Swift/T: Fully parallel evaluation of complex scripts

```swift
int X = 100, Y = 100;
int A[][], B[];
foreach x in [0:X-1] {
    foreach y in [0:Y-1] {
        if (check(x, y)) {
            A[x][y] = g(f(x), f(y));
        } else {
            A[x][y] = 0;
        }
    }
    B[x] = sum(A[x]);
}
```
Support calls to native libraries

- Including MPI libraries

Top-level dataflow script
sweep.swift

- user1.c
- user2.f
- user3.cpp

wrapper
wrapper
wrapper

Swift/T runtime
Task distribution / Data store

MPI
Example execution

- Code

 \[
 A[2] = f(\text{getenv}(\text{"N"}));
 \]
 \[
 \]

- Engines: evaluate dataflow operations

 - Perform `getenv()`
 - Submit `f`

 - Subscribe to `A[2]`
 - Submit `g`

- Workers: execute tasks

 - Process `f`
 - Store `A[2]`

 - Process `g`
 - Store `A[3]`

Support calls to embedded interpreters

We have plugins for Python, R, Tcl, Julia, and QtScript

STC: The Swift-Turbine Compiler

- STC translates high-level Swift expressions into low-level Turbine operations:
 - Create/Store/Retrieve typed data
 - Manage arrays
 - Manage data-dependent tasks

Logging and debugging in Swift

- Traditionally, Swift programs are debugged through the log or the TUI (text user interface)

- Logs were produced using normal methods, containing:
 - Variable names and values as set with respect to thread
 - Calls to Swift functions
 - Calls to application code

- A restart log could be produced to restart a large Swift run after certain fault conditions

- Methods require single Swift site: do not scale to larger runs
Logging in MPI

- The Message Passing Environment (MPE)
- Common approach to logging MPI programs
- Can log MPI calls or application events – can store arbitrary data
- Can visualize log with Jumpshot

- Partial logs are stored at the site of each process
 - Written as necessary to shared file system
 - in large blocks
 - in parallel
 - Results are merged into a big log file (CLOG, SLOG)

- Work has been done optimize the file format for various queries
Logging in Swift & MPI

- Now, combine it together
- Allows user to track down erroneous Swift program logic

- Use MPE to log data, task operations, calls to native code
- Use MPE metadata to annotate events for later queries

- **MPE cannot** be used to debug native MPI programs that abort
 - On program abort, the MPE log is not flushed from the process-local cache
 - Cannot reconstruct final fatal events

- **MPE can** be used to debug Swift application programs that abort
 - We finalize MPE before aborting Swift
 - (Does not help much when developing Swift itself)
 - But primary use case is non-fatal arithmetic/logic errors
Visualization of Swift/T execution

- User writes and runs Swift script
- Notices that native application code is called with nonsensical inputs
- Turns on MPE logging – visualizes with MPE

![Jumpshot view of PIPS application run](image)

- **PIPS task computation** Store variable Notification (via control task)
- Blue: Get next task Retrieve variable
- Server process (handling of control task is highlighted in yellow)

- Color cluster is task transition:
- Simpler than visualizing messaging pattern (which is not the user’s code!)
- Represents Von Neumann computing model – load, compute, store
Debugging Swift/T execution

- Starting from GUI, user can identify erroneous task
 - Uses time and rank coordinates from task metadata
- Can identify variables used as task inputs
- Can trace provenance of those variables back in reverse dataflow

Aha! Found script defect.

← ← ← (searching backwards)

Other Swift/T features

- Task locality: Ability to send a task to a process
 - Allows for big data -type applications
 - Allows for stateful objects to remain resident in the workflow
 - location \(L = \text{find_data}(D) \);
 - \(\text{int } y = @\text{location}=L \ f(D, x); \)

- Task priorities: Ability to set task priority
 - Useful for tweaking load balancing

- Updateable variables
 - Allow data to be modified after its initial write
 - Consumer tasks may receive original or updated values when they emerge from the work queue

SWIFT/T: MPI TASKS
Dataflow+data-parallel analysis/visualization

Dataflow-structured analysis framework based on OSUFlow/DIY
Parameter optimization for data-parallel analysis: Block factor

Can map blocks to processes in varying ways

8 processes
1 block per process

4 processes
2 blocks per process

1 process
8 blocks per process
Parameter optimization for data-parallel analysis:
Process configurations

- Try all configurations to find best performance
- Goal: Rapidly develop and execute sweep of MPI executions
Refresher: MPI_Comm_create_group()

- In MPI 2, creating a subcommunicator was collective over the parent communicator
 - Required global coordination
 - Scalability concern
 - (Could use intercommunicator merges- somewhat slow)

- In MPI 3, the new MPI_Comm_create_group() allows the implementation to assemble the new communicator quickly from a group
 - only group members must participate
 - In ADLB, servers just pass rank list for new group to workers

- Motivating investigation by Dinan et al. identified fault tolerance and dynamic load balancing as key use cases – both relevant to Swift (Dinan et al., EuroMPI 2011.)
Parallel tasks in Swift/T

- Swift expression: \(z = \@\text{par}=8 \; f(x, y); \)
- When \(x, y \) are stored, Turbine releases task \(f \) with \(\text{parallelism}=8 \)
- Performs \texttt{ADLB_Put}(f, \text{parallelism}=8)
- Each worker performs \texttt{ADLB_Get}(&task, &comm)
- ADLB server finds 8 available workers
- Workers receive ranks from server
 - Perform \texttt{MPI_Comm_create_group}
- \texttt{ADLB_Get()} returns:
 \(\text{task}=f, \; \text{size}(\text{comm})=8 \)
- Workers perform user task
 - communicate on \texttt{comm}
- \texttt{comm} is released by Turbine

OSUFlow application

// Define call to OSUFlow feature MpiDraw
@par (float t) mpidraw(int bf) "mpidraw";

main {
 foreach b in [0:7] {
 // Block factor: 1-128
 bf = round(2**b);
 foreach n in [4:9] {
 // Number of processes/task: 16-512
 np = round(2**n);
 t = @par=np mpidraw(bf);
 printf("RESULT: bf=%i np=%i -> time=%0.3f",
 bf, np, t);
 }
 }
}
- Times from 222s (blue) to 948 (red)
- Best results (fastest times) at np=256, high block parameter
SWIFT/T APPLICATIONS
ExMatEx: Co-design for materials research

- CoHMM: Heterogeneous Multiscale Method
- CoMD: Molecular Dynamics
- Coarse-grain strain evolution using basic conservation laws
- Fine-grain molecular dynamics as necessary for physical coefficients

From http://www.exmatex.org
CoHMM/Swift

- 300 lines of sequential C
- Coordinates multiple sequential calls to CoMD
- We rewrote this in Swift

- 1000’s lines of sequential C
- Simplified MD simulator
- Typically called as standalone program
- We exposed CoMD as a Swift function – no exec()
CoMD: Library access from Swift

- **CoMD binding: (example-1)**

```swift
string s = "-f data/8k.inp.gz";
int N = 3;
foreach i in [0:N-1] {
    float virial_stress = COMDSWIFT_runSim(s);
    printf("Swift: virial_stress: %e",
            virial_stress);
}
```
CoMD: Library access from CoHMM

C
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"
#ifdef ZERO_TEMP_COMD
// open pipe to CoMD
FILE *fPipe = fopen(ZERO_TEMP_COMD,"r");
if (fPipe == NULL) {
...
#endif

Swift
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6"
#ifdef ZERO_TEMP_COMD
 string command = ZERO_TEMP_COMD;
 stressXX = COMDSWIFT_runSim(command);
#else
 // Just the derivative of the zero temp energy wrt A
 stressXX = rho0*c*c*(A-1);
#endif
CoHMM: Translation from C to Swift: main()

C

```c
int main(int argc, char **argv) {
    initializedConservedFields();
    for (i = 0; i < 100; i++) {
        for (j = 0; j < 1; j++)
            fullStep();
```

Swift

```swift
main {
    (A[0], p[0], e[0]) = initializedConservedFields();
    for (int t = 0; t < 5; t = t+1) {
        (A[t+1], p[t+1], e[t+1]) =
            fullStep(A[t], p[t], e[t]);
```
CoHMM: Translation from C to Swift: call CoMD

C

```c
void fluxes(double *A, double *p, double *e,
            double *f_A, double *f_p, double *f_e) {
    for (int i = 0; i < L; i++) {
        double stress = stressFn(A[i], e[i]);
        double v = p[i] / rho0;
        f_A[i] = -v;
        f_p[i] = -stress;
        f_e[i] = -stress*v;
    }
}
```

Swift

```swift
(fLOAT f_A[], FLOAT f_p[], FLOAT f_e[])
fluxes(fLOAT A[], FLOAT p[], FLOAT e[]) {
    foreach i in [0:L-1] {
        float stress = stressFn(A[i], e[i]);
        float v = p[i] / rho0;
        f_A[i] = -v;
        f_p[i] = -stress;
        f_e[i] = -stress*v;
    }
}
```
Can we build a Makefile in Swift?

- User wants to test a variety of compiler optimizations
- Compile set of codes under wide range of possible configurations
- Run each compiled code to obtain performance numbers
- Run this at large scale on a supercomputer (Cray XE6)

In Make you say:

```
CFLAGS = ...

f.o : f.c
    gcc $(CFLAGS) f.c -o f.o
```

In Swift you say:

```
string cflags[] = ...;
f_o = gcc(f_c, cflags);
```
CHEW example code

Swift code

```swift
string program_name = "programs/program1.c";
c_file c = input(program_name);

// For each
foreach O_level in [0:3] {
    make file names...
    string O_flag = sprintf("-O%i", O_level);
    string cflags[] = [ "-fPIC", O_flag ];

    object_file o<my_object> = gcc(c, cflags);
    object_file objects[] = [ o ];
    string ldflags[] = [];
    // Link the program
    x_file x<my_executable> = ld(objects, ldflags);
    // Run the program
    output_file out<my_output> = run(x);
    // Extract the run time from the program output
    timing_file t<my_time> = extract(out);
}
```

Apps

```c
app (object_file o) gcc(c_file c, string cflags[]) {
    // Example:
    // gcc -c -O2 -o f.o f.c
    "gcc" "-c" cflags "-o" o  c;
}

app (x_file x) ld(object_file o[], string ldflags[]) {
    // Example:
    // gcc -o f.x f1.o f2.o ...
    "gcc" ldflags "-o" x  o;
}

app (output_file o) run(x_file x) {
    "sh" "-c" x @stdout=o;
}

app (timing_file t) extract(output_file o) {
    "tail" "-1" o "|" "cut" "-f" "2" "-d" " " @stdout=t;
}
```
Swift Use of GPUs

GeMTC: GPU-enabled Many-Task Computing

Approach:
1) Deploy kernel to manage GPU warps
2) Manage memory
3) Integrate with workflow system (Swift/T)

DISCOVERY ENGINES LDRD: WORKFLOWS
Advanced Photon Source (APS)
Advanced Photon Source (APS)

- Moves electrons at >99.999999% of the speed of light.
- Magnets bend electron trajectories, producing x-rays, highly focused onto a small area.
- X-rays strike targets in 35 different laboratories – each a lead-lined, radiation-proof experiment station.
Data management for the energy sciences

“Despite the central role of digital data in Dept. of Energy (DOE) research, the methods used to manage these data and to support the information and collaboration processes that underpin DOE research are often surprisingly primitive…”

- DOE Workshop Report on Scientific Collaborations (2011)

Our goals:

- Modify the operating systems of APS stations to allow real-time streaming to a novel data storage/analysis platform.
- Converting data from the standard detector formats (usually TIFF) to HDF5 and adding metadata and provenance, based on the NeXus data format.
- Rewrite analysis operations to work in a massively parallel environment.
- Scale up simulation codes that complement analysis.
The October run produced 104 directories containing 5M files totaling about 27 TB.
PA DS: Petascale Active Data Store

- 23 higher-end nodes for data-intensive computing, repurposed for this work (installed in 2009)
 - Each node has 12-way RAID for very fast local disk operations

- Previously, difficult to use as “Active Data Store”
 - Difficult to access specific nodes through PBS scheduler
 - No catalog (where is my data?)
 - No way to organize/access Data Store!

- Solution: Swift/T
 - Organizes distributed data using Swift data structures and mappers
 - Leaves data on nodes for later access
 - Allows for targeted tasks (can send work to node with data chunk)
 - Integrates with Globus Catalog for metadata, provenance, archive...
 - Combining unscheduled resource access with high performance data rates will allow for real-time beamline data analysis, accelerating progress for materials science efforts
Interactive analysis powered by scalable storage

- Replace GUI analysis internals with operations on remote data
Remote matrix arithmetic: Initial results

- Initial run shows performance issue: addition took too long
- Swift profiling isolated issue: convert addition routine from script to C function: obtained 10,000 X speedup
- Swift/T integrates with MPE/Jumpshot and other MPI-based performance analysis techniques
Crystal Coordinate Transformation Workflow

MapReduce-like pattern expressed elegantly in Swift
CCTW: Swift/T application (C++)

```cpp
bag<blob> M[];
foreach i in [1:n] {
    blob b1 = cctw_input("pznpt.nxs");
blob b2[];
int outputId[];
(outputId, b2) = cctw_transform(i, b1);
foreach b, j in b2 {
    int slot = outputId[j];
M[slot] += b;
}
}
foreach g in M {
    blob b = cctw_merge(g);
cctw_write(b);
}
```
Diffuse scattering and crystal analysis

- DISCUS is a general program to generate disordered atomic structures and compute the corresponding experimental data such as single crystal diffuse scattering (http://discus.sourceforge.net)
- Given experimental data, can we fit a modeled crystal to the measurement?

- Experimental image: (Billinge, 2006)
DIFFEV: Scaling crystal diffraction simulation

- Determines crystal configuration that produced given scattering image through simulation and evolutionary algorithm
- Swift/T calls DISCUS via Python interfaces
DIFFEV: Genetic algorithm via dataflow

Novel application composed from existing libraries by domain expert!
R. Harder workflow: Genetic algorithm

individuals = toint(argv("individuals"));
ngenerations = toint(argv("ngenerations"));
file winners[];
winners[0] = input("null.winner");
for (int generation = 1; generation < ngenerations;
 generation = generation+1) {
 file population[];
 foreach box_index in [0:individuals-1] {
 file d<
 sprintf("d-%i-%i.out", generation, box_index)>;
 file s<
 sprintf("d-%i-%i.score", generation, box_index)>;
 (d,s) = box(box_index, generation, winners[generation-1]);
 population[box_index] = d;
 }
 file winner_file<
 sprintf("d-%i.winner", generation)> =
 select(generation, population);
 winners[generation] = winner_file;
}
High-Energy Diffraction Microscopy

- Near-field high-energy diffraction microscopy discovers metal grain shapes and structures
- The experimental results are greatly improved with the application of Swift-based cluster computing (RED indicates higher confidence in results)
NF-HEDM: Cross-lab workflow

0: Generate Parameters
FOP.c
50 tasks
25s/task
¾ CPU hours
Manual Swift/K

1: Imaging
Median calc
75s (90% I/O)
MedianImage.c
Uses Swift/K
Peak Search
15s per file
Swift/K

Workflow Control Script
Bash

Globus Catalog
Scientific Metadata
Workflow Progress

2: Convert bins
Network
Endian format.
2 min for all files.
Swift/T

Reduced Dataset
360 files
5 MB total

3: Analysis Pass
FitOrientation.c
60s/task (PC)
1667 CPU hours
600s/task (BG/Q)
16,670 CPU hours
Swift/T

Blue Gene/Q

Orthros
(All data in NFS)

Detector

Dataset
360 files
4 GB total

ssh

Up to
2.2 M CPU hours
per week!

Transfer

feedback to experiment
FUTURE WORK
Extreme scale application ensembles

- Develop Swift for exascale experiment ensembles
 - Deploy stateful, varying sized jobs
 - Outermost, experiment-level coordination via dataflow
 - Plug in experiments and human-in-the-loop models (dataflow filters)
Future Work

- Develop Swift for exascale
 - Continue scaling work: Study distributed dataflow for realistic patterns
 - Ease integration with native code

- Application collaborations
 - Materials science: APS (Osborn, Sharma)
 - Molecular dynamics: NAMD (Phillips), LAMMPS (Whitmer)

- Connect with novel systems elsewhere in MCS, ALCF:
 - Memcached (Isaila et al.)
 - Tess (Peterka et al.)
 - Filesystems (Ross et al.)

- Connect with new applications at the CI and elsewhere!
Summary

- Swift: High-level scripting for outermost programming constructs
 - Handles many aspects of the scientific computing experience
 - Described how dataflow logic is distributed
 - New features for parallel tasks
- Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim Armstrong, David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder, Ioan Raicu, Dan Katz, Ian Foster
- Thanks to project collaborators: Tom Peterka, Jim Dinan, Ray Osborn, Reinhard Neder, Guy Jennings, Hemant Sharma, Rachana Ananthakrishnan, Ben Blaiszik, Kyle Chard, Tim Germann, and others

- Questions?