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 This talk will address most of these components 
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THINK about 
what to run next 

RUN a battery  
of tasks 

COLLECT 
results 

IMPROVE 
methods and 

codes 



Software for the Computing Campaign 

 Assembling the compute tasks 

– Code coupling 

– Task communication 

 Running large numbers of tasks 

– Expressing complex workflows  

– Deploying large workloads 

 Managing experimental data 

– Performing I/O on big machines 

– Data organization and provenance 

 Improving experimental runs 

– Debugging and performance analysis for workflows 

– Plotting and visualization 
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Goal: Programmability for large scale analysis 

 Our solution is “many-task” computing: higher-level applications 
composed of many run-to-completion tasks: input→compute→output 
Message passing is handled by our implementation details 

 

 Programmability 
• Large number of applications have this natural structure at upper levels: Parameter 

studies, ensembles, Monte Carlo, branch-and-bound, stochastic programming,  UQ 

• Coupling extreme-scale applications to preprocessing, analysis, and visualization 

 Data-driven computing 
• Dataflow-based execution models 

• Data organization tools in the programming languages 

 Challenges 
• Load balancing, data movement, expressibility 



Practical context: The Swift language 

 

Swift was designed to handle many aspects of the computing campaign 

 

 Ability to integrate many application components into a new workflow 
application 

 

 Data structures for complex data organization 

 

 Portability- separate site-specific configuration from application logic 

 

 Logging, provenance, and plotting features 
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THINK RUN 

COLLECT IMPROVE 



SWIFT/K OVERVIEW 
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Swift programming model: 

all progress driven by concurrent dataflow 

 

 F() and G() implemented in native code or external programs 

 F() and G()run in concurrently in different processes 

 r is computed when they are both done 

 

 This parallelism is automatic 

 Works recursively throughout the program’s call graph 
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(int r) myproc (int i, int j) 

{ 

    int f = F(i);     

    int g = G(j); 

    r = f + g; 

} 
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foreach p, i in proteins { 

   foreach c, j in ligands { 

      (structure[i,j], log[i,j]) = 

       dock(p, c, minRad, maxRad); 

   } 

} 

scatter_plot = analyze(structure) 

More concurrency: Loops and arrays 

O(100K) 
drug 

candidates 

O(10) 
proteins 
implicated 
in a disease 

Tens of fruitful 
candidates for 
wetlab & APS 

= 1M 
docking 

tasks 



9 

 
 
 
 
 

 
 
 
 
 
Submit host (login node, laptop, Linux server) 

Swift 
script 

Clouds:	
Amazon	EC2,	

Google	Compute,		
Microso 	Azure	

Data 

Campus	
systems:	

Midway,	Beagle	
Apps 

Swift/K: Swift for clusters, clouds, and grids 

 

• Wilde et al. Swift: A language for distributed parallel scripting.  
Parallel Computing 37(9), 2011.  



Execution infrastructure - Coasters 

 Coasters: a high task rate execution provider  
(Previously developed for the Swift system) 
 

– Automatically deploys worker agents to resources with respect to user task 
queues and available resources 

 

 

09/13/2011 
10 

JETS 

– Implements the Java CoG provider 
interfaces for compatibility with Swift 
and other software 

– Currently runs on clusters, grids, and 
HPC systems 

– Can move data along with task 
submission 

– Contains a “block” abstraction to 
manage allocations containing large 
numbers of CPUs 

– Originally only supported sequential 
tasks  

 

 

 



Large-scale many-task applications using Swift 

 Simulation of metals 
under stress 

 Molecular dynamics: 
NAMD 

 Molecular dynamics: 
LAMMPS 

 X-ray scattering data 
aggregation 

 X-ray imaging analysis 

 Multiscale subsurface 
flow modeling 

 Modeling of the power 
grid  

 Climate data extraction 

 … and many more 
 

T0623, 25 res., 8.2Å to 6.3Å  
(excluding tail) 

Protein loop modeling. Courtesy A. Adhikari 

Native 
   Predicted 

Initial 

E 

D 

C 

A B 

F 



SWIFT/K: MPI TASKS 
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NAMD - Replica Exchange Method 

 Original JETS use case- sizeable batch of short parallel jobs with data 
exchange 

 

 Method extracts information about a complex molecular system through 
an ensemble of concurrent, parallel simulation tasks 

 

09/13/2011 
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JETS 

 Application parameters (approx.):  
 

• 64 concurrent jobs  
x 256 cores per job =  
16,384 cores 

• 10-100 time steps per job =  
10-60 seconds wall time 

• Requires 6.4 MPI executions/sec. → 
1,638 processes/sec.  over  
a 12-hour period =  
70 million process starts 



Execution infrastructure - JETS 

 Stand-alone JETS: a high task rate parallel-task launcher 
 

– User deploys worker agents via customizable, provided submit scripts 

 

 

09/13/2011 
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JETS 

– Currently runs on clusters, grids, and 
HPC systems  

– Great over SSH 

– Ran on the BG/P through 
ZeptoOS sockets- great for 
debugging, performance studies, 
ensembles 

– Faster than Coasters but provides 
fewer features  

– Input must be a flat list of 
command lines 

– Limited data access features 

 

 

 



JETS - Task rates and utilization 

 Calibration: Sequential 
performance on synthetic jobs:  

09/13/2011 

JETS 
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 Utilization for REM-like case:  
not quite 90% 



NAMD REM in Swift 

 Constructed SwiftScript to 
implement REM in NAMD 

– Whole script ~ 100 lines 

– Intended to substitute for 
multi-thousand line Python 
script (that was incompatible 
with the BG/P) 

 Script core structures shown 
to the right 

 Represents REM data flow 
from previous slide as Swift 
data items, statements, and 
loops 

09/13/2011 

JETS 
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app (positions p_out, velocities v_out, 

     energies e_out) 

namd(positions p_in, velocities v_in) 

{ 

  namd @p_out @v_out @p_in @v_in stdout=@e_out; 

} 

 

positions  p[]<array_mapper;files=p_strings>; 

velocities v[]<array_mapper;files=v_strings>; 

energies   e[]<array_mapper;files=e_strings>; 

 

// Initialize first segment in each replica 

foreach i in [0:replicas-1] { 

  int index = i*exchanges;  

  p[i] = initial_positions(); 

  v[i] = initial_velocities(); 

} 

 

// Launch data-dependent NAMDs… 

iterate j { 

  foreach i in [0:replicas-1] { 

    int current  = i*exchanges + j+1; 

    int previous = i*exchanges + j; 

    (p[current], v[current], e[current]) = 

      namd(p[previous], v[previous]); 

  } 

} until (j == exchanges); 

 



NAMD/JETS load levels 

 Allocation size: 512 nodes 

09/13/2011 

JETS 
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 Allocation size: 1024 nodes 

 Load dips occur during  
exchange & restart 

• Wozniak et al. JETS: Language and system support for many-parallel-task workflows. 
J. Grid Computing 11(3), 2013. 



JETS - Misc. results 

 Effective for short  MPI jobs on 
clusters 

 Single-second duration jobs on 
Breadboard cluster 

09/13/2011 

JETS 

18 

 JETS can survive the loss of worker 
agents (BG/P) 



SWIFT/T OVERVIEW 
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Swift/T: Swift for high-performance computing 
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Had this: 
(Swift/K) 

For extreme scale, we need this: 
(Swift/T) 



 Write site-independent scripts  

 Automatic parallelization and data movement 

 Run native code, script fragments as applications 

 Rapidly subdivide large partitions for  
MPI jobs 

 Move work to data locations 
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www.ci.uchicago.edu/swift    www.mcs.anl.gov/exm 

Swift 
control 
process 

Swift 
control 
process 

Swift/T 
control 
process 

Swift worker 
process 
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C C++ Fortran 

MPI 

Swift/T worker 

64K cores of Blue Waters 
2 billion Python tasks 
14 million Pythons/s 

Swift/T: Enabling high-performance workflows 



Characteristics of very large Swift programs 
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 The goal is to support billion-way 
concurrency: O(109) 
 

 Swift script logic will control trillions 
of variables and data dependent 
tasks 
 

 Need to distribute Swift logic 
processing over the HPC compute 
system 
 

 
 

int X = 100, Y = 100; 

int A[][]; 

int B[]; 

foreach x in [0:X-1] { 

  foreach y in [0:Y-1] { 

    if (check(x, y)) { 

      A[x][y] = g(f(x), f(y)); 

    } else { 

      A[x][y] = 0; 

    } 

  } 

  B[x] = sum(A[x]); 

} 



Basic scalability 
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• 1.5 billion tasks/s on 512K cores of Blue Waters, so far 



Swift/T: Fully parallel evaluation                                  

of complex scripts 
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int X = 100, Y = 100; 

int A[][]; 

int B[]; 

foreach x in [0:X-1] { 

  foreach y in [0:Y-1] { 

    if (check(x, y)) { 

      A[x][y] = g(f(x), f(y)); 

    } else { 

      A[x][y] = 0; 

    } 

  } 

  B[x] = sum(A[x]); 

} 



Support calls to native libraries 
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 Including MPI libraries 



A[3] = g(A[2]); 

Example execution 

 Code 

 

 

 

 Engines: evaluate dataflow operations 
 

 

 

 Workers: execute tasks 
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A[2] = f(getenv(“N”)); 

• Perform getenv() 

• Submit f 

• Process f 

• Store A[2] 

• Subscribe to A[2] 

• Submit g  

• Process g 

• Store A[3] 

Task put Task put 
Notification 

• Wozniak et al. Turbine: A distributed-memory dataflow engine for high 
performance many-task applications. Fundamenta Informaticae 128(3), 2013 



Support calls to embedded interpreters 
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We have plugins 
for Python, R, Tcl, 
Julia, and QtScript 

• Wozniak et al. Toward computational experiment management 
via multi-language applications. Proc. ASCR SWP4XS, 2014.  



STC: The Swift-Turbine Compiler 

 STC translates high-level Swift 
expressions into low-level  
Turbine operations: 
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– Create/Store/Retrieve typed data 

– Manage arrays 

– Manage data-dependent tasks 

• Wozniak et al. Large-scale application composition via distributed-memory  
data flow processing. Proc. CCGrid 2013.  

• Armstrong et al. Compiler techniques for massively scalable implicit  
task parallelism. Proc. SC 2014. 



Logging and debugging in Swift 

 Traditionally, Swift programs are debugged through the log or the TUI 
(text user interface) 

 

 Logs were produced using normal methods, containing:  

– Variable names and values as set with respect to thread 

– Calls to Swift functions 

– Calls to application code 

 

 A restart log could be produced to restart a large Swift run after certain 
fault conditions 

 

 Methods require single Swift site: do not scale to larger runs 
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Logging in MPI 

 The Message Passing Environment (MPE) 

 Common approach to logging MPI programs 

 Can log MPI calls or application events – can store arbitrary data 

 Can visualize log with Jumpshot 

 

 Partial logs are stored at the site of  
each process 

– Written as necessary to shared  
file system 

• in large blocks 

• in parallel 

– Results are merged into a big log file  
(CLOG, SLOG) 

 

 Work has been done optimize the  
file format for various queries 
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Logging in Swift & MPI 

 Now, combine it together 

 Allows user to track down erroneous Swift program logic 

 

 Use MPE to log data, task operations, calls to native code 

 Use MPE metadata to annotate events for later queries 

 

 MPE cannot be used to debug native MPI programs that abort 

– On program abort, the MPE log is not flushed from the process-local cache 

– Cannot reconstruct final fatal events 

 

 MPE can be used to debug Swift application programs that abort 

– We finalize MPE before aborting Swift  

– (Does not help much when developing Swift itself) 

– But primary use case is non-fatal arithmetic/logic errors 
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Visualization of Swift/T execution 

 User writes and runs Swift script  

 Notices that native application code is called with nonsensical inputs 

 Turns on MPE logging – visualizes with MPE 

 

 

 

 

 

 

 

– PIPS task computation  Store variable         Notification (via control task) 
Blue: Get next task        Retrieve variable   
Server process (handling of control task is highlighted in yellow) 

 Color cluster is task transition:  

 Simpler than visualizing messaging pattern (which is not the user’s code!) 

 Represents Von Neumann computing model – load, compute, store 32 

Time 
Jumpshot view of PIPS application run 
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Debugging Swift/T execution 

 Starting from GUI, user can identify erroneous task  

– Uses time and rank coordinates from task metadata 

 Can identify variables used as task inputs  

 Can trace provenance of those variables back in reverse dataflow 
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erroneous task 

Aha! Found script defect. ← ← ←  (searching backwards) 

• Wozniak et al. A model for tracing and debugging large-scale task-
parallel programs with MPE. Proc. LASH-C at PPoPP, 2013.  



Other Swift/T features 

 Task locality: Ability to send a task to a process 

– Allows for big data –type applications 

– Allows for stateful objects to remain resident in the workflow 

– location L = find_data(D); 

int y = @location=L f(D, x); 

 Task priorities: Ability to set task priority 

– Useful for tweaking load balancing 

 Updateable variables 

– Allow data to be modified after its initial write 

– Consumer tasks may receive original or updated values when they emerge 
from the work queue 
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• Wozniak et al. Language features for scalable distributed-memory 
dataflow computing. Proc. Dataflow Execution Models at PACT, 2014.  



SWIFT/T: MPI TASKS 
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Dataflow+data-parallel analysis/visualization 
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Analysis Library 

OSUFlow 

DIY 

Parallel Runtime 

MPI 

Data 
source 

Dataflow-structured analysis framework  
based on OSUFlow/DIY 

Data 
source 



Parameter optimization for data-parallel analysis:  

Block factor 
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Can map blocks to processes in varying ways 



Parameter optimization for data-parallel analysis:  

Process configurations 
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• Try all configurations to find best performance 
• Goal: Rapidly develop and execute sweep of MPI executions 



Refresher: MPI_Comm_create_group() 

 In  MPI 2, creating a subcommunicator was collective over the parent 
communicator 

– Required global coordination 

– Scalability concern 

– (Could use  intercommunicator merges- somewhat slow) 

 In MPI 3, the new MPI_Comm_create_group() allows the 
implementation to assemble the new communicator quickly from a group 
– only group members must participate 

– In ADLB, servers just pass rank list for new group to workers 

 

 Motivating investigation by Dinan et al. identified fault tolerance and 
dynamic load balancing as key use cases – both relevant to Swift  
(Dinan et al., EuroMPI 2011.) 
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 Swift expression: z = @par=8 f(x,y); 

 When x, y are stored, Turbine releases task f with parallelism=8 

 Performs ADLB_Put(f, parallelism=8) 

 Each worker performs ADLB_Get(&task, &comm) 

 ADLB server finds 8 available workers 

 Workers receive ranks from server 

– Perform MPI_Comm_create_group() 

 ADLB_Get() returns: 
task=f, size(comm)=8 

 Workers perform user task 

– communicate on comm 

 comm is released by Turbine 

 

Parallel tasks in Swift/T 
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• Wozniak et al. Dataflow coordination of data-parallel tasks via MPI 3.0. 
Proc EuroMPI, 2013.  



OSUFlow application 

// Define call to OSUFlow feature MpiDraw  

@par (float t) mpidraw(int bf) "mpidraw"; 

 

main { 

  foreach b in [0:7] { 

    // Block factor: 1-128 

    bf = round(2**b); 

    foreach n in [4:9] { 

      // Number of processes/task: 16-512 

      np = round(2**n); 

      t = @par=np mpidraw(bf); 

      printf("RESULT: bf=%i np=%i -> time=%0.3f", 

                      bf,   np,      t); 

    }}} 
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 Times from 222s (blue) to 948 (red) 

 Best results (fastest times) at np=256, 
high block parameter 
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SWIFT/T APPLICATIONS 
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ExMatEx: Co-design for materials research 

 

 

 

 

 

 

 CoHMM: Heterogeneous Multiscale Method 

 CoMD: Molecular Dynamics 

 Coarse-grain strain evolution using basic conservation laws 

 Fine-grain molecular dynamics as necessary for physical coefficients 

44 

From http://www.exmatex.org 



CoHMM/Swift 
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CoHMM 

• 1000’s lines of  sequential C 
• Simplified MD simulator 
• Typically called as standalone  

program 
• We exposed CoMD  as a Swift   

function –  no exec() 
 

• 300 lines of  sequential C 
• Coordinates multiple sequential  

calls to CoMD 
• We rewrote this in Swift 

 

CoMD CoMD CoMD 

• Concurrency gained primarily  
by calls  to CoMD 



CoMD: Library access from Swift 

 CoMD binding: (example-1) 
 
string s = "-f data/8k.inp.gz"; 

int N = 3; 

foreach i in [0:N-1] { 

      float virial_stress = COMDSWIFT_runSim(s); 

      printf("Swift: virial_stress: %e",  

              virial_stress); 

  } 
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CoMD: Library access from CoHMM 
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Swift 
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6" 

#ifdef ZERO_TEMP_COMD 

    string command = ZERO_TEMP_COMD; 

    stressXX = COMDSWIFT_runSim(command); 

#else 

    // Just the derivative of the zero temp energy wrt A 

    stressXX = rho0*c*c*(A-1); 

#endif 

C 
#define ZERO_TEMP_COMD "../../CoMD/CoMD -x 6 -y 6 -z 6" 
#ifdef ZERO_TEMP_COMD 

// open pipe to CoMD 

FILE *fPipe = popen(ZERO_TEMP_COMD,"r"); 

if (fPipe == NULL) { 

       … 



CoHMM: Translation from C to Swift: main() 
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C 
int main(int argc, char **argv) {  

  initializedConservedFields(); 

  for (i = 0; i < 100; i++) { 

    for (j = 0; j < 1; j++) 

      fullStep(); 

Swift 
main {  

  (A[0], p[0], e[0]) = initializedConservedFields(); 

  for (int t = 0; t < 5; t = t+1) { 

    (A[t+1], p[t+1], e[t+1]) =  

              fullStep(A[t], p[t], e[t]); 



CoHMM: Translation from C to Swift: call CoMD 
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C 
void fluxes(double *A, double *p, double *e, 

            double *f_A, double *f_p, double *f_e) { 

    for (int i = 0; i < L; i++) { 

        double stress = stressFn(A[i], e[i]); 

        double v = p[i] / rho0; 

        f_A[i] = -v; 

        f_p[i] = -stress; 

        f_e[i] = -stress*v; 

Swift 
(float f_A[], float f_p[], float f_e[]) 

fluxes(float A[], float p[], float e[]) { 

  foreach i in [0:L-1] { 

        float stress = stressFn(A[i], e[i]); 

        float v = p[i] / rho0; 

        f_A[i] = -v; 

        f_p[i] = -stress; 

        f_e[i] = -stress*v; 



Can we build a Makefile in Swift? 

 User wants to test a variety of compiler optimizations 

 Compile set of codes under wide range of possible configurations 

 Run each compiled code to obtain performance numbers 

 Run this at large scale on a supercomputer (Cray XE6) 

 

 In Make you say: 
CFLAGS = ...  

f.o : f.c  

    gcc $(CFLAGS) f.c -o f.o  

 

In Swift you say:  
 

string cflags[] = ...;  

f_o = gcc(f_c, cflags);  
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CHEW example code 

Apps 
app (object_file o) gcc(c_file c, string cflags[]) { 

// Example: 

//  gcc   -c   -O2    -o  f.o f.c 

   "gcc" "-c" cflags "-o" o   c; 

} 

 

app (x_file x) ld(object_file o[], string ldflags[]) { 

// Example: 

//  gcc           -o  f.x f1.o f2.o ... 

   "gcc" ldflags "-o" x   o; 

} 

 

app (output_file o) run(x_file x) { 

  "sh" "-c" x @stdout=o; 

} 

 

app (timing_file t) extract(output_file o) { 

  "tail" "-1" o "|" "cut" "-f" "2" "-d" " " @stdout=t; 

} 

 

Swift code 
  string program_name = "programs/program1.c"; 

  c_file c = input(program_name); 

 

  // For each 

  foreach O_level in [0:3]  { 

    make file names… 

    // Construct compiler flags 

    string O_flag = sprintf("-O%i", O_level); 

    string cflags[] = [ "-fPIC", O_flag ]; 

 

    object_file o<my_object> = gcc(c, cflags); 

    object_file objects[] = [ o ]; 

    string ldflags[] = []; 

    // Link the program 

    x_file x<my_executable> = ld(objects, ldflags); 

    // Run the program 

    output_file out<my_output> = run(x); 

    // Extract the run time from the program output 

    timing_file t<my_time> = extract(out); 
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Swift Use of GPUs 

Approach:  

1) Deploy kernel to manage GPU  warps  
2) Manage memory 
3) Integrate with workflow system (Swift/T) 

GeMTC: GPU-enabled Many-Task Computing 

• Krieder et al. Evaluation of Many-Task Computing on Accelerators for  
High-End Systems.  Proc. HPDC 2014.  



DISCOVERY ENGINES LDRD: 

WORKFLOWS 
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Advanced Photon Source (APS) 



Advanced Photon Source (APS) 

 Moves electrons at electrons at >99.999999% of the speed of light. 

 Magnets bend electron trajectories, producing x-rays, highly focused onto 
a small area 

 X-rays strike targets in 35 different laboratories – each a lead-lined,  
radiation-proof experiment station 
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Data management for the energy sciences 

 “Despite the central role of digital data in Dept. of Energy (DOE) research, 
the methods used to manage these data and to support the information 
and collaboration processes that underpin DOE research are often 
surprisingly primitive…”  
               - DOE Workshop Report on Scientific Collaborations (2011)  
 

 Our goals:  

– Modify the operating systems of APS stations to allow real-time streaming to 
a novel data storage/analysis platform. 

– Converting data from the standard detector formats (usually TIFF) to HDF5 
and adding metadata and provenance, based on the NeXus data format. 

– Rewrite analysis operations to work in a massively parallel environment. 

– Scale up simulation codes that complement analysis. 
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Data ingest/analysis/archive 
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The October run produced 104 
directories containing 5M files 

totaling about  
27 TB.  



PADS: Petascale Active Data Store 

 

 23 higher-end nodes for data-intensive computing,  
repurposed for this work (installed in 2009) 
 Each node has 12-way RAID for very  

fast local disk operations 

 Previously, difficult to use as “Active Data Store” 
 Difficult to access specific nodes through PBS scheduler 

 No catalog (where is my data?) 

 No way to organize/access Data Store! 

 Solution: Swift/T 
 Organizes distributed data using Swift data structures and mappers 

 Leaves data on nodes for later access 

 Allows for targeted tasks (can send work to node with data chunk) 

 Integrates with Globus Catalog for metadata, provenance, archive... 

 Combining unscheduled resource access with high performance data rates will allow for 
real-time beamline data analysis, accelerating progress for materials science efforts  
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Interactive analysis powered by scalable storage 

 

 

 

 

 

 

 

 

 

 

 

 Replace GUI analysis internals with operations on remote data 
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Remote matrix arithmetic: Initial results  

 Initial run shows performance 
issue: addition took too long 
 

 Swift profiling isolated issue: 
convert addition routine from 
script to C function: obtained 
10,000 X speedup 
 

 Swift/T integrates with 
MPE/Jumpshot and other  
MPI-based performance analysis 
techniques 
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Crystal Coordinate Transformation Workflow 

 

61 

MapReduce-like pattern expressed elegantly in Swift 



CCTW: Swift/T application (C++) 

bag<blob> M[];  

foreach i in [1:n] {  

blob b1= cctw_input(“pznpt.nxs”); 

blob b2[];  

int outputId[];  

(outputId, b2) = cctw_transform(i, b1); 
foreach b, j in b2 {  

    int slot = outputId[j];  

 M[slot] += b;  

}}  

foreach g in M {  

 blob b = cctw_merge(g); 
 cctw_write(b);  

}} 
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Diffuse scattering and crystal analysis 

 DISCUS is a general program to generate disordered atomic structures and 
compute the corresponding experimental data such as single crystal 
diffuse scattering (http://discus.sourceforge.net) 

 Given experimental data, can we fit a modeled crystal to the 
measurement? 

 

 

 

 Experimental image:  
(Billinge, 2006) 
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DIFFEV: Scaling crystal diffraction simulation 

 

 

 

 

 

 

 

 

 

 Determines crystal configuration that produced given scattering image 
through simulation and evolutionary algorithm 

 Swift/T calls DISCUS via Python interfaces 
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Potential concurrency:  
100,000 cores 

 
Application by  
Reinhard Neder 

DIFFEV: Genetic algorithm via dataflow 
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Novel application 
composed from 

existing libraries by 
domain expert! 



R. Harder workflow: Genetic algorithm 

individuals = toint(argv("individuals"));    

ngenerations = toint(argv("ngenerations")); 

file winners[]; 

winners[0] = input(“null.winner"); 

for (int generation = 1; generation < ngenerations;  

                                         generation = generation+1) { 

    file population[]; 

    foreach box_index in [0:individuals-1] { 

      file d<sprintf("d-%i-%i.out",generation,box_index)>; 

      file s<sprintf("d-%i-%i.score",generation,box_index)>; 

      (d,s) = box(box_index, generation, winners[generation-1]); 

      population[box_index] = d; 

    } 

    file winner_file<sprintf("d-%i.winner", generation)> =  

 select(generation, population); 

    winners[generation] = winner_file; 

  }} 
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High-Energy Diffraction Microscopy 

 

 

 

 

 

 

 

 

 

 Near-field high-energy diffraction microscopy discovers metal grain 
shapes and structures 

 The experimental results are greatly improved with the application of 
Swift-based cluster computing (RED indicates higher confidence in results)  
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October 2013: Without Swift 
April 2014: With Swift 



NF-HEDM: Cross-lab workflow 
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FUTURE WORK 
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Extreme scale application ensembles 

 Develop Swift for exascale experiment ensembles 

– Deploy stateful, varying sized jobs 

– Outermost, experiment-level coordination via dataflow 

– Plug in experiments and human-in-the-loop models (dataflow filters) 
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Big job 1: Type A Big job 2: Type A Big job 3: Type B 

Small job 1: 
Type A 

Small job 2: 
Type A 

Small job 3: 
Type B 

Small job 4: 
Type B 

Small job 4: 
Type C 

Small job 5: 
Type D 

APS 



Future Work 

 Develop Swift for exascale 

– Continue scaling work: Study distributed dataflow for realistic patterns 

– Ease integration with native code 

 

 Application collaborations 

– Materials science: APS (Osborn, Sharma) 

– Molecular dynamics: NAMD (Phillips), LAMMPS (Whitmer) 

 

 Connect with novel systems elsewhere in MCS, ALCF: 

– Memcached (Isaila et al.) 

– Tess (Peterka et al.) 

– Filesystems (Ross et al.) 

 

 Connect with new applications at the CI and elsewhere!  
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Summary 

 Swift: High-level scripting for outermost programming constructs 

– Handles many aspects of the scientific computing experience 

– Described how dataflow logic is distributed  

– New features for parallel tasks 

 Thanks to the Swift team: Mike Wilde, Ketan Maheshwari, Tim Armstrong, 
David Kelly, Yadu Nand, Mihael Hategan, Scott Krieder, Ioan Raicu, Dan 
Katz, Ian Foster 

 Thanks to project collaborators: Tom Peterka, Jim Dinan, Ray Osborn, 
Reinhard Neder, Guy Jennings, Hemant Sharma, Rachana  
Ananthakrishnan, Ben Blaiszik, Kyle Chard, Tim Germann, and others 

  

 Questions? 
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THINK RUN 

COLLECT IMPROVE 


