
Message Passing with Maple

Justin M. J. Wozniak

September 26, 2003

Abstract

In this report we document a software package under development to

allow message passing in the MPI model using the computer algebra sys-

tem Maple. The new software, called maplle, consists of two components,

a set of Maple functions and a MPI/C driver. The maplle system allows

the user to easily parallelize Maple algorithms and use message passing

functionality familiar to MPI users in a Maple format.

1 Introduction

A number of algorithms in computer algebra are readily parallelizable. Cooper-

man [1] describes an important set of these problems, those problems exhibiting

the weak sequential dependence property. Examples of these problems include

Gröbner basis computation and LLL polynomial factorization. Other algorithms

that have been implemented in parallel in a symbolic context are univariate and

multivariate polynomial factorization [10], polynomial GCD [6], and the solution

of linear systems of equations [5].

To facilitate these computations, a software package was designed to allow

message passing in the MPI model using the computer algebra system Maple.

The new software provides a set of Maple functions that allow for the implemen-

tation of parallel computer algorithms for computer algebra applications. This

1

system allows the user to easily parallelize Maple algorithms and use message

passing functionality familiar to MPI users in a Maple format.

The existence of such algorithms has justified the development of parallel

computer algebra systems. Sugarbush is a parallel Maple tool that was devel-

oped in the early 1990’s and based on C-Linda. The C-Linda parallel model is

a set of workers, or threads, sharing a read-writable tuple space for exchanging

data. This functionality is incorporated in Sugarbush [7].

The Distributed Symbolic Computation tool, often called DSC, is a system

to distribute code to computers on a heterogenous network in a variety of lan-

guages, including Maple, C, and Lisp. Both the code and the input may be

sent over the network, and an output file is returned. The system also has a

scheduler which will pick an appropriate processor for each subtask [4].

A system called ‖Maple‖ is based on the parallel model of Strand. It allows

the user to write Strand programs that can access the Maple kernel and library

functions [9].

Distributed Maple is a Java based parallel Maple tool that relies on Java

sockets to perform the communication. This system also uses independent tasks

and a shared data space that may be accessed for process to process communi-

cation [8].

In the remainder of this paper, we will discuss how maplle was designed to

be different from these existing systems, and offer our design considerations. In

section 3 we will discuss what functionality is available in the maplle imple-

mentation, and how the architecture providing that functionality is structured.

We then show that the system can be used to obtain a beneficial speedup on a

well-known polynomial arithmetic problem in section 4.

2

2 Design Considerations

Given such an array of existing parallel Maple software, we can now describe

where maplle fits in. Most importantly, maplle uses the MPI model for paral-

lelism. This model is based on a set of identical tasks running the same code,

differentiated only by their process ID. All communication is handled by message

passing, which is a familiar model for many programmers who are experienced

with MPI.

In addition, since maplle uses MPI, there is no difference to the programmer

where the program is running, be it a TCP/IP network or a high performance

shared memory machine. This makes maplle highly portable. In addition,

maplle will gain the full benefit of high performance multiprocessor architec-

tures because the network would not need to be used, it would operate as fast

as the underlying MPI system.

For experienced Maple programmers to write quality parallel programs, they

must be presented with the appropriate functionality in a familiar interface. The

functions should handle all Maple data types and should not require a lot of

extra coding, and should require no coding in a language other than Maple.

Another consideration was simplifying the function calls. A typical send

function call in MPI has six arguments, in maplle this is reduced to two. This

was intended to lower the learning curve and enable the code to better fit in the

Maple style.

The system is designed to be executed from the command line in a way

similar to executing any other MPI program:

> mpirun -np N maplle prog.mpl

This command will execute the script named prog.mpl on N processors. We

will not discuss this command in detail in the interest of brevity. For further

information concerning the operation of an MPI system consult appropriate

3

MPI documentation [3].

3 Implementation

The maplle implementation consists of two components. The Maple side is a

set of functions accessible from Maple which allows for the initialization, com-

munication, and shutdown necessary in the computation. The MPI/C side is

the compiled program that uses the MPI system to coordinate communication.

The two programs communicate with each other over a Unix pipe.

3.1 maplle Functions

The list of accessible maplle functions is small and under development, but still

useful for a wide class of problems. They are modeled after the MPI functions

of the same name but have been simplified. They have shorter argument lists,

and they intend to accept any Maple data type. These functions must be read

into Maple at the start of execution by the command:

read(mpi.mpl);

The first function the programmer must call is MPI Init(). This calls the

MPI function of the same name and prepares the system for use.

The typical program will next call MPI Comm Rank() and MPI Comm Size().

These functions call the MPI functions of the same name and allow the program

to detect the number of processors present and the ID of the processor at hand.

At this point, the program is ready to send and receive data from other

processors. It does this with the MPI Send() and MPI Recv() commands.

MPI Send() takes two arguments, an integer and a datum. The integer

specifies the ID of the processor to whom the data is being sent, and the datum

is of Maple type anything, which is the information sent.

4

MPI Recv() takes one argument, an integer which represents the processor

from which the datum is to be received. It returns the datum in its appropriate

data type.

3.2 maplle Internals

From the perspective of the maplle system, each function call request is received

over the pipe and then processed by making the appropriate call to MPI. Each

datum to be sent is sent as an array of type MPI CHAR, encoded in Maple by

convert/string and decoded by parse.

A figure representing the data flow in maplle is below.

The figure shows on the right each Maple process, one per node, which is

running code from the provided mpi.mpl as well as the user program, prog.mpl .

When the user program makes a call to a communication function in mpi.mpl,

that function communicates with the corresponding maplle process over an

automatically created Unix FIFO. The communication then is handed to MPI.

5

4 Example Application

To demonstrate the usefulness of this system, we perform a well-known polyno-

mial arithmetic computation in parallel. We will then demonstrate the speed

up gained from adding processors to the system.

4.1 Fast Polynomial Multiplication

In many computer algebra applications it becomes necessary to multiply two

large polynomials together in Z[x]:

(a0 + a1x + ... + an−1x
n−1 + xn) × (b0 + b1x + ... + bn−1x

n−1 + xn) (1)

If both polynomials are of degree n, the computation takes O(n2) integer

multiplications, using the classical algorithm. However, another method exists

based on the FFT that runs in O(n log n) time, and is generally faster than

the classical method when n > 150 [10]. In this method, each polynomial is

evaluated at n points. Each pair of corresponding points is multiplied to get a

data set for the product. This data set is interpolated to produce the product

in polynomial form.

A summary of this algorithm is below:

1. Evaluate: O(n2).

2. Multiply: O(n).

3. Interpolate: O(n2).

However, if we perform the evaluation at Fourier points, the evaluation and

interpolation can be computed in O(n log n) bringing the total run time to

O(n log n) [2].

6

To compute the FFT in Maple in Z, we use a Fourier transform in a finite

field, as documented in [2]. We can find a prime p such that the product is

computed in Zp[x]. To compute the roots of unity use the following algorithm:

• Pick prime p = O(2m2), with m the size of the maximum coefficient.

• Ensure n | p − 1.

• Factor p − 1 = q1 × q2 × ... × qk.

This isn’t too hard.

• Pick a random α ∈ Zp.

• If there is no qi : a
p−1

qi = 1 mod p

then α is a generator of Zp.

• About a third (3

π2) of the elements in Zp are generators.

• Let ω = α
p−1

n mod p, this is a nth root of unity.

Once we have our root of unity, we may perform the FFT in the standard

way:

* All computations in Zp.

1. Get ω, an nth root of unity in Zp.

ωn = 1 mod p

2. Split

3. Recurse

4. Combine

Each recursive call is sent to another processor, so the computation gains

considerable speed up.

7

4.2 Results

The algorithm above was implemented and tested on flexor, a 40-processor

SGI Origin 3000 at the University of Waterloo. Speedup plots are below:

0 2 4 6 8 10 12 14 16
0.01

0.015

0.02
T

im
e

n = 16

0 2 4 6 8 10 12 14 16
0.02

0.04

0.06

T
im

e

n = 64

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

n = 256

T
im

e

0 2 4 6 8 10 12 14 16
1.5

2

2.5

n = 1024

T
im

e

Processors

These plots show the average computation time in seconds of multiplying

integer polynomials of degree n. Time is plotted against the processor count to

show that increasing the processor count improves the computation speed, but

when many processors are added, the system overhead begins to dominate the

computation time.

8

5 Conclusion

In this report, we have shown why maplle is a useful tool and how it compares

to other parallel computer algebra systems. The architecture and programmers’

interface were discussed. We then applied the system to a problem in computer

algebra, with a noticeable speed benefit.

More work remains to be done on this project. More of the MPI commu-

nication functions remain to be added. Also, different methods of interprocess

communication should be explored.

References

[1] Gene Cooperman. STAR/MPI: Binding a parallel library to interactive

symbolic algebra systems. In ISSAC, 1995.

[2] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for

Computer Algebra. Kluwer Academic Publishers, 1992.

[3] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI - 2nd

Edition. MIT Press, 1999.

[4] E. Kaltofen, A. Diaz, and K. C. Chan. A distributed approach to problem

solving in Maple. In Proc. Summer Maple Workshop and Symp., 1994.

[5] Erich Kaltofen and Victor Pan. Processor efficient parallel solution of linear

systems over an abstract field. In Proceedings of the third annual ACM

symposium on Parallel algorithms and architectures. ACM Press, 1991.

[6] Victor Y. Pan. A new approach to parallel computation of polynomial

GCD and to related parallel computations over fields and integer rings.

In Proceedings of the seventh annual ACM-SIAM symposium on Discrete

algorithms. ACM Press, 1996.

9

[7] Liyuan Qiao. Performance visualization tools for parallelizing computer

algebra algorithms. Master’s thesis, University of Waterloo, 1995.

[8] RISC-Linz. Distributed Maple - User and Reference Manual, 2001.

[9] Kurt Siegl. Parallelizing algorithms for symbolic computation using Maple.

In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 1993.

[10] Paul S. Wang. Parallel polynomial operations on SMPs: an overview.

Journal of Symbolic Computation, 21, 1996.

10

