
OVERDRIVE CONTROLLERS FOR

DISTRIBUTED SCIENTIFIC COMPUTATION

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Justin Michael Joseph Wozniak, B.Sc., MMath

Aaron Striegel, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

October 2008

This document is in the public domain.

OVERDRIVE CONTROLLERS FOR

DISTRIBUTED SCIENTIFIC COMPUTATION

Abstract

by

Justin Michael Joseph Wozniak

Large distributed computer systems have been successfully employed to solve

modern scientific problems that were previously untenable. With the advent of low

cost hardware, high speed computers and sizable storage resources are pervasive

and often notably underutilized. Modern opportunistic middleware systems seek

to congregate the potential of these existing systems into a powerful resource for

scientific computation. Within distributed computing, the study of these systems

considers the ability of middleware to respond to heterogeneous or low reliability

environments, as well as the need to obtain high performance or guaranteed quality

of service. In various forms such as Internet computing, desktop grids, and even

“big iron” grids, this philosophy realizes the genuinely unpredictable nature of

large scale computing projects. The development effort in this field takes two

important forms:

1. it attempts to build aggregate systems that are more reliable than their

underlying components, easier to utilize in concert, and effectively unified

administratively;

2. it attempts to provide performance that is timely and predictable.

Justin Michael Joseph Wozniak

In this dissertation, the need to construct reliable, high performance storage

from loosely trusted, low reliability components is addressed. We investigate meth-

ods to catalog and maintain large networks of storage components and present

them to scientific users as a unified resource. The methods developed in this area

resulted in the implementation of the GEMS replica management system.

The need to obtain good, reliable, predictable performance when performing a

new computation is also addressed. We investigate methods to obtain job runtime

estimate information and use this knowledge to establish probabilistic guarantees

on the completion time of new computation. The methods developed in this area

resulted in the implementation of the East scheduling simulator.

A common idea underlines both techniques: the use of a higher level man-

aging software system that operates around an internal model of the controlled

resources. This model is both queried for historical and predictive information and

used by a middleware grid overdrive controller to make intelligent management

decisions that satisfy user requirements. The design of the controller borrows from

techniques used in a variety of disciplines including mathematical modelling, sys-

tem theory, and autonomic systems to manage user jobs and data. The result is a

synthesis of existing building blocks and new abstractions that results in efficiency,

practicality, and scientific benefit.

DEDICATION

ad familiam meam

ii

CONTENTS

FIGURES . vii

TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTER 1: INTRODUCTION . 1
1.1 Challenges in Grid Computing . 3

1.1.1 Data Management . 3
1.1.2 Resource Management . 4
1.1.3 Policy Management . 6

1.2 Scientific Applications . 6
1.2.1 Molecular Dynamics . 7
1.2.1.1 Transition Path Sampling 7
1.2.1.2 Hyperdynamics . 8
1.2.2 Simulation of Computer Systems 8
1.2.3 Other Applications . 9

1.3 Motivation for a New Model . 10
1.4 Application to Computer Systems 13
1.5 Autonomic Approaches . 14
1.6 Overview of the Overdrive Controller 16

1.6.1 Model Definitions . 16
1.6.2 Applications to Grid Challenges 19
1.6.2.1 Replica Management Systems 19
1.6.2.2 Policy-aware Schedulers 20

1.7 Outline . 20

CHAPTER 2: GRID COMPUTING . 23
2.1 Overview . 23
2.2 The Computation Grid . 26

2.2.1 Scheduling . 27

iii

2.2.2 Parameter Sweeps . 28
2.2.3 Workflow Systems . 30

2.3 The Storage Grid . 32
2.3.1 Distributed Filesystems 33
2.3.2 Replica Systems . 34
2.3.3 Grid-Enabled Services . 35

2.4 Security on the Grid . 37
2.5 The Opportunistic Grid . 37
2.6 Scientific Grids . 38

2.6.1 Production Grids . 38
2.6.2 Application-Specific Grids 39

2.7 Grid-Enabling Software . 40
2.7.1 Java . 40
2.7.2 Relational Databases . 41
2.7.3 Chirp . 42

2.8 Point of Comparison: SRB and GEMS 42

CHAPTER 3: SCIENTIFIC REPOSITORIES 46
3.1 Scientific Storage . 46
3.2 The GEMS System . 47

3.2.1 Overview . 47
3.2.2 Discussion . 48
3.2.3 Architecture . 49
3.2.4 A General-Purpose Metadata Catalog 51
3.2.5 Comparison with Existing Systems 52

3.3 Prototype . 54
3.3.1 Client Tools . 55
3.3.2 Database Server . 57
3.3.3 Distributed Access Control 59
3.3.4 Scientific Benefits . 61
3.3.5 Toolset Summary . 63

3.4 Applications . 63
3.4.1 Transition Path Sampling 64
3.4.2 Hyperdynamics . 66

3.5 Performance . 73
3.5.1 Programmatic Repository Access 73
3.5.2 Simple Performance Experiments 75

3.6 Summary . 77

iv

CHAPTER 4: DATA SURVIVABILITY 78
4.1 Overview . 78
4.2 Initial Experiments . 79

4.2.1 Simple Replication Experiment 80
4.2.2 Discussion . 82

4.3 Fault Prioritization and Feedback Control 82
4.3.1 Discussion . 83
4.3.2 Control System Architecture 83
4.3.3 Control Model . 84

4.4 Fault Management Philosophy . 85
4.4.1 Definitions . 86
4.4.2 System Response Analysis 87
4.4.3 Optimal System Response 90
4.4.4 Determining a Priority System 91

4.5 Experiments with Prioritization 94
4.6 Summary . 96

CHAPTER 5: GRID INTEGRATION AND DERIVATION 97
5.1 Overview . 97
5.2 Data Services for Simulation . 100

5.2.1 Overview . 100
5.2.2 Discussion . 101
5.2.3 Replica-aware Computation 103
5.2.4 Applications . 112
5.2.4.1 Operating Environments 113
5.2.4.2 Experimental Results . 114
5.2.4.3 Bandwidth Analysis . 117
5.2.4.4 Queueing Theoretic Analysis 120

5.3 Parameterized Workflows . 125
5.3.1 Workflow Formulation . 128
5.3.2 Scalable Parameterized Job Submission 130
5.3.3 Workflow Performance Analysis 132

5.4 Grid Integration . 136
5.5 Grid Derivation . 137
5.6 The Rendition Protocol for Access Control 139

5.6.1 Overview . 140
5.6.2 Discussion . 141
5.6.3 Assumptions in Shared Commodity Systems 142
5.6.4 Properties of Access Control in a Replica System 144
5.6.5 System Specifics . 146
5.6.6 Application . 149

v

5.6.7 Summary . 154
5.7 Summary . 155

CHAPTER 6: SCHEDULING POLICY 156
6.1 Overview . 156
6.2 Case Studies . 159

6.2.1 Applications . 159
6.2.2 Grid Middleware . 159

6.3 A Model for Deadline-Driven Grids 160
6.4 Simulation . 163

6.4.1 Low-Quality Estimates . 164
6.4.2 Grace Periods . 165
6.4.3 Probabilistic Enforcement 166
6.4.4 Protecting Users from Bad Estimates 166

6.5 Summary . 167

CHAPTER 7: CONCLUSION . 173
7.1 Summary . 174
7.2 Next Generation Grids . 175
7.3 Future Work . 177

7.3.1 Opportunistic Storage . 178
7.3.2 Timeliness in Distributed Computing 180

APPENDIX A: GEMS DEVELOPMENT 182

APPENDIX B: VITA . 184

BIBLIOGRAPHY . 185

vi

FIGURES

1.1 Diagram of a generic overdrive grid controller. 18

2.1 Scripts for Nimrod (simplified). 30

2.2 Scripts for APST (simplified). 31

2.3 SRB software overview. 43

3.1 GEMS architecture. 50

3.2 Example usage of GEMS client tools. 56

3.3 The GEMSview browser. 57

3.4 Access control example. 60

3.5 Performance ratio R (Equation 3.1). 67

3.6 Graphical user interface representation of hyperdynamics. 70

3.7 Archive creation times via various methods. 76

4.1 Example of fault tolerance over time. 80

4.2 GEMS replica control loop. 84
4.3 System response to induced server faults. 88
4.4 The Problem object in GEMS. 92

4.5 Priority queue performance. 95

5.1 Grid data access models. 103

5.2 Example GEMSrun script with abstract data locations. 105

5.3 Computation in a replica management system. 108
5.4 Total job turnaround time for GEMS jobs. 116

5.5 Symbols used in bandwidth analysis of data consumption jobs. . . 119

5.6 Total job turnaround time for the analytical model. 120

5.7 Queueing theoretic model for data consumption jobs. 121

5.8 Discretized Markov model for data consumption jobs. 122

vii

5.9 Cox distribution model for data consumption jobs. 123

5.10 Parameter sweep and workflow diagrams. 129

5.11 Bottlenecked job submission model. 133

5.12 Condor usage and database load levels for the all paths hyperdy-
namics experiment. 134

5.13 Performance results for the hyperdynamics workflow. 135

5.14 Read-only access controlled by local storage servers. 145

5.15 Metadata layout with ACL. 147

5.16 Outline of the rendition protocol. 150
5.17 User authentication at a rendezvous point. 152

5.18 Simple three-domain collaboration. 153

5.19 Trust chain construction. 154

6.1 Deadline-driven grid computing model. 168

6.2 Acceptance and guarantee ratios for batches of jobs without en-
forcement. Batches of PolyDevice jobs. 168

6.3 Acceptance and guarantee ratios for batches of jobs with hard en-
forcement. Batches of PolyDevice jobs. 169

6.4 Acceptance and guarantee ratios for batches of jobs without en-
forcement. Batches of NS-Device jobs. 169

6.5 Acceptance and guarantee ratios for batches of jobs with hard en-
forcement. Batches of NS-Device jobs. 170

6.6 Acceptance and guarantee ratios for batches of jobs with enforce-
ment level K. Batches of PolyDevice jobs. 170

6.7 Acceptance and guarantee ratios for batches of jobs with proba-
bilistic enforcement. Batches of NS-Device jobs. 171

6.8 Acceptance and guarantee ratios for batches of jobs with proba-
bilistic enforcement. Batches of NS-Device jobs. 171

6.9 Guarantee ratios for batches of jobs with probabilistic enforcement.
Batches of NS-Device jobs, N = 32, QoE = 50%. 172

A.1 Lines of code in GEMS over time. 182

viii

TABLES

3.1 OUTPUT BANDWIDTH FOR WW DOMAIN SIMULATION . . 65

3.2 INTERACTIVE HYPERDYNAMICS RESULTS 72

6.1 COMPUTATION TIME DEVICES IN THE EAST SIMULATOR 164

ix

ACKNOWLEDGMENTS

I would like to first thank my advisor, Dr. Aaron Striegel, for his support and

advice throughout my four years at Notre Dame. He created opportunities for me

to get involved in promising projects and to travel to conferences, which provided

motivational experiences and a head start for my dissertation investigations.

I offer thanks to all of the collaborators and investigators on the GEMS project.

Dr. Paul Brenner kept the project relevant by focusing on real-world problems

faced by simulation researchers. Much underlying software was provided or ad-

ministered by Dr. Douglas Thain, who was helpful in attacking software issues.

The principal investigators, Dr. Jesús Izaguirre and Dr. Jeffrey Peng, are to be

thanked for their contribution to the project. I also thank Santanu Chatterjee for

his collaboration on the hyperdynamics application.

I acknowledge the funding and resource providers for this work. The GEMS

project was funded by NSF DBI-0450067. My education at Notre Dame was

sponsored by the Arthur J. Schmitt Foundation. Additionally, computational

hardware was made available by the University of Notre Dame.

I particularly thank my parents, Susan and Dr. Wayne Wozniak, for their

enthusiasm for science and education which continually renewed my efforts.

My wife, Venus, deserves special credit for being a loving companion during

our stay at Notre Dame.

x

CHAPTER 1

INTRODUCTION

Scientific computing is the use of artificial systems to manipulate mathematical

representations of observed processes to arrive at a desired result. Early examples

include predicting the motion of celestial objects, the birth of modern numerical

methods [61], and predicting the outcome of sexual reproduction in flowers, the

birth of modern genetic analysis [86]. These two example sciences have evolved

over the years and been refined and integrated into the study of biomolecular

dynamics, a system that enables insight into biochemical processes by applying

numerical methods based on classical physical models for bonded and nonbonded

interatomic structures.

When these and other scientific fields quickly became too complex for an in-

dividual to analyze, teams of computers - human specialists in arithmetic - were

employed to mechanize the operations required. The ability to distribute work

among multiple workers was due to the increase in the data size of the underlying

problems: different aspects of the problem could be analyzed by different workers.

The development of the electronic computer once again enabled individual

researchers to perform complex computations in addition to their academic re-

search. However, almost as soon as computing became a viable tool for scientific

applications, capability limits were reached due to limited technology. A solution

1

was found in parallelism: configuring teams of computers in a synchronized, mod-

ular way to gain better performance. These parallel computers became important

tools for scientific computing and other challenging applications.

As computers became an ingrained part of the scientific process, communi-

cation among them became as important as communication among researchers.

National scale communication networks were developed to link machines together,

for reasons including the ability to access and use computers remotely [102], the

inherent diasporic nature of academic communities, the importance of shareable

data repositories [21], and computational approaches to the management of remote

devices [6].

These applications diverge from the modular parallel model, and thus are

grouped under the more general category of distributed computing. This field rec-

ognizes users, computers, networks, and other resources and entities in a complex

composite system. The model is general enough to include solutions to a variety

of large and small scale computing problems.

By the end of the 20th century, a variety of developers had attempted to em-

ploy complex computing infrastructures consisting of tightly-coupled, high speed

parallel computers loosely linked together over long distance Internet connections.

Ideally, such an architecture would enable single users to gain access to comput-

ing power limited only by societal agreements. The intrinsic technical challenges

were great, so a concerted research and development effort would be required to

actualize this computing potential. This new field would attempt to provide the

computing benefit of large, flexible computing infrastructures to users in accor-

dance with multiple-stakeholder policy frameworks in the form of grid computing.

2

1.1 Challenges in Grid Computing

Individual challenges in the original grid concept have developed into subfields

for new research. Three of these will be investigated in this dissertation, and are

introduced below with their technical and social implications.

1.1.1 Data Management

The ability of multiple computers to work together with respect to a given data

set is a classical problem in distributed computing. Network-enabled filesystems,

an early practical solution, enable multiple computers to share access to a com-

mon resource - a directory structure - in a manner analogous to that enabled by

a multitasking operating system. Similarly, databases may be accessed over net-

works through protocols comparable to those used by interprocess communication

on a single machine. However, as users gained access to larger numbers of high

powered processors, single server data systems were not able to keep up in terms

of speed or size. The need for distributed data architectures that aggregate the

performance and capacity of multiple storage sites resulted in cluster filesystems

and distributed databases. Grid-enabled data services enable access to widely

disparate data sources over common interfaces and through scalable techniques,

as discussed further in Section 2.3.

Data services provided by multiple remote entities create a resource manage-

ment problem that matches or exceeds the difficulties found in the computing case

considered below. First, data storage and movement capacity must be allocated

to users and groups in accordance with societal principles. However, a second

concern is that data is expected and required to last over time, resulting in long

term agreements among users and resource managers. Additionally, data must

3

be protected from damage due to unauthorized accesses and system failures more

than a running job. For example, a failed job requires a restart, but a permanently

damaged disk could erase the results of many lengthy jobs.

Our work in grid data management focuses on the design and construction of a

scientific data repository geared toward biomolecular simulation. The motivating

premise is that independent stakeholders should be able to work together as users

to delegate limited access to their resources to a central repository system, creating

an aggregate system with high capacity, parallelizable data access, and centralized

browseability. The central system controls data placement in accordance with

user policy, promotes data survivability through automatic replication and fault

response, and enforces access controls. Each of these features considers end users

and resource providers during operation. The system has been implemented in

the GEMS software and has proved itself as a viable resource for recent work in

two molecular dynamics applications.

1.1.2 Resource Management

While simple technologies may be used to grant remote login access to com-

putation services, the large scale of the potential grid user base makes simple

per-computer timesharing techniques insufficient. In the presence of many com-

putation sites, scheduling is performed at the granularity of a whole site for a

significant length of time, not just time quantums, to avoid the performance

penalties due to context switches. Grid resource management systems enable

operating system-like scheduling facilities that typically allocate whole resources

to long-running user jobs with respect to system policies, all at a macro-scale. This

intermediate brokering layer promotes ease of access to a variety of disparate, het-

4

erogeneous resources at the whole job level. Complex software systems have been

constructed to perform these services, including Globus GRAM [37] and Condor

[79], as discussed further in Section 2.2.

Resource management also involves human problems, such as questions regard-

ing who should gain access to the grid at all, and if multiple users have access, who

should gain access first. These questions are complicated by the large scale user

base that can request use of grid resources, as well as the presence of organizational

users: entities that access the grid as an organization, not as an individual. The

mix of individuals and composite entities can greatly complicate the accounting

process. These questions must first be answered through the proper application

of societal rules, perhaps with the aid of appropriate information systems. Then

the systems must enable policy application and enforcement.

Our work in resource management focuses on a specific subproblem: the in-

ability of users to provide accurate estimates for job runtimes necessary for good

scheduling guarantees. If users could consistently provide accurate estimates, even

when working with complex grid systems, schedule guarantees could be provided

in a manner analogous to that found in real-time computing. However, the com-

plexity and experimental nature of existing grid systems results in a great deal of

unpredictability. The approach in this work embraces unpredictability by policing

the system in a probabilistic manner for users that provide the worst estimates,

thus providing better guarantees for users with better estimates. This approach

leads to a game theoretic situation in which users compete to provide the best

estimates, obtaining good results for themselves and enabling the system to run

with better predictability and high utilization. Simulations conducted with the

East software demonstrated that a simple policing technique can provide better

5

results to users with better estimates.

1.1.3 Policy Management

Grid policy is the imprint of societal principles, agreements, priorities and

goals applied to grid infrastructures. While grid computing intends to provide

more computational capabilities in a general sense, hard decisions must be made

to determine which user will gain access to what resource when contention exists.

Both users and resource managers have an impact on policy. When presented

with a great deal of resource choices, users must specify how their applications

will access the underlying components of a complex distributed system. Resource

managers must protect the integrity of their systems, and typically desire the

capability to grant and restrict access to different potential clients. Much work

in grid access control and policy has considered the basic security problem, as

discussed further in Section 2.4.

Our work in grid policy focuses on the complex interface between combining

and selecting resources for use in a given application. By starting with a data-

driven computing model, we show how the data environment provides a landscape

in which users can corral jobs and data in an effective manner.

1.2 Scientific Applications

The technical problems that make grid computing difficult are outweighed by

the scientific benefit of addressing challenging applications. Several applications

of scientific problems are considered and used as motivation in this work. We

provide some background on them below.

6

1.2.1 Molecular Dynamics

Molecular dynamics is the study of the Born-Oppenheimer approximation to

chemical structures [75]. This ball-and-stick model provides useful insight into

the motion of molecules while reducing the complexity inherent in a full model

that includes subatomic particles. The computational exploration of these mod-

els gained legitimacy [119] in the mid-1980’s as quantum mechanical ideas from

the 1930’s and biomolecular breakthroughs in the 1960’s combined with powerful

computers.

Molecular modelling provides valuable insight for chemists developing special-

ized compounds. Structure databases and visualization techniques allow for the

rapid evaluation of the geometric properties of potential solutions. Once possibili-

ties have been chosen, the activity of these molecules over time may be investigated

computationally by molecular dynamics. Additionally, these simulations may be

monitored and sampled to obtain statistical properties such as entropy or free

energy.

Our work in this dissertation has been applied to two particular subtopics in

molecular dynamics. Each of these was investigated with the help of modified

versions of the ProtoMol [84] molecular simulator.

1.2.1.1 Transition Path Sampling

The first, transition path sampling (TPS) [24], charts the movement of a

molecule as it changes from one shape to the next. The state of the system

is modelled as a point in phase space, and TPS attempts to chart the path taken

between one low energy state and another. TPS requires a multitude of similar

but largely independent parallel simulations of the same molecular system, testing

7

the limits of computing systems, while generating a great deal of particle position

data as a transcript for analysis. Results from the TPS application are described

further in Sections 3.4.1 and 5.2.4.2.

1.2.1.2 Hyperdynamics

The second, hyperdynamics [145, 146], intends to greatly increase the speed at

which a simulation progresses, sacrificing some accuracy for a fuller sampling of

the states encountered by a molecular system. The method applies additional bias

forces to force the system state out of regions that have been sampled adequately

and into regions of interest that are rarely encountered. This enables a better

understanding of the simulated molecules as the rare states often have critical

properties. Hyperdynamics does not benefit from heavy parallelism but is notable

for its complex workflow structure as bias forces are added. Experimental results

in hyperdynamics are presented in Sections 3.4.2 and 5.3.3.

1.2.2 Simulation of Computer Systems

Computer simulations are often used to provide simulated performance results

for hardware that does not exist, or for design features that are too expensive

to construct for experiment. SimpleScalar [27], for example, allows the user to

specify an instruction set for simulation, possibly tweaking some architectural

parameters. A compiled program is then fed into the simulator, which simulates

the program execution and returns a variety of performance results. An example

use of SimpleScalar on a distributed computing system would formulate a large set

of test programs and architectural changes, then run each experiment in parallel

on a different computation site. The end results could then be accumulated and

8

design features could be evaluated.

Distributed systems themselves may also be studied via simulation. Com-

puter networks are complex systems that often result in unpredictable behavior.

Building networks of routers and cable is not an affordable method to test new

networking techniques, thus network simulators are used to provide insight into

how new applications, routing algorithms, or network architectures may perform.

A popular network simulator, ns-2 [95], may be used to determine the expected

performance of these components by simulating their behavior. Like SimpleScalar

experiments, large batches of ns-2 computations may be distributed in a large

computing system, after which performance evaluation of the simulated network

can begin.

1.2.3 Other Applications

A variety of non-simulation scientific computing projects serve as reference

points for our work. Scientific data is typically stored in large repositories and

distributed to clients for analysis. A modern example of a scientific database of

this type is the Sloan Digital Sky Survey (SDSS) [45], which makes volumes of

astronomical data available to the public. The current release of the data set [4]

includes 10.0 terabytes of observations, including 287 million individual objects.

As a reminder of the scale and complexity of such projects, it is notable that

as recently as the year 2000, “express courier” was part of the data movement

architecture for SDSS data.

Archives of microcosmic data are also important motivators and provide a

variety of computing challenges. A particle physics grid is being constructed to

process, store and distribute high energy physics data from CERN [26]. The

9

project as a whole will produce about 10 petabytes of observations per year,

requiring the power of over 100,000 desktop-class computers.

Image processing is another application that combines numerical computing

with the employment of large data sets. Here at Notre Dame, the Computer

Visualization Research Laboratory (CVRL) has produced a photographic gallery

of human faces on the order of 100 gigabytes. While the size of the data set

does not match the projects mentioned above, distributed algorithms that intend

to process or search the whole database [33] encounter job placement and data

movement challenges.

1.3 Motivation for a New Model

Distributed computing is a well-studied field in computer science, and a variety

of tools are available to perform the basic required operations. However, this has

not satisfied scientific users working on monumental problems requiring seemingly

unlimited computation. Modern research that seeks to scrap together whatever

resources are available may be constructed by gluing together existing tools, writ-

ing new tools to solve small problems, or building completely new architectures

and computational frameworks. Conglomerations of existing software suffer from

the obvious problem that while the software may be compatible, a global view

of the whole system is not present. Small tools may excel at one aspect of the

computing problem and provide fundamental building blocks but do not approach

or manage the inherent complexity of larger systems. Completely new frameworks

have been used with some success but a glance at nearby desktops or existing user

software issues will suggest that successful solutions will need to evolve from the

existing software compatibility environment.

10

Our approach to scalable, widely distributed software systems recognizes the

problems associated with solutions that are either too large or too small. Es-

sentially, our view recognizes the permanence of existing systems, dividing the

framework into two parts: an existing resource fabric and a new controller: the

resource fabric is unchanged, allowing for existing systems and software to func-

tion without the controller. For a variety of reasons including simplicity and

security, we constrain the controller to perform operations on the resource fabric

as an ordinary user. From a software perspective, the controller may be queried

or called, allowing new software to be written using controller functionality as

methods. The highlight of the framework is that the controller has an internal

model of the resource fabric that is used when making policy-based decisions. This

model borrows from the mathematical modelling and analysis of computing sys-

tems, including operating systems, distributed systems, autonomic systems, and

areas.

We call a system that has these properties a grid overdrive controller, and the

overarching effort of the research presented here investigated and developed this

model as well as employed it to solve problems in distributed storage and job

scheduling. While the scope of the project focuses on issues related to distributed

computer systems, scientific end users are the ultimate target, and we will em-

phasize ways in which we may use the model to aid such developers undergoing

the design process.

The software solution to these types of problems presented here takes the form

of a running service that responds to user requests and manages the underlying

system in question. Designing such a system in an ad hoc manner is problematic.

The services provided to the end user - its programming interface - is fundamen-

11

tally dependent on the mingling of state between the existing system and the new

service. Additionally, the form and methodology of its management services is

very vague, and is not easily conceptualized as a service.

Our response to these challenges may be described through the use of an acces-

sible, extensible model for a variety of solution systems. The controller provides

well-defined inputs and outputs for end users as a service. Additionally, it defines a

management model whereby certain prescribed observations about the underlying

system result in consequent corrections that are applied by the controller.

Unlike a procedure call-like service, controllers manage the state of the un-

derlying system and guide it toward a steady state as specified by user policy in

an autonomic manner. This convergent framework invites comparison to feed-

back control system theory and existing work on controllers. In the model, state

is clearly separated into that of the controlled system, which may be indirectly

manipulated through well-defined existing interfaces, and the controller, which

primarily models the existing system as directed by well-defined observations.

We are thus motivated to denote an abstract model for systems that handle

these types of situations for the following reasons:

1. It will demonstrate similarities among systems that were created to perform

different tasks;

2. It will clarify the operation of existing systems; and

3. It will provide a starting point for reasoning about new systems and formu-

lating their design.

12

1.4 Application to Computer Systems

Wide area distributed storage systems pose large challenges to the application

developer. For example, employing hundreds of unreliable devices as a storage

layer is not a feasible way to begin a chemistry project. But the elementary task

of “just put this somewhere” on such a fabric involves a variety of intermediate

steps, many of which may be automated. Additionally, the ongoing task of keeping

the data alive in the presence of churn cannot be left to the user, so an automatic

system must be deployed.

Additionally, basic job schedulers are not equipped to deal with the limit-

less range of possible user access requirements. Users may wish to automate job

placement among several schedulers, a process called metascheduling. Similarly,

users may wish to create scheduling policies for which the scheduler was not de-

signed. A solution to this problem is to wrap the scheduler inside a thin higher

level policy aware scheduler, encapsulating the pre-existing functionality through

relatively minor translations of query methods. The task of scheduling new jobs

with respect to the policy is delegated to this new system which is aware of the

state of the pre-existing system. As in the storage case above, the ongoing task

of maintaining the policy over time must be automatically handled.

Finally, grid controllers derive from the observation that compute grids are

not fully mastered by any individual. Users often cannot change the underlying

systems upon which they rely, for administrative or technical reasons. Users can-

not monitor system performance around the clock. And users cannot calculate

optimum system utilization without proper tools. The model presented herein

will address these concerns and more.

13

1.5 Autonomic Approaches

Over the past few years, the autonomic computing paradigm has been proposed

as a solution to addressing the management of processes in distributed comput-

ing, particularly with respect to performance optimization and fault tolerance.

This model emphasizes the ability of a system to take its own state into account

when responding to user requests. For example, a simple autonomic system could

evaluate its response time for a given user computation, and attempt to swap algo-

rithms until the fastest response time is obtained. Often, the system is designed

to promote the successful application of emergent behavior : a complex system

response to a relatively simple set of user instructions. An example application

could be a self-optimizing peer-to-peer network in which a simple gossip protocol

is employed to simply maximize local performance, but the aggregate global result

could be turbulently complex and seemingly unpredictable.

An introduction into autonomic computing on the grid starts with an extension

of middleware, as the tasks required of autonomic systems exceed the capabili-

ties [44] of conventional middleware systems. Starting from the middleware model,

adaptivity is added. This allows the system to continue to function without hu-

man management when nearby resources and user demands are rapidly changing.

This implies the ability to be fault tolerant : it continues to function when nearby

resources fail. This is often achieved through the use of a higher-level registry of

low-level redundant resources [139] which may be swapped out upon failure de-

tection. Next, the system is given the ability to manage resources automatically,

optimizing their utilization or enforcing a system policy. Finally, the system is

exported to the grid as an open service compatible with grid tools [115].

An example application of autonomic management of a distributed computing

14

system is for soft real time applications. In this setting, computations performed

on a variety of computation sites are constrained to complete within a given

amount of time. An autonomic scheduler can adjust load levels on the computation

cluster to prevent overloading [56], monitor the state of the tasks and their runtime

constraints, and possibly pre-empt low-importance tasks if required to satisfy high-

importance tasks.

The theory of control presented here draws from control system theory [120],

a methodology for controlling an existing device through the construction of a

regulating master device. A control system operates by observing feedback infor-

mation from the controlled device and comparing it to the desired state mandated

by the external user, making corrections to the controlled device to bring the two

signals together. An commonly encountered example control system is the autopi-

lot feature of an airplane. The pilot states the desired flight path of the plane, and

the autopilot maintains this course in spite of turbulence, mechanical fluctuations,

bird strikes, and other perturbations by making proportionate corrections to the

course, until the pilot resumes control.

Feedback control methods in this framework take on a heavily numerical flavor.

Their implementation relies on the ability to make measurement of state deviation

from the user requirements and to implement proportionate responses over time.

Thus we focus on a relatively narrow class of system operation, parameter tuning,

and broadly expand its application.

Other models for autonomic response to distributed computing problems have

been proposed. For example, the framework offered by AutoMate [7] provides a

grid-enabled autonomic component suite built on existing standard grid software

systems. The higher level model behind the motivating research project takes on

15

a heavily biological flavor [99] as it proposes a broad range of delivered function-

ality, including self-awareness and self-healing. Other systems take a rule-oriented

approach: if certain conditions are met, a prescribed response is taken. Rudder

[7] enables the user to present these rules and actions to enable component swap-

ping. In the case of partially conflicting rules, fuzzy logic may be applied, as in

the AutoPilot [142] system.

1.6 Overview of the Overdrive Controller

The model presented here constitutes a significant reduction of the realm of

functionality promised by an autonomic system. The controller model here is

essentially a software design framework that promotes clarity in the information

flow through the system.

1.6.1 Model Definitions

Overdrive grid controllers are defined as a class of software systems that con-

trol an external software system called the plant. They are characterized by

five properties: separation, internalization, vigilance, proportionality, and con-

vergence. These are in addition to the properties of the underlying grid system

which the controller intends to enhance, including scalability, standardization, and

collaboration. Definitions of these characteristics are given below:

• Separation: The controller is separate in design from the plant, and no

plant modifications are required to implement the controller functionality.

Thus, in accordance with software engineering principles, the new system is

limited to interact with the plant only through established interfaces.

16

The public interfaces employed by the controller are less likely to change

over time, resulting in better maintainability for the controller. Additionally,

some underlying systems may not be modified for lack of access or backward

compatibility.

• Internalization: The controller employs an internal model of the plant

to make decisions. This characteristic is notable because it addresses the

ability of software systems to perform complex calculations with respect to

a simulated or idealized plant that exceed human ability; additionally, it

indicates that all automatic decisions are made with view of the plant that

is always slightly out-of-date.

• Vigilance: The controller observes the state of the plant to update the

internal model over time. Additionally, it uses maintains user requirements

while operating asynchronously and autonomously in the presence of faults

and contention for resources. Thus control actions are performed to achieve

user objectives, which are observed again in an ongoing process.

• Proportionality: At each decision point, the controller attempts to make

appropriate, timely state corrections to the plant by evaluating the user

value on the elements upon which the controller is ultimately acting. This

characterizes the numerical view on the system. For example, fault tolerance

corrections to a data system could be prioritized with respect to the user

worth of the data sets in peril.

• Convergence: The system is driven toward a state at which no further

action need be taken to achieve a user objective barring external changes.

This, of course, precludes the active monitoring of the environment for user

17

XCPU 0 CPU 1 CPU 3CPU 2

X
1

3
4

2

5

6

System Model

Controller

Plant

fault

O
b

se
rv

a
tio

n

User specifications

Resource limitations

C
o

rre
ctio

n

Corrector

and constraints
Performance and

Owner specifications
and constraints

In
p

u
t

Observer

O
u

tp
u

t

 reliability

Figure 1.1. Diagram of a generic overdrive grid controller.

input or other external changes such as unpredictable partial system fail-

ures. For example, a replica placement system adhering to this model would

terminate active operation once replicas have been satisfactorily placed after

some finite time period. The system would then only consume additional

disk space or network resources in significant quantities upon the occurrence

of an activating event.

Figure 1.1 illustrates an abstract overdrive grid controller. The autonomic

system responds primarily to user requests, as shown at the top 1©. User calls

to the controller are processed entirely independently from potential user calls

to the underlying plant, and the systems are encapsulated from each other 2©,

maintaining the principle of separation. An internal system model 3© is supplied

18

with ongoing updates from an observant component 4©; abnormal states may

result in corrective action 5© that is asynchronous from the user perspective, thus

providing vigilant services. Finally, the end results of the system 6© are returned to

the user in accordance with system properties; the convergence constraint ensures

that the automatic processes will wind down given enough time and the absence

of additional events.

1.6.2 Applications to Grid Challenges

In this section, we consider how this model may be applied to the problems

addressed in this work in the areas of distributed storage and scheduling policy

systems.

1.6.2.1 Replica Management Systems

Much of the work in this document was invested in the GEMS replica man-

agement system. The system was designed to control a pre-existing network of

independent storage sites for use by a relatively small set of users. Since the un-

derlying Chirp servers were not to be modified, the principle of separation was

maintained: the only access to these systems was over the Chirp network protocol.

GEMS maintains an internal status of the replicas as an intersection of informa-

tion obtained from the servers as well as from the Chirp catalog. Correction may

be automatically made to the system by allocating and creating additional repli-

cas, thus bringing the system back to one allowed by user requirements. In the

idle state, the system makes no additional replicas and moves no significant data,

thus converging to a user-allowed state. Thus the system actualizes a distributed

storage controller.

19

1.6.2.2 Policy-aware Schedulers

Similarly, the hypothetical policy enforcement system studied by the East

scheduler in this work also implements the model. The system intends to im-

plement additional properties of benefit to contending users on a limited supply

of pre-existing computation resources. Thus the metascheduling functionality is

separated from the underlying resources. An internal model of the system is

represented as a combination of the deadline calendar as well as the state of com-

putation sites and their jobs. Since the jobs may be submitted and executed any

time before the deadline, autonomous job submission, monitoring, and possible

termination are desirable capabilities. These capabilities may be contrasted with

the “try-to-do-it-now” strategy typically implemented by schedulers. When the

system encounters few errors, corrective action is minimal, and upon completion

of all requested batches, the system simply retires to an idle state.

1.7 Outline

The controller model developed as a common aide for reasoning about and

solving practical problems. In the remainder of this dissertation, we will present

these background projects before presenting the abstract form of the controller

model.

In short, the product of this research may be categorized into technical re-

search and development, applications support and innovations, and conceptual

contributions to the autonomic software development process. The bulk of this

dissertation is concerned with technical work in distributed systems, including

algorithms and policies such as the priority queue for replication (Section 4.3.2),

the rendition protocol (Section 5.6.5), and probabilistic enforcement (Section 6.3).

20

Applications work includes the enabling technologies used in transition path sam-

pling (Section 3.4.1) as well as progress in computational hyperdynamics such

as the performance ratio (Equation 3.1) and the interactive hyperdynamics data

sweep (Section 5.3.1). These topics are integrated within the overdrive controller

conceptualization, which inspired and guided these implementations and evinces

our interpretation of the meaning of the grid (Sections 5.4 and 5.5).

The remainder of this dissertation is structured as follows:

• Chapter 2 reviews prior work on specific topics in grid computing as well

as descriptions of important grid software systems.

• Chapter 3 presents the opportunistic grid-enabled scientific repository as

exemplified by our software, GEMS. Building a usable, reliable repository

involves the consideration of features targeted toward human scientific users

such as data organization and programmatic data access. The architecture

described in this chapter thus integrates user-oriented features as well as

solutions to basic storage federation questions. We present two example

real-world research applications that benefited from GEMS functionality,

and we describe the basic performance characteristics of the software.

• Chapter 4 addresses data survivability issues on a resource fabric of unreli-

able, independent storage sites. GEMS originally employed a simple replica-

tion system that was developed into a robust fault detection, prioritization,

and correction system capable of keeping data available in the presence of a

great deal of system outages. Chapters 3 and 4 round out a solution to the

data management challenge described above.

• Chapter 5 describes how a data system may be used as a foundation for a

21

complete grid system, augmenting the ability of schedulers to work well with

complex data systems, and managing policy as defined by users and adminis-

trators. Programmatic techniques for working with replicated data files and

parameterized data sets are presented in the context of real-world, computa-

tionally intensive molecular simulations. Additionally, a novel access control

method is used to develop a comprehensive framework for resource feder-

ation and delegation. This chapter constitutes our response to the policy

management challenge.

• Chapter 6 considers our problem of interest in scheduling. Complex calen-

daring systems that schedule jobs far into the future and make guarantees

about the timeliness of delivered computational results rely on good user

estimates of job completion, which is difficult for users to provide, or forced

job termination, which results in low utilization and lost work. We present

a metascheduling controller that implements a novel probabilistic policing

solution to the deadline-driven computing problem, and demonstrate that

it provides an incentive for users to provide good estimates, while avoid-

ing the adverse effects of strict enforcement. This realizes an application

of policy that is autonomically applied to a grid system by a higher level

controller, providing another example application of the controller model -

as a response to the resource management challenge.

• Chapter 7 concludes with a final conspectus of this work. Additionally, we

review how the overdrive controller features were applied to the practical

data management, scheduling, and policy problems that motivate this dis-

sertation. Additionally, some further potential investigations are described.

22

CHAPTER 2

GRID COMPUTING

The work described in this document draws from a wide range of topics in dis-

tributed scientific computing. The emphasis of the work is the impact of systems

management tools on the overall performance of complex computing systems, in-

cluding computation and storage. This section describes previous work in each

topic in more detail. We review existing techniques and software systems for dis-

tributed computation and storage, the management of computational resources,

efficient use of computational resources through scheduling, and modern research

in grid computing.

2.1 Overview

By the end of the second millennium, scientific computing had entered into an

exciting era. Desktop computers offered sizable computation ability. Relatively

complex statistical analysis could be performed by tools written for typical office

hardware. The Internet had become a common tool for rapid communication

and data transfer around the world. Researchers could access their computational

resources over wide area networks, obtain results, and ship them anywhere quickly.

Results could be posted on the World Wide Web, enabling browsing and searching.

However, scientific computing had not yet solved every remaining problem.

More computational power was needed to perform numerical computations on ex-

23

panding numbers of variables, more storage space was needed to retain the growing

bulk of computational results and instrument readings, and faster network connec-

tions were needed to enable large scale collaborative projects. Additionally, the

possibility of collaboration with colleagues at remote locations was tantalizingly

close. Despite the presence of global network connectivity, users were restricted

by a variety of limitations including inflexible security architectures, the inability

to seamlessly move jobs to diverse sites, the complexity of accessing and managing

data at remote locations, difficulty navigating the web of cables connecting users

and resources with efficiency, and scalability limits in existing systems.

Early grid architects framed these problems with a power grid analogy [48,

49]: users should be able to gain access to remote resources by plugging into

a standard service. The authors frame complex distributed computing systems

as an infrastructure that promotes societal progress in a manner analogous to

other historical investments, such as the railroad or interstate highway systems.

By inviting book chapters from a variety of authors, they demonstrate the wide

appeal and impact of the new technologies.

The breadth of the grid concept could lead to a bloat of possible conceptions

of what the grid is about. In a simple article entitled “What is the Grid?” [47],

Ian Foster attempted to crystallize the conception of the grid into a checklist of

three simple bullet points. He defines a grid as a system which

• integrates systems across administrative boundaries, exceeding the capabil-

ities of traditional authentication and access control systems, enabling new

forms of remote collaboration, resource sharing, and resource aggregation;

• employs standardized network communication protocols for system opera-

tions, reducing the grid to an interface which may be implemented by a

24

variety of new software systems;

• provides better quality of service to users as measured by a variety of metrics.

Further inspection led to the dissection of the grid into its component parts,

which were found to be social elements. Collections of collaborating institutions

were defined as virtual organizations (VOs) [53]: organizations of users and ad-

ministrators working on common computing problems, possibly for a temporary

period. The architecture of the grid, then, is simply a widely understood and spo-

ken communication protocol which enables these social structures. More specifi-

cally, technical grid entities are represented by grid services that make use of open

technologies such as the Open Grid Services Architecture [51], a web services [63]

design that enables event-driven port-to-port programming models [59].

More recently, Heinz Stockinger took a different approach to the grid definition

problem by surveying [125] a variety of active systems researchers for definitions

of grid computing. His results include a mish-mash of definitions; for example,

the respondents differ over whether grid computing is a subfield or superfield of

distributed computing. However, the work is notable for its breadth of discussion

and attempt to include a diverse community in a complex dialogue.

Regardless of the specific technical definitions, the motivation for the original

grid concept and the justification for expensive production grids available today

is large scale scientific computing. Various applications in this area struggled to

make use of the complex distributed infrastructure, but common solutions can be

found to provide the operating system-like services required. These include three

major features, such as

25

1. Access to processors, process scheduling, and job management (Section 2.2);

2. Access to storage devices, files, and replica sets (Section 2.3); and

3. Protection of user and system resources from disruption (Section 2.4).

Additionally, grids must be assembled and presented to scientific users through

the use of existing software systems. Our background investigations thus include

4. Assembling grids using opportunistic methods, that is, harvesting available

spare resources to create a grid (Section 2.5);

5. Using grids to accomplish real-world scientific tasks (Section 2.6); and

6. A background on grid-enabling software used in this work (Section 2.7).

2.2 The Computation Grid

Distributed scientific computing systems construct theoretical or pseudo-exp-

erimental workspaces for research atop multiple computers connected by a net-

work. Combining computer resources for scientific usage or collaboration was a

founding principle for the Internet and a variety of derivative commonly used

software tools. An original goal of distributed scientific computing was to employ

multiple processors to solve a single problem faster than could be done on any

single processor. Programming interfaces were defined that allowed communica-

tion among the processors, such as the Parallel Virtual Machine (PVM) [127] or

the Message Passing Interface (MPI) [149]. Such approaches clearly indicate to

the user that the system is a parallel one. A second goal is to enable multiple re-

searchers to benefit from a shared resource such as a single large parallel computer.

Batch schedulers designed for this purpose are described below.

26

Other work in implementing user software atop multiple processors heavily fo-

cused on the single system image model. Systems such as Locus [148], Sprite [97],

and Amoeba [131], attempted to pool multiple servers into a unified system that

serves multiple users. A more recently developed system called Legion [65] creates

a virtual computing environment comprised of software objects that are location

independent. These holistic systems intend to provide users with a uniform de-

velopment and runtime environment that hides the complexity of the distributed

hardware, providing grid-enabled data access [154] as well as a scalable file sys-

tem [155].

Computing on the grid, however, is essentially a resource management prob-

lem. Resources must be coordinated via a process called metacomputing. In this

model, decisions about where to execute user computation are made by a sched-

uler. This centralized system delegates tasks for execution to sites that advertise

their computational services and respond to understood queries.

The Globus Resource Allocation Manager (GRAM) [37] provides a front end

over existing local job queues. GRAM has been extended to handle advanced reser-

vation [123], resource co-allocation [38], and dynamic virtual environments [72].

2.2.1 Scheduling

Job scheduling is a consequence of the intersection of distributed job submis-

sion and limited computational resources. Batch schedulers were developed for

the first computer systems, and continue their usefulness today as powerful, well

understood systems to move jobs through compute servers or clusters. Existing

job schedulers include the Portable Batch System (PBS) [68], the Load Sharing

Facility (LSF) [167], and the Sun Grid Engine (SGE) [87]. These schedulers often

27

operate as the workhorses of a compute grid, providing the majority of the cycles

available to the user. When pooled into grid-enabled superclusters via the GRAM

abstraction and cluster federation, they may be employed en masse to tackle huge

problems.

Simulation of computational grid resources is an important tool when testing

scheduling algorithms and techniques. The Bricks system [130] has been used

by several researchers to test algorithms and grid performance. For example,

to effectively schedule parameter sweep jobs and associated file staging on an

internetwork of compute hosts, Bricks was used [29] to evaluate various scheduling

algorithms.

2.2.2 Parameter Sweeps

While various toolsets such as the Java CoG kit [144] and others [60] have

reduced the complexity associated with interfacing with the grid, supporting in-

terfaces must still be developed to bridge the final interface to the application.

For parameter-driven simulation environments with large parameter spaces, the

development gap between the existing tools and the actual results can be quite

significant.

A very common use of the grid is to provide a solution to a so-called “em-

barrassingly parallel” problem. In this problem, one has a set of data points to

evaluate, each of which is generated by the same basic simulation with a few dif-

ferent input parameters and none of which depends on the intermediate output of

another task, implying no communication among tasks. There are a great many

uses for this model by researchers in a variety of disciplines when conducting ex-

periments by simulation. Examples include simple cases where a range of random

28

number seeds should be input to a simulation, or one of the more complex case

studies discussed below. The size of the user pool and the inherent complexity

of the grid as a computing resource have led to the design and construction of a

variety of tools that implement a solution to the above parallel problem.

A parameter sweep is a common application of parallel computing power. In

this method, a single program is selected and a set of potential inputs is formu-

lated. The program and set are specified to a parameter sweep system, which

constructs matches or tuples containing an execution site, the program, and the

input set. Thus the data size of the parameter information is a small amount

of input data and a small amount of output data. Modern computational grids

and clusters may be driven by parameter sweeps as they easily generate a large

load of jobs that may be executed in a simplified, parallel way. The parameter

sweep model is represented by important implementations such as Nimrod [2] or

the Parameter Sweep Tookit (APST) [30].

Nimrod/G provides several basic services to grid programmers through a sim-

ple scripting tool and a set of shell programs. To prepare a set of tasks for exe-

cution in Nimrod/G, the researcher writes a script to specify the variable param-

eters and the list of commands to be executed, which may include node-to-node

file copies, substitutions, and other programs. The provided tools must then be

used to build up a database of computational resources, connecting these to the

task. Nimrod/G builds up a task list by varying the parameters in the domain

specified by the user, and the user then executes the task list, and may observe

its progress by examining the database. An additional tool that builds upon Nim-

rod/G is Nimrod/O, which provides more advanced functionality for parameter

optimization. An example use of Nimrod is shown in Figure 2.1.

29

Nimrod scripts:

This file runs sim with inputs {0, 1, 2}.
parameter x from 0 to 2 step 1

task main

node:execute sim $x

end task

Set up a compute resource and submit.

nimrod generate sim.pln

nimrod resource computer.edu

nimrod portalapi addrun sim G

nimrod addserver sim computer.edu

nimrod portalapi startexp sim

Figure 2.1. Scripts for Nimrod (simplified).

A different approach to the same problem is taken by the AppLeS Parameter

Sweep Template (APST) [78]. In this framework, the researcher must know all the

tasks and parameters in advance, or produce this information by a separate script.

This information is written into an XML file that provides the input for APST.

The XML file also contains the requested computational and storage resources,

input and output files, and other system information. The user then executes

the APST client, which automatically executes the tasks on the various resources,

copying files as necessary. An example use of APST is shown in Figure 2.2.

2.2.3 Workflow Systems

Computational workflows allow large computations to be split into a partially

ordered set of workflow elements, each of which results in a record in stable storage.

The workflow model is appropriate for experimental computing systems because

the process is restartable in the presence of failure. Original scalar workflow

30

APST scripts:

This file sets up a compute resource and
runs sim with inputs {0, 1, 2}.
<apst>

<compute><host id=’compute’>

<ssh server=’compute.edu’/>

</host></compute>

<tasks>

<task executable=’sim’

arguments=’0’>

<task executable=’sim’

arguments=’1’>

<task executable=’sim’

arguments=’2’>

<tasks>

</apst>

Submit.

apstd sim.xml

Figure 2.2. Scripts for APST (simplified).

31

systems were implemented to aid the compilation of complex software, such as

Make [46] or Ant [14].

Workflow systems for the grid include the suite of software that comprises the

GriPhyN Virtual Data System (VDS) [166]. This system originated with Chi-

mera [54], a virtual data system that codified the workflow elements, and Pegasus

[41], which maps virtual transformations to actual grid tasks scheduled on real

resources. GridAnt [143] extended the robust workflow model of Ant to general

grid computations, and DAGMan [138] integrates workflow computing with the

Condor opportunistic scheduler described below.

Modern work seeks to manage the complexity of the workflow on an oppor-

tunistic grid [40] by automating complex decision making when faced with chang-

ing resources or failures. Workflow construction is thus an interdisciplinary pro-

cess, combining the skills of the application researchers with computer scientists

and systems experts, resulting in an iterative software design process [62].

Additionally, data movement strategies may be influenced by the workflow

paradigm. GriddLeS [3] supports data abstraction in workflows by using Bypass

[134] and multiplexing various data access methods through common underlying

clients. With similar goals, the Batch-Aware Distributed File System (BAD-FS)

[17] co-schedules data placement and job activity while managing failures, pre-

venting resource overload and thrashing, and building cooperative remote caches.

2.3 The Storage Grid

An elementary problem in distributed computing is gaining access to a data

record on a remote machine. Other methods emphasize constructing appropriate

naming conventions for storage location and communication protocols [85], and

32

developing drivers to fetch or post data to the relevant server, as in HTTP or

FTP. Both access methods emphasize a client-server1 architecture.

2.3.1 Distributed Filesystems

Early methods for distributed data access involved extending the filesystem

abstraction to remote directories, thus creating a network file system (NFS) [117],

unifying multiple remote storage services into resources that may be accessed

through the filesystem. The Andrew distributed filesystem (AFS) [118] extended

the model by allowing clients to cache open files, enhancing scalability, and eased

management by enabling distributed system administration of autonomous in-

stallations. While caching filesystems improve the scalability of the whole system,

individual applications may be limited by network latency for small operations,

therefore the recently developed BlueFS [94] system employs a speculative tech-

nique to promote job progress in the presence of latent responses to predictable

operations.

Centralized network file services can become a bottleneck when the number of

clients becomes large. Serverless network file systems [13] were built to increase

the scalability of network file services by distributing the workload among mul-

tiple multi-purpose servers. The ability of desktop workstations to function as

powerful local processing and visualization tools as well as cache services for co-

operating users has been exploited by the Freeloader system [141]. By distributing

cache fragments among nearby hosts, the system reduces communication with the

centralized data store.

1The web structure could also be considered the consequence of hypertext frameworks; this

can still be contrasted with cooperative storage.

33

2.3.2 Replica Systems

Replicating user data improves file survivability and enables parallelizable data

services. The pioneering distributed data system Zebra [67] extended the notion

and method of disk striping and parity disks [100] to networks of storage services

by striping data across multiple servers. The replica storage system was extended

to the grid with the advent of the Replica Location Service (RLS) [35], which pro-

vides the ability to map logical file names to physical file locations, thus providing

a building block for distributed replica storage. Giggle [34] builds on the RLS

and other Globus tools to create a complete replica identification, location and

movement solution. Important current research areas on storage systems focus on

optimal replica placement [103], co-scheduling data movement and job execution

[110], and long term data survivability [15].

Another important replica system is the Storage Resource Broker (SRB) [104],

which provides the user with an abstraction layer over a variety of underlying

storage systems. SRB provides an “all-hosts” replication technique and a user-

controlled technique, and manages the metadata catalog in a relational database.

SRB is compared to our project, GEMS, in more detail below. Similarly, the

the Grid Data Management Pilot (GDMP) [126] combines an object description

catalog with a replica table to manage replicated data sets in an application-

friendly way.

Many other systems have used a distributed storage fabric to obtain new util-

ity in reliability and performance. A further extension is OceanStore [121], which

stripes replicated data across a potentially global network of untrusted partici-

pating servers. In contrast to disk striping, full file replication is performed on

untrusted servers by Farsite [5].

34

An important concern in the use of these systems is the extent to which an

absence of one machine may cause the user to be unable to use the system at all,

in the case of a fragile parallel program; determine what is available and what is

not, in the case of a single resource image; or access certain data objects, in the

case of object distribution. The ability of the remaining functional components of

the system to maintain partial operation is called autonomy [114], and typically is

focused on reducing single points of failure and enabling dynamic construction of

operating environments [73]. Additionally, software may be able to automatically

adapt to changing conditions by locating a different replica location or utilizing a

local caching strategy [71]. If data sources or objects are completely unreachable,

the application-level software or user must handle the problem.

System-level fault management takes three forms: fault detection, fault re-

siliency, and fault recovery. Fault detection on storage devices has a long history,

but in the modern era of dynamic grid resources, new methods and software have

become important, as ordinary RAID is insufficient [8, 164]. The Globus Heart-

beat Monitor [124], for example, employs unreliable failure detectors [31] to detect

problems and trigger a correction. The occurrence of faults should not damage

user data or inhibit the ability of users to complete tasks. Fault recovery in stor-

age systems has a similarly long history. Recent work has focused on reducing

the cost of recovery, as in the FARM system [165], however, restoring the loss of

a given amount of data will always require a transfer of that size. As a result,

systems like OceanStore emphasize parity based recovery models [153].

35

2.3.3 Grid-Enabled Services

A primary requirement of grid-enabled data systems is the front-end presented

to the storage client, a running job. Often this takes the form of a reference site

used for data staging. Another Globus project, GASS [22], exemplifies the data

staging model of job submission, using cache management strategies to reduce

network bandwidth consumption.

The Condor project has produced multiple data access and movement systems.

Data access is abstracted over various protocols and policies in the NeST [18] stor-

age appliance. NeST additionally provides a flexible server configuration, with

multiple concurrency models, differential scheduling, and advance storage reser-

vations. Data movement within workflows is promoted with Stork [74], becoming a

first-class operation supported by restartability and resource overload prevention.

Additional services of use to running jobs include the ability to effectively em-

ploy data locality when performing a computation [140]. GFARM [132], for exam-

ple, addresses possible collocation opportunities to enhance the I/O performance

of a fully POSIX capable grid distributed filesystem. To meet their performance

and scalability objectives, efficient replication algorithms are employed to improve

data preservation and collocation over the wide area.

However, in a cooperative model, multiple users with multiple resources at-

tempt to combine them into a unified system. While the traditional methods

described above are still required - distribution and data access - new problems

arise as the system takes on several new properties: the system lacks a central

authority [39]; the cooperation stems from application background and is defined

by the users, thus requiring administrative abilities to be granted to end users;

and the complexity of such large systems requires the use of additional abstrac-

36

tions [133], the ability to resolve data set names in more complex ways, and the

ability to use logical, application-specific lookup procedures instead of physical

locations.

2.4 Security on the Grid

Grid integration techniques up to this point have focused on combining a

globalized authentication scheme with accessible communication protocols. The

Globus Security Infrastructure (GSI) [52] has an important presence in modern

grid computing. This model stresses the primality of local access control mecha-

nisms, and maps global users to local users. Other systems integrate authentica-

tion methods, such as the Generic Authorization and Access-control API (GAA-

API) [116]. Open grid access is a hallmark of the Open Grid Services Architecture

(OGSA) project [50].

A comprehensive model for large-scale virtual computing system is the Legion

system [155]. The data services in Legion are designed to scale, making massive

use of parallelism to provide enormous aggregate bandwidth to jobs running in

the object-based system. Objects in Legion are responsible for their own access

control, which is similar to the model presented here. Legion provides a single

system image, which is different from our model in which users specify a subset

of the system to use: thus, Legion relies heavily on encryption to protect objects

from unauthorized access.

2.5 The Opportunistic Grid

Grids may be assembled by investing in large quantities of new hardware, how-

ever, existing development and production grids are often assembled opportunisti-

37

cally : that is, by discovering underutilized existing systems and integrating them

into a resource network for external use. The Condor [79] system, for example,

enhances the batch scheduling model by gaining the resources that are available

on idle workstations. This technique allows existing computation clusters to be

augmented by other available computers as they become available.

At Home [12, 98] computing combines potentially millions of computers into

a unified computational device. This model typically contains a centralized com-

ponent, comprised of a job scheduler and data movement capability. More gen-

eralized usage of such large volunteered resources is performed by the Berkeley

Open Infrastructure for Network Computing (BOINC) system [11], which allows

volunteers to provide computational resources to a wide array of projects from the

physical sciences to game theory.

2.6 Scientific Grids

Real-world grids implemented over the last ten years typically state their ap-

plications in advance. They consist of geographically dispersed resources and a

corresponding social network of computer specialists and application stakeholders.

This structure promotes funding opportunities as research problems in computer

science are combined with the natural sciences, and focuses attention on the ap-

plications.

2.6.1 Production Grids

As grid computing is a relatively new concept and software systems are still

in the development phase, most grids should be considered experimental due to

their probationary nature. A few grids have surpassed this status and are reliable

38

and understood well enough to be used for practical application purposes. These

grids are an important part of active research in their target application fields,

and are termed production grids. Reliable systems like these are still of interest

to computer researchers; for example, traces of usage activity may be produced

to assist the development of future systems [76].

The Grid2003 Project was the first large scale production grid. It targeted a

handful of scientific applications, including high energy physics, astronomy, and

astrophysics. Making heavy use of existing tools mentioned above, including Con-

dor, the Virtual Data Toolkit, grid monitoring tools, and others, the fundamental

ability to maintain 2500 remote CPUs and run 1000 simultaneous jobs demon-

strated the viability of the new architecture. This project lives on as the Open

Science Grid [108], which continues to serve the Grid2003 application areas.

University resources have been successfully combined into production grids,

an example is the TeraGrid [82]. Combining resources from the University of

Illinois, Purdue, the University of Indiana, the University of Texas, and other

institutions, the infrastructure has promoted research areas such as computational

fluid dynamics [58], computational chemistry [42], and computer systems [150].

Similarly, modern work on the EGEE grid in the European Union offers large

scale resources for high energy physics. The current system offers over 41,000

CPUs, all running the same operating system. The complex geography and in-

terconnections among EU grid sites offers a rich environment for grid usage and

maintenance strategies [103].

39

2.6.2 Application-Specific Grids

Some production grids have been designed for a single target application. A

storage system designed for the application area of molecular dynamics is BioSim-

Grid [128]. Centering on a simulator-independent scientific database, BioSimGrid

provides tools to perform analysis on its libraries of simulation data. The software

architecture combines a standard database with an underlying SRB storage sys-

tem. Computation in BioSimGrid is centered around application-specific analysis

tools which are run on the centralized system. BioSimGrid conducted investi-

gations examining the performance of flat files versus relational databases for

biomolecular data [92] and cluster scheduling procedures [156].

Likewise, the National FusionGrid focuses on nuclear fusion research. This

project is notable for its combination of experiment and simulation, while pro-

ducing very large data sets. Constrained by tight access control requirements,

progress was made in grid security [28]. Collaboration on running experiments is

aided by modern shared display technology [1].

2.7 Grid-Enabling Software

Grid computing is a composite technology that combines a variety of pre-

existing technologies. We provide an overview of some software systems used in

our work here.

2.7.1 Java

The need for portable network programming became clear in the early 1990’s

as cheap local area networks and other distributed systems became commonplace.

In 1991, Sun developed the Java programming language with the widely publicized

40

goals of wide portability, however, it was also notable for its convenient APIs for

network sockets and remote access to objects and methods [151]. Over time,

Java became an extremely common glue language for distributed computing, as

exemplified by the Java CoG [144]. Web services have become an important

aspect of grid computing with Java, at it provides standardized XML APIs and

web service technologies [64].

2.7.2 Relational Databases

The elementary data source on UNIX-oriented computing systems is the filesys-

tem, typically accessed programmatically through the POSIX [101] API, which

essentially operates on a byte by byte basis. However, concurrent and distributed

programming models, among others, often benefit from additional functionality

offered by the data source, such as record by record operations, exclusion among

multiple clients, typed data elements, etc. Relational databases offer this func-

tionality and more [36] by offering a tabular structure and stronger consistency

rules, and the cost of greater complexity in the data service.

Relational databases aid the development of grid computing in several ways.

First, the tabular, typed structure aids scientific programmers organize large data

sets in a systematic way. Second, databases provide synchronization for common

operations in a simpler way for concurrent access. For example, an insert record

into list operation in a file would require programmatic synchronization or the use

of a centralized controller, where databases automatically ensure the atomicity

of this simple operation. Third, databases offer a network-accessible interface

independent of any existing network file system, often in a portable, language-

flexible way. For example, the PostgreSQL system [66] used in this project is

41

accessible through APIs for over ten programming languages, including JDBC

[96].

Grids may be modeled around the concept of the database, such as BioSim-

Grid described above. GridDB [80] provides a general relational abstraction for

workflow-like tasks running on grid resources. User requests, formatted as familiar

database operations, result in the creation abstract workflows. Results are memo-

ized for efficient access and retrieval. Other grid systems benefit from a database

back end, including computing systems and data systems. Quill [111] stores job

submission information from the Condor scheduler in a centralized database, cre-

ating a valuable provenance system. Quill uses a PostgreSQL back end. The

MCAT metadata catalog [106] isolates user metadata from system and replica

metadata, providing a new API and scalable implementation for scientific work-

flows, and may be run on a variety of underlying database systems.

2.7.3 Chirp

New grid controllers rely on the foundation laid by existing systems such as

computation and storage services. A critical file server employed in this project is

the Chirp file server [137]. This server extends the POSIX API over the network

with addition of new performance-enhancing functions [136]. A virtual filesystem

adapter called Parrot [135] may be used to access Chirp servers by trapping and

transforming system calls made by existing codes, in addition to the ability to

access other storage services. Chirp servers are visible for discovery via a catalog

service to which they report on startup. The catalog service reported 277 available

Chirp services at Notre Dame consisting of 21.0 terabytes of available storage on

October 25, 2007.

42

2.8 Point of Comparison: SRB and GEMS

A popular data source for large scale computing is the Storage Resource Bro-

ker (SRB), which, as noted above, has previously been used to store data sets

from biomolecular simulation. SRB was motivated by the challenges posed by

data-intensive computing [89], used by researchers when attempting to gain new

information by reprocessing large amounts of existing data. In the targeted grid

setting, this may involve accessing up to a petabyte per day from widely dis-

tributed, heterogeneous data sources. The noteworthy performance aspect of this

computing paradigm is that data movement time is the dominant response time

constraint.

To enable to aggregation of large numbers of storage resources, SRB starts

by implementing the Grid Brick [104] abstraction, defined as a commodity stor-

age appliance providing standard data services. Each brick represents a three-

level storage abstraction service [152] tied to underlying storage systems such as

databases, filesystems, and tertiary archives. The abstraction service consists of

a top-level communication layer accessible to client requests, a high-level logical

data name layer which relies on the MCAT metadata catalog [106] to translate

logical names into physical representations, and an underlying driver system to

provide the required POSIX-like operations on the actual underlying data system.

These basic features are diagrammed in Figure 2.3.

The SRB installations can then be used to provide rich functionality for sci-

entific archives [105]. User files may be logically organized into containers, pro-

tected and accessed via wide area authentication and authorization techniques,

and tagged with meaningful metadata. Data files may be replicated to improve

fault tolerance or cached near to a processing unit for improved performance. This

43

Archives

Databases

Filesystems

Data Drivers

Logical API

CommunicationTools

APIs

SRB ResourcesClients

I/
O

 O
p

e
ra

tio
n

s

Q
u

e
ri
e

s
Figure 2.3. SRB software overview.

functionality is then presentable to the grid as it implements a virtual organization

[104] of virtualized data [88] integrated with ownership and access mechanisms.

Ultimately, SRB resources may then be easily federated [107] to provide the re-

quired performance and functionality through the construction and integration of

SRB zones, which provide metadata and data replication.

SRB shares with GEMS the goal of providing high performance, flexible, ab-

stract data services to scientific users in a grid environment. However, the as-

sumptions and contributions made by each system differ. SRB intends to operate

on a relatively small number of relatively large disks, improving client access and

administrative functionality [104]. SRB zones may then be federated in centrally

defined structures [107] to provide a variety of required functionality. Access con-

trol is managed through centrally registered user groups and, optionally, tickets, a

capability system. SRB has thus been able to support a large number of scientific

projects [105] by managing hierarchical collections of user data.

Contrarily, GEMS intends to opportunistically operate on a relatively large

number of relatively small disks, improving the utility of possibly volatile exist-

ing disk space for distributed computation and dynamically managing replicated

44

tertiary archives. The underlying file servers require single command line config-

uration to start up and integrate with GEMS, which then controls them using

semi-autonomic techniques to provide robust data survivability and services. By

dropping in a GEMS controller, individual users may structure their own data

grids, specifying replica layout topologies and access control lists in a per-record

fashion. The GEMS replica control system thus contributes to data survivability

in difficult environments, and its parameterized, tabular metadata system pro-

vides scientifically friendly data organization, primarily serving molecular dynam-

ics workloads.

45

CHAPTER 3

SCIENTIFIC REPOSITORIES

Computational research involves the creation of data sets containing the re-

sults of scientific computation or instrumental data. The storage location for a

collection of such records is commonly called a scientific repository, and in this

chapter we discuss the results of our research in this area. In this chapter, we will

describe our approach to the construction of a scientific repository on unreliable

resources, focusing the tools and data model presented to the user. Our research

in this area was driven in part by the development of the Grid-Enabled Molecular

Simulation (GEMS) system.

The concept of the GEMS scientific repository was developed in 2005 [158].

3.1 Scientific Storage

Scientific data often has certain properties that differentiate it from other data:

1. It is independent of the technical nature of the physical computer system;

2. It is typically highly structured.

A common need in scientific computation is simply a non-volatile location to

store data for future access. However, there is a difference between scientific sec-

ondary storage and tertiary storage. Secondary storage, such as a local hard drive

46

is used to quickly store data over the short term, such as over system restarts or

virtual memory accesses. Tertiary storage is typically intended to store important

data for the long term safely and economically, often relying on tape or optical

disk. Large scientific archives have tertiary characteristics, emphasizing the long

term safe storage of data sets, possibly at the cost of slower access performance.

This duality is problematic for high performance applications that access or

create large scale data sets at high rates. Complex cache systems such as the

Raster Data Management database (RasDaMan) [112] improve the apparent per-

formance by interposing online hard disks between the client software and the

essentially offline back end.

Offline storage can then be managed for its own sake. For example, a stor-

age management system called Lots Of Copies Keeps Stuff Safe (LOCKSS) [83]

emphasizes the ability to ensure data integrity over time periods on the order of

hundreds of years. Data access rates are not a constraint to the system design,

and in fact throwaway computations are performed to create inertia and resistance

to system change.

3.2 The GEMS System

This section provides a high level view of major GEMS features as a preface

for the detailed development in later chapters.

3.2.1 Overview

Biomolecular simulations produce more output data than can be managed ef-

fectively by traditional computing systems. Researchers need distributed systems

that allow the pooling of resources, the sharing of simulation data, and the reli-

47

able publication of both tentative and final results. To address this need, we have

designed GEMS, a system that enables biomolecular researchers to store, search,

and share large scale simulation data. GEMS offers a technical solution to data

storage problems such as metadata management and file replication, and also ad-

dresses the social dynamic that results from the opportunistic use of volunteered

data storage resources. Collaborating storage providers may share resources with

their collaborators, but must be protected from unchecked data producers who

may replicate data unnecessarily until it fills all available space. To mitigate the

risks to all stakeholders, GEMS allows both storage providers and data producers

to state and enforce policies on the consumption of storage and the replication of

data. By taking advantage of known properties of simulation data, the system is

able to distinguish between high value final results that must be preserved and

low value intermediate results that can be deleted and regenerated if necessary.

3.2.2 Discussion

For a large number of scientific disciplines, grid computing offers the capability

for inexpensive computing and storage on scales previously reserved for the domain

of supercomputing. Hence, researchers involved in simulation-driven scientific

studies such as chemistry, physics, and biology have been naturally drawn to the

promise of cheap, large scale computing.

Producers of such large and complex data need system support for managing

their experimental work. A single user of ProtoMol can generate so many vari-

ations on the same simulation that a database-like index is needed to simply keep

track of the work already accomplished. Since the total amount of data generated

can easily exceed the storage available in any single device, researchers need a sys-

48

tem that can be expanded or reconfigured while running. Allied researchers often

explore simulations in related areas and would like to be able to index and share

results with each other. Many simulation modes are iterative; computational work

can be saved if intermediate outputs of older simulations can be recovered and

re-used. Because of the high value of some simulations and the potential for data

loss in any computing environment, users would like to replicate their data both

in the local area for performance and across the wide area as insurance against

disaster.

Designed to meet these data-intensive demands, GEMS was developed as a

wide area distributed system for managing the storage, searching, and sharing

needs of collaborating researchers. GEMS allows both storage providers and data

owners to exercise control over system policies. Each owner of a storage device

sets a policy dictating who may use it and how much space may be consumed.

Likewise, each data owner is able to dictate the location and replication factor of

data placed into the system. The design and architecture of GEMS is such that

each component of the system includes a strong policy component that defends

the interests of its owner. A prototype of GEMS is currently operating at the

University of Notre Dame. Through experimental studies, we have demonstrated

how GEMS is able to deal with changing constraints in a dynamic system. This has

yielded several insights into the behavior of a distributed replica storage system.

3.2.3 Architecture

Figure 3.1 shows the major components of the GEMS architecture that include

storage servers, catalog servers, and database servers, as shown in Figure 3.1. The

GEMS process begins when the user submits data for storage. With each storage

49

Storage Storage StorageStorage

Storage Controller
Active replica management,
resource monitoring, and
fault toleranceS

e
rv

ic
e

s
C

lie
n

t
T

o
o

ls
D

a
ta

 S
to

ra
g

e

Dynamic resource discovery and information
Catalog

Storage Fabric − Independent ownership & management

Match
Data insertion

Put
Data queries Data extraction

Get

View Run

 scientific browsing
Graphical interface for

 scientific data access
Computation interface for

Searchable, scientific
tabulation of user data

 Metadatabase

Figure 3.1. GEMS architecture.

placement, the user includes metadata for both the file itself and indexing in the

database. In turn, the database server determines where to place the data based

on resource discovery information from the catalog server. Storage servers are

required to report their presence to a local catalog server for discovery.

Storage servers thus double as short-term secondary storage disks for running

jobs, but upon data committal, are pooled into a managed tertiary storage sys-

tem that emphasizes long term reliability. GEMS takes unreliable, volunteered

remote disks and creates both a parallel, localized data system and a highly dis-

tributed replica archive. This is delivered by controlling the metadata and data

flow through the system, considered in this chapter, as well as a potentially volatile

resource network, considered in the next chapter.

Functionality provided by GEMS can be categorized into fault tolerance sup-

port through replication, dependent computing, and virtualized data. First, the

primary function of GEMS is to provide appropriate replication of data placed

50

onto the grid. While one can, with reasonable reliability, replicate data on storage

entities owned by the user, no guarantee is provided when the storage of other

groups is used. GEMS emphasizes aggressive replication in order to tolerate mul-

tiple modes of failures. The user needs only to specify the requested redundancy

levels leaving GEMS to manage how the data is placed and replicated.

GEMS additionally offers the ability to conduct dependent computing. For

instance, suppose that a given user wishes to conduct a new algorithm for protein

docking from a previous set of runs on a remote site. Rather than downloading all

files for local computation, a job is submitted remotely, utilizing computational

and data resources in the network. The resulting new data is then turned over to

the GEMS software for replication.

Finally, GEMS expands upon the virtual data concept of Chimera [54] when

offering public archival functionality. GEMS data is virtualized in that it may or

may not exist for immediate consumption. Since GEMS is tuned toward certain

explorations in molecular dynamics and protein conformations, GEMS users can

take advantage of the deterministic nature of many biomolecular simulations to

provide auto-regeneration of missing points without re-running the entire simula-

tion.

3.2.4 A General-Purpose Metadata Catalog

Scientific repositories create a browseable front end for user-labeled data sets

stored in a scalable back end. With the primary intent of creating a searchable

repository, GEMS presents a database-like abstraction over the file sets stored

among the storage providers. User applications could access these existing volun-

teer services directly, but since they are independently managed, their presence

51

in the system is unreliable. Technically, the GEMS system creates a centralized

parameter sweep database of application specific metadata backed up by a churn-

aware file replica management back end. By combining the metadatabase with

the management system, a quickly deployable tuple space and a survivable and

parallelizable data system is therefore implemented. The resulting system is thus

a merger of repository tags and parameter sweep entries, which programmatically

represents a shared tuple space in which running jobs may communicate, with

linkage to a replica location service.

Each entry e in the GEMS metadatabase contains a tuple of parameter tags and

values, formatted as m equations: e.tuple = {pi = vi, i = 1..m}. These entries are

called configs, as they traditionally represented the parameter information found

in a configuration file for a single simulator run. A query set to find matching

configs may be formed by creating a similar tuple {qiRiwi, i = 1..n}, where Ri

is some relation. The metadatabase responds to a query set by returning the set

{e : ∀qi∃pj : pj = qi ∧ vjRiwi}. Thus range queries over the metadatabase may be

simply constructed, for example, a user may request “all entries of type simulation

with temperature above 300.” e also contains a file management data structure

e.files, which may be used to obtain file information and replica locations.

3.2.5 Comparison with Existing Systems

GEMS has commonality with distributed file systems, databases, and peer-

to-peer sharing systems. Users of these systems have different expectations when

it comes to error states, and internally, faults are treated differently. Users of

file systems and databases generally expect all-or-nothing responses. File system

users expect that if one file on their machine is present and correct, then all will

52

be be there. The locality assumption comes from the standard assumption that

when a physical storage device fails, all of its data is permanently lost, and that

partial failures are handled by the operating system and not exposed to the user.

This carries over into expectations of network file systems, which often attempt

to emulate the behavior of a local file system.

While GEMS stores whole files and their directory information, it does not

attempt to provide file system behavior. Files that are expected to be found in

the same directory may be found on different hosts, destroying any assumptions

about locality in the delivery of file sets. This affects the design of GEMS clients,

which have utilize lists of replica locations. While GEMS does not expose internal

faults to the user, the user should be aware of the actions that GEMS may take

in the case of data loss, which include contacting various remote hosts.

NFS [117] is a standard point of comparison for file retrieval latency and API

semantics for remote storage. GEMS is not designed to compete with a finely

tuned cluster storage system, and since it is not a filesystem, it does not attempt

to mimic any system’s API semantics. GEMS does function in an RPC fash-

ion from the client’s perspective, and does not maintain important volatile state.

AFS [69] provides remote file access as well as some additional fault handling func-

tionality. Read-only replicas of stored data may be easily configured, and roll back

to previous data is built in. However, AFS servers must maintain cache consis-

tency for their clients. GEMS does not require complex caching strategies because

of its write-once characteristic, greatly reducing the server’s responsibilities.

Relational database systems similarly are expected to provide all-or-nothing

responses. GEMS, however, may only be able to partially fulfill a query and will

resort to partial delivery. GEMS does provide a metadatabase as described above,

53

and normal database user expectations apply. When querying for output data

files, the returned result is a fault-tolerant plan on how to retrieve the requested

information from remote storage devices.

The most obvious point of comparison for a redundant data storage system is

a local RAID [100] installation, or a network-based RAID, such as Zebra [67]. In

a typical hardware RAID setting, faults may be detected as blocks are read from

the device, where in GEMS, errors are actively probed by a server component.

Zebra detects faults over the network, which is a technically difficult observation

to make. GEMS and RAID both benefit from hot-pluggable hardware. As devices

are added, both systems can discover and begin utilizing new storage. When a

new server is added to GEMS, it may immediately begin receiving data from a

client, just as some RAID types may immediately use a new disk. Removing a disk

from either may be performed while the system is running. GEMS offers some

additional benefits in that it has knowledge of the importance and replication

status of the stored data, so upon replica loss, replication does not necessarily

immediately consume network bandwidth for all lost data.

3.3 Prototype

We have constructed a prototype implementation of GEMS using the following

tools. The storage server used is the Chirp [133] personal file server. Each Chirp

server periodically sends a message with its status and available space via UDP

to a catalog server. The catalog server makes the state of a set of storage servers

available via HTTP in the form of XML or Condor’s ClassAds [109]. The database

server, called GEMSd, is a custom Java server that accepts client connections and

stores the state and location of each file in a PostgreSQL database. A variety of

54

client tools allow users to insert, use, and query the system for data.

3.3.1 Client Tools

Users are given client tools to perform three basic operations: GEMSput,

GEMSmatch, and GEMSget, as well as a higher-level tool called GEMSrun. GEM-

Sput allows the user to specify a completed simulation, along with its input and

output data files and appropriate metadata, for insertion into the system. GEMS-

match allows the user to locate existing records that match criteria specified by

the parameter framework described above. GEMSmatch contacts the database

server, performs a query, and then returns a list of locations where the matching

data may be accessed directly on a storage server. GEMSget simply downloads

required GEMS files or whole data sets by using replica location information;

nearby copies are tried first, followed by all possible locations. Examples of these

command-line operations are shown in Figure 3.2.

GEMSrun provides a comprehensive interface for user jobs that intend to work

with GEMS data. The user process is treated as a consumer and producer of

GEMS data, thus requested data sources are linked in as input files and output

data sinks are created for new files. The client makes use of the Parrot adapter

externally, orchestrating data locations at a high level. GEMSrun is described in

more detail in Section 5.2.

A graphical user tool to enable web browser-like searches, downloads, and

uploads with GEMS has been constructed in the GEMSview client, as shown in

Figure 3.3. GEMSview allows searches based on keywords, arbitrary key/value

pairs, or an identifying config key. Users may also submit data to the system

through the GUI by specifying key/value pairs and a list of file names for upload.

55

1© > GEMSput name=sorin app=sim seed=149

--file sim.in --file sim.out --key

4189

2© > GEMSmatch name=sorin app=sim --keys

9980

4189

3415

3© > GEMSmatch --config 4189 --params --files

4189

name = sorin

app = sim

seed = 149

sim.in 1.3 KB (4/5)

sim.out 421 MB (3/3)

4© > GEMSmatch --config 4189 --locate sim.out --hosts

myhost.mycampus.edu

host13.nearby.edu

host41.faraway.edu

5© > GEMSmatch --locate /4189/sim.out

/chirp/myhost.mycampus.edu/GEMS/4189/sim.out

Figure 3.2. Example usage of GEMS client tools.
1© First, the user submits files and parameter metadata, obtaining a config

key (4189). 2© The user can obtain this and other configs by specifying a query
that returns a multiple-entry result set. 3© GEMSmatch may be used to

examine a variety of config details, including file sizes and replica
counts (actual/requested). 4© Replica servers of a given file may be obtained and

ordered with respect to the cluster topology (Section 5.5). 5© The nearest
available replica may be obtained in a Parrot-compatible path by resolving the

abstract path (Section 5.2.3).

56

Figure 3.3. The GEMSview browser.

GEMSview users may select their GEMS server and desired authentication
method (Section 5.6.6) from the top toolbar. Using the left hand pane, a search
method is selected; in this case, a set of hyperdynamics segments (Section 3.4.2)
is selected. The right hand results pane shows a preview of the matching config

results including their owners, parameters, files, and identifying keys.
Configs may be viewed in more detail or downloaded.

All operations are implemented atop the GEMS API that support the command-

line clients.

3.3.2 Database Server

The GEMSd database server is the hub of GEMS. It is responsible for serving

users, managing metadata, and periodically scanning storage servers for problems.

This includes metadata about the executable, parameters, and input and output

files. In addition, each file has metadata describing its size, desired replication

57

level, and sites where it may be found. This information is used by the client

when retrieving data for another GEMSmatch or GEMSrun operation and also

by the server when checking the status of storage servers.

The database server is responsible for maintaining the replication count of the

data that it tracks. Periodically, the database server scans its database and then

probes the necessary storage servers to make sure that the expected files are still

there. The files might be unavailable for several reasons: the storage server may

have failed, the resource owner might have evicted the files, or the network may be

temporarily partitioned. Regardless of the underlying reason, the database server

views all these failure modes as a loss of data. Data survivability techniques are

then applied as detailed in Chapter 4. The database server is also responsible for

the opposite task of cleaning up unidentifiable data that exists on Chirp servers in

the space allocated to GEMS, in a garbage collection process. For example, failed

GEMSput insertion operations could leave broken files for which GEMS has no

legitimate information; these are iteratively deleted over time.

GEMS incorporates disk utilization management as a fundamental feature.

The GEMS server is configured at startup with the permitted storage size. Al-

though replication counts are requested per file by GEMSput, the GEMSd server

may allocate less space if disk utilization runs too high. Statistics regarding cur-

rent utilization are obtained by comparing disk utilization information in the Chirp

catalog, as well as information in the database. The replication and garbage col-

lection components consult the system utilization state before making changes to

the system, and make adjustments to a file’s replication count as they progress.

58

3.3.3 Distributed Access Control

A distributed storage system relies heavily on the contributions of storage

space and access control offered by the individual servers. The storage servers are

expected to respond to requests for storage, retrieval, and replica management,

as well as enforce access control as specified by the central server and the storage

owner. Within this framework, there are several options. If the data is very public,

each server could provide read access to all its data, with write access and replica

control strictly managed by the central authority. Extremely sensitive data sets

could be managed exclusively by the central server: the storage servers would

only listen to the central authority, so all client data transfers would have to hop

through the central machine. While the first approach offers more access than

many researchers would like, the second is obtuse and would exhaust the central

machine.

In GEMS, control authority is delegated across the Chirp servers, but man-

aged by the GEMSd server, as shown in Figure 3.4. This supports our objective of

protecting storage providers, while allowing for the automatic replica and meta-

data management provided by GEMSd. Storage providers advertise storage space

to the system through the Chirp Catalog, which is read by GEMSd as discussed

above. As an additional step, the server must allow GEMSd administrative access

to a /GEMS directory, otherwise the server will be ignored. This allows GEMSd to

allocate storage for new data and maintain appropriate permissions on the filesets

during replication.

In this system, the Chirp access control list (ACL) for a given fileset is speci-

fied at the time GEMSput is used. GEMS uses the Chirp form method:name for

authentication, which allows a variety of authentication methods including Unix,

59

Chirp

4

2

5

3

D
ire

ct
 T

ra
ns

fe
r

/GEMS/data01/.../sim01

/GEMS/data02

/GEMS {hostname:gems.nd.edu [rwa]}

 globus:/O=nd/CN=Monk [r]}
{globus:/O=nd/CN=Ted [rw]}

{globus:/O=nd/CN=Ted [r],

data01 {globus:/O=nd/CN=Ted [r],
 globus:/O=nd/CN=Monk [r]}

data02 {globus:/O=nd/CN=Ted [rw]}
In Progress!

GEMSput()data02

C
lie

n
t

S
e

rv
e

rs
S

to
ra

g
e

 GEMSd SQL

1

Figure 3.4. Access control example.

This example shows how GEMS protects data within the constraints of all the
participants. 1© The owner of a file server gives the GEMS server access to

administer a directory. 2© The owner of data02 states the ACL to be used for
protecting the new data set. 3© GEMSd creates a new directory on the file
server and sets the ACL for that data set. 4© Direct data transfer to the file
server begins. 5© As shown for data01, existing data is directly readable by

certain users.

60

hostname, Kerberos, and Globus. A GEMSput user is authenticated by a ren-

dezvous protocol with a trusted Chirp server. Upon success, the ACL is stored

with the simulation metadata. Then GEMSd creates a writeable directory on a

satisfactory Chirp server for the client, and the data is uploaded from the client.

When the client notifies GEMSd that the transfer is complete, GEMSd locks out

the write permissions on the directory, activates the entry in the metadatabase,

and sets read permissions for the appropriate users. File replication for this fileset

is performed with the constraint that the Chirp servers in question accept the

authentication method given by the corresponding ACL.

3.3.4 Scientific Benefits

A primary target application for the GEMS system was molecular dynamics,

which models a molecular system as a function of time based on integration of

equations of motion and interacting forces. The running time of these simulations

are typically dominated by the force calculation between the various atoms in

the simulation. ProtoMol is a generic, object oriented molecular dynamics

simulator [84], that is utilized to assist in the detection of new conformations of

proteins1. Finding new conformations helps in understanding the functions of

proteins in living tissue and aids in current biochemical areas of research such as

pharmaceuticals.

An example ProtoMol conformational sampling computation proceeds as

follows. First, the researcher retrieves appropriate positional, relational, and phys-

ical parameter files for the protein of interest. The researcher will take the initial

conformation in a selected environment, apply a random variation, and allow

1A conformation is an energetically minimal geometric configuration that is significantly

different from other known conformations.

61

molecular dynamics to proceed. If the new state of the system meets certain

physical properties, then it may be declared a new conformation. The new set of

conformation ensembles can then be further analyzed via additional computation.

As the simulation runs, large intermediate files are created regarding the state

of the system in addition to a final set of unique conformation candidates. Re-

searchers are interested in not only the final result but also intermediate results

as the simulation progresses in a deterministic manner. From the operation of

ProtoMol and other biomolecular simulations, we note several important char-

acteristics that GEMS addresses:

• Data browseability;

• Reproducibility; and

• Data valuation and prioritization.

GEMS is intended to enable evolving methods for biomolecular research, thus,

the data sets must be easy to share, discover, and access by users concerned only

with data descriptions. Additionally, these data sets should be reproducible given

the appropriate descriptors, adding to survivability in the case of loss as well as

simple scientific provenance information.

A notable feature of GEMS is that it allows to user to specify critical data

files through metadata and hence prioritize the target redundancy levels for the

system. Rather than simply striving towards a uniform redundancy level, the

importance of the data can be taken into account when reacting to inevitable

subsystem failures. GEMS will attempt to maximize redundancy levels of critical

data but will yield space on overloaded disks provided that minimum redundancy

is preserved on critical data.

62

Finally, the incorporation of XML metadata for both placement and searching

allows GEMS to build on existing work and arbitrarily extend search sophistication

as necessary. A critical aspect in the development of ProtoMol is the ability to

improve simulation speed. Hence, it would often be necessary to insert arbitrary

tags to denote algorithm approaches and internal notes. In addition, GEMS is also

capable of including already well-defined characteristics of results in the manner

of BioSimGrid [93].

3.3.5 Toolset Summary

The GEMS toolset design meets the needs of researchers working in the com-

putationally exhaustive and data centric field of biomolecular simulation. The

suite of programs provides a new method for users to find, use, and store large

data files. This is accomplished by implementing a novel distributed data storage

model which combines autonomous storage resources, an appropriate metadata

specification, automatic storage allocation and replication policies, and an inter-

face for distributed computation. The prototype implementation has been shown

suitably functional to demonstrate the model’s potential as a production system.

3.4 Applications

GEMS has been used as a scientific repository in two major projects over

the last four years: transition path sampling and hyperdynamics. The work on

transition path sampling was originally presented in Spring 2007 [25]. The work

on hyperdynamics was carried out over Summer and Fall 2007.

63

3.4.1 Transition Path Sampling

The successful implementation of the transition path sampling (TPS) method

relies on the computation of numerous trials - trajectories - executed in parallel.

Transition paths are rare events that occur when a trajectory initiated at a known

point in phase space passes nearby to a target point. The vast majority of trials

fail, but those that are successful are used to obtain information about the state

transition of a molecule.

In an experiment run atop the GEMS system, 2000 trajectories were attempted

on the WW protein domain of the PIN1 enzyme, employing ProtoMol simula-

tions. At 65 hours per simulation, the total CPU time consumed totals 130,000

hours on a Pentium 4 system, executed on heterogeneous Condor resources. The

output required 1.6 million files, which were replicated to improve survivability.

The total storage was over 1 TB for this run. After execution, postprocessing of

the data files was performed in another distributed and data-intensive process.

Performance analysis for the postprocessing is broken down thoroughly in Section

5.2.4.2.

During the PIN1 experiment, multiple particular strengths of the GEMS sys-

tem were identified.

• Parameterized file management;

• Distributed storage access;

• Workflow management;

• Secure authentication;

• Cooperation and dynamism; and

64

TABLE 3.1

OUTPUT BANDWIDTH FOR WW DOMAIN SIMULATION

Output Resolution Number of concurrent simulations

64 128 256

1000fs 0.05 MB/s 0.1 MB/s 0.21 MB/s

100fs 0.53 MB/s 1.06 MB/s 2.12 MB/s

10fs 5.3 MB/s 10.6 MB/s 21.2 MB/s

• High throughput data generation.

File management and the metadata catalog enabled the large number of files

to be distributed among a large network of over 100 file servers to be automated,

allowing for application-specific workflow programming. Security and cooperation

were required to maintain the integrity of the computation results on a large-scale

multiple user, multiple resource provider system. Dynamism is exemplified by the

ability of the system to continue operation as resources come and go, a common

occurrence in such large runs.

Additionally, the massive available parallelism of the underlying storage net-

work enables high frequency observation data output from the parallel tasks, im-

proving the scientific quality of the results. As shown in Table 3.1, high output

frequencies for large numbers of jobs writing to independent files could overwhelm

a typical file server, even in a non-data-intensive case.

65

3.4.2 Hyperdynamics

Another algorithm commonly used to investigate transitions from one meta-

stable state to another is hyperdynamics. Hyperdynamics does not require prior

special knowledge of the system, instead, the method uses statistics obtained

from simulation progress and uses them to modify the potential energy surface in

a controlled way. This is represented by a bias potential that lifts the simulation

out from a stable region and into saddle regions of interest.

Critically, applying additional bias levels poses hazards. If the bias is too high

within a metastable region, the system will not reach a local equilibrium in the

biased trajectory and the timescale of the trajectory will be incorrect. On the

other hand, if we apply fewer bias levels, a longer simulation will be required for

the system to move from one metastable region to another.

As a demonstration of the difficulty involved in this process, Figure 3.5 di-

agrams the timescale performance as a function of branch location on the time

axis. Thus, the researcher controlling the simulation must monitor the histograms

above for error and smoothness while selecting branch points that maximize sim-

ulation efficiency in terms of timescale. Since the application of additional bias

levels increases computation time per segment, we employ a performance ratio (R)

that indicates efficiency: work done measured by timescale per unit of CPU time,

or

R =
timescale (simulated femtoseconds)

CPU time (real seconds)
. (3.1)

This simulation on a 400 atom Argon system was executed on Intel processors

running at 1.4 GHz. Langevin dynamics [122] were performed with no bias for 50

picoseconds (ps), in 10 segments of 5ps each, with temperature T = 300 K. One

segment at bias level 1 was performed. After that, the simulation was carried out

66

Figure 3.5. Performance ratio R (Equation 3.1).

The ratio is plotted above a diagram indicating two illustrated example
branches, 55ps and 65ps. R is plotted as a function of branch time (ps).

67

after branching to bias level 2 after each of 4 possible segments. The performance

ratio was obtained for each case, including the case where the simulation stayed at

level 1 for the entire experiment. As shown in Figure 3.5, branching from level 1 to

level 2 at 60ps results in the best performance, a total timescale of 282,851. This

may be compared to the timescale obtained without the use of hyperdynamics:

75,000.

In summary, selecting optimal branch points for an arbitrary number of bias

levels is not possible to do in advance. In our present application, viewing output

on the fly is not enough. The timescale and entropy histogram indicate if the

simulation has progressed to the point at which applying another bias potential

level would be beneficial and free from serious error. As the algorithm under

study is new and there is no analytical method to make this determination, tools

to enable ad hoc exploration of the parameter space are required. Managing the

complexity of such an exploration is covered in more detail in Section 5.3.

Each execution of the ProtoMol molecular simulator [84] is considered a

GEMS transformation mapping input files to output files, which altogether make

up a segment. Each segment is stored as a GEMS config and is tagged with user-

defined parameters, formatted as parameter sweep-compatible variable names and

values. While the underlying files are managed, replicated and migrated due to the

potential of host churn, the GEMS server maintains the relatively small amount

of metadata required to perform the operations needed by a scientific filesystem.

Most importantly, configs may be queried for existence, retrieved in full, used as

input to new jobs via a virtual filesystem, or created by specifying files and tags.

Configs conflate concepts such as workflow node, application checkpoint, and

staged input data. For example, in this application, a complete segment stored as

68

a config primarily represents the completion of a workflow element. Since the data

files are not directly returned to the user but are asynchronously replicated over

the storage network, they form a layer of potential pre-staged computation sites.

The system supports the use of network topology information to optimize replica

access and job placement. Additionally, these segments may act as checkpoints to

restart linear jobs, such as in a simple but long molecular dynamics trajectory.

Configs may be viewed graphically with simple custom GUIs. As an example,

Figure 3.6 shows a combination of parameter tags from the central database as

well as a view of plotted data files. These distributed hyperdynamics executions

were followed remotely by Matlab postprocessing, generating and storing simula-

tion output and plots on the remote cooperative system. Parameters include the

execution host and output timescale, a hyperdynamics-specific indicator of work

performed and the benefit of the new algorithm. This client also uses parameter

tags to arrange the tiles in the frame, and pulls image files from the storage net-

work to provide a high level view of workflow progress. This provides an intuitive,

geometric feel to the workflow state as opposed to the flat view offered by the

generic GEMSview browser.

The database-like abstraction created by the system enables typical table-

oriented queries to be performed, such as “How many jobs at temperature 300

Kelvin have completed?”, or “Show me the CPU performance for all Argon sim-

ulations on the Helios cluster.” The parameter queries may cover scientific and

system data or a combination as discussed below. Since the system also stores the

actual data files used by the simulator on the cooperative storage/computation

network, it enables and orchestrates high bandwidth, parallel access to large

data files for existing codes. This combination thus exceeds the utility offered

69

Figure 3.6. Graphical user interface representation of hyperdynamics.

The tool automates simulation branch restarts by setting up a hyperdynamics
bias. Thumbnails show that entropy distributions in segment 3 and 4, level 0 are
similar. Therefore, one can branch from segment 3 to level 1. At level 1, the bias
will push the system away from the conformational space already traversed in

level 0.

70

by systems-specific tools or unified SQL databases.

A hyperdynamics simulation trajectory can be viewed as a collection of smaller

segments of trajectories corresponding to different bias levels. The user needs to

decide when it is appropriate to branch to the next level by visually inspecting

the distribution of entropies S. A branch is appropriate from one level to the next

when the distribution of entropies (S) reaches a steady state in one area of the

entropy space of the system. Our client-side tool helps the researcher make these

decisions effectively and finish simulations faster. Figure 3.6 shows an example

where branching is performed after running 3 short segments in level 0. The shape

of the distribution of S does not change significantly from segment 3 to segment 4.

This is an indication that the system might be trapped in an entropy-dominated

region. Branching to level 1 biases the system out of the region already visited.

The system will still visit the biased region and reach local equilibrium. However,

part of the trajectory inside the biased region is coarse-grained. The tool allows

researchers to decide from which segment to branch by clicking on the thumbnails.

One can also look at an enlarged plot of the distribution or perform job control

operations.

As an informal demonstration of the effectiveness of this approach, a user

attempted using the GEMS framework for interactive hyperdynamics. The user

based parameter exploration choices based on the knowledge of hyperdynamics

properties and graphical feedback from the client tools in an attempt to observe

the condensation of a droplet from a gas. A 1000 atom gas phase Argon system

was simulated at T = 73 Kelvin, using a Langevin impulse integrator [122]. The

droplet was observed at segment 17, level 3. The total number of segments created

was 70, totalling 6.2 CPU hours on 5 hosts. However, the turnaround time was

71

TABLE 3.2

INTERACTIVE HYPERDYNAMICS RESULTS

Method Total (hours) Turnaround (hours)

Single long run 1.8* 1.8*

Full search 5800* 1.4*

Interactive search 6.2 1.4

*Result extrapolated from experiment.

only 1.4 hours.

By extrapolating from the results achieved in this experiment, we can estimate

the cost of performing the experiment with another method. Results are tabulated

in Table 3.2.

• Employing a single long ProtoMol run would have required running a

single job with traditional dynamics to achieve the target timescale at which

the droplet was observed. This would result in 1.8 hours of single processor

computation.

• Additionally, a full search of all pathways of length 17 could have been per-

formed, one of which would have resulted in the observed droplet. This

would rely on the implementation of perfect parallelism on 216 processors

for the final leaves, and ignores the scalability issues mentioned in the pre-

vious sections. This idealized computation would result in total resource

consumption of 5800 CPU hours. However, since the path length is still 17,

the turnaround time is again only 1.4 hours.

72

3.5 Performance

The data-driven grid repository models a the computational environment as a

landscape of data sources and sinks of interest, laid out as a potential workspace.

Mobile jobs, submitted by data-aware schedulers, interact with the data landscape,

consuming existing data objects and storing output data records through unitary

operations called transforms [54]. Users of a opportunistic grid of arbitrary size

may have temporary access to a large variety of existing storage resources, accessi-

ble over standard APIs. However, individual users would typically have difficulty

organizing these sites into usable categories, ensuring data survivability in the

presence of churn, and efficiently using the resources as data sources and sinks.

Thus our work emphasizes usability and control in repository data management,

combined with performance.

3.5.1 Programmatic Repository Access

Compiled user codes are unable to accommodate the variety of new and exper-

imental APIs so new systems must provide tools to connect them to new services.

Our approach to this problem builds on previous work that creates abstractions

within UNIX-like structures. Since GEMS is primarily a grid controller, it does

not deal with these structures directly but provides tools to orchestrate the con-

nections. Additionally, our solutions reinforce the generally held conception that

coarse grained, suboptimal performance is achievable by easily portable software

while better tools meet portability challenges. In these examples, we consider

data access methods for scientific users launching large batches of jobs which run

on a compute network in which an opportunistic storage network is embedded.

73

• G/P

GEMS provides a data repository for running scripts through traditional get

and put operations (GEMSget and GEMSput). Interleaving these within

script operations results in a data staging model similar to that used by

Condor and other systems. However, since data records and replicas are

stored among the compute sites, there is great potential for data parallelism

and locality. This solution is highly portable as it relies only on the GEMS

client toolkit, a Java implementation, but relies on significant local disk

usage and data copying.

• PIPE

Second, GEMS creates data sources and sinks that may be targeted by input

and output streams. For example, users may reserve larger amounts of space

within the GEMS system than is available on a local client machine, and then

use a reference to the reserved location as a streamed output target, enabling

the creation of large archives without large local space or data copying.

This method offers relatively high performance and an intermediate level of

portability and complexity - it again uses only the GEMS client tools but

requires interprocess communication connected by the user through UNIX

pipes or a similar technique.

• VFS

Third, GEMS offers client tools to manage file naming conventions used

by the Parrot virtual filesystem. This user space adapter provides system

call translation to reformulate ordinary data access methods into distributed

filesystem RPCs. GEMS clients simplify user access to this tool when op-

74

erating within the replica system. While this solution offers the most func-

tionality, it is only available on Linux.

3.5.2 Simple Performance Experiments

Experimental cases were performed on an simple archive creation workload,

measuring the time taken to create a simple tar file from a local filespace used by

a real world scientific application, the hyperdynamics experiments. The resulting

archive is 3.7 GB and contains 13,934 files. The client creation site runs Linux

2.6.9 on 3.2 GHz Intel machine2 and the data storage sites ran Linux 2.6.9 on

dual 1.8 GHz 64-bit AMD machines3, all on the same institutional network. The

GEMS server was located on a dual 2.8 GHz AMD system4 running Linux 2.4.27.

The three methods from Section 3.5.1 were run and profiled; results are shown in

Figure 3.7.

The G/P method created the archive and stored it with the GEMSput repos-

itory insertion tool in separate steps. The method PIPE consisted of three steps:

creating a repository reservation with GEMSreserve, piping the output of tar

into a Chirp I/O forwarding tool, and on completion, committing the repository

record with GEMScommit. Each GEMS method took less than 2 seconds so the

time consumed is not visible. The VFS method created the record using GEM-

Srun to drive tar execution inside a Parrot environment, and managed record

construction internally.

Results showed that streaming output methods are slightly better than the

two-step method, and that moving data through the pipe was slightly faster than

moving data through the virtual filesystem. In general, the concurrency gained

2caravaggio.helios.nd.edu
3sc0-*.cse.nd.edu
4gems.cse.nd.edu

75

G/P PIPE VFS
0

100

200

300

400

500

600

Figure 3.7. Archive creation times via various methods.

In the G/P case, the turnaround time consists of two components, local archive
creation (black) and archive transfer to the repository (white). The other

methods perform both operations concurrently.

76

by using the more complex PIPE or VFS methods may improve performance

for processes that interleave computation with data movement, as shown here for

data insertion.

Data retrieval performance is analyzed in detail in Section 5.2.4.2: since GEMS

is designed as a repository capable of serving multiple readers in parallel, the

analysis of this functionality must be taken in the context of the grid-enabling

runtime toolkit.

3.6 Summary

Using the aforementioned techniques, GEMS implements the basic functional-

ity required by a scientific repository: the ability to store, publish, and access large

data sets. However, the ability to use partially trusted, unreliable volunteered re-

sources depends on the ability to handle storage faults appropriately without data

loss. In the next chapter, we attack the data survivability problem.

77

CHAPTER 4

DATA SURVIVABILITY

Using a cooperative, unreliable network of heterogeneous volunteer storage

resources to build a distributed system results in many challenges. Providers

are free to leave the system, and lack of reliability requires that the system be

equipped to continue operating in an ongoing state of partial failure. Specifically,

data management in such an infrastructure requires replication, parity techniques,

or some other use of redundancy. In this chapter, we discuss our approach to data

management with respect to fault tolerance.

The fault management system in GEMS was developed in 2006 [160, 161].

4.1 Overview

Large, shared storage systems create new problems. As users increasingly de-

pend on greater numbers of more distant remote systems for storage, the under-

lying systems become less trusted and reliable for a variety of reasons. A storage

provider could revoke storage by filling the storage device, evicting users, or sim-

ply turning the machine off. Additionally, the scale of the number of hardware

components involved implies that individual components will fail regularly.

In a large distributed computer system, the process of machines joining and

leaving the system is called churn; the churn of a system may be studied to obtain

78

qualities about the lifetime of a system member. Churn models often assume that

once a resource leave the network, its state is invalidated so it cannot return as

the same member. Systems that allow rejoining after failure use the concept of

availability ; a resource may be unavailable during a reboot but is expected to

come back to the system with its data intact.

Churn is often studied in the context of peer-to-peer systems [77] in which

the primary job of the system is to keep its fast search structure intact. Rapidly

moving large data objects to keep them alive in a wide area peer-to-peer system

with a high churn rate is not feasible, but a fast search structure allows the

system to quickly locate members and objects that do exist. In a system with

availability challenges, data objects may be replicated to improve the probability

of their availability. GEMS thus assumes that large data files can be kept alive

on infrastructures with availability challenges but relatively low churn, such as

university networks. The Notre Dame network is used for a variety of projects

that are feasible with moderate levels of unavailability [90].

4.2 Initial Experiments

The original GEMS replication method in 2005 used a simple 3-step technique:

1. Find a file with missing replicas;

2. Create an additional replica for this file;

3. Repeat.

GEMS performed this method successfully enough to manage small amounts of

real-world simulation data on the Notre Dame network.

79

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

S
to

ra
ge

 (
G

B
)

Time (hours)

avg replicas: 1

avg replicas: 2

avg replicas: 3
dataset limit: 40 GB

one disk lost

five disks lost

ten disks lost

data inserted

replication
in progress

replication
complete

perceived storage used
actual storage used

Figure 4.1. Example of fault tolerance over time.

The figure shows the first twelve hours in the lifetime of a 14 GB data set
entered into GEMS for safekeeping. Out of a storage cluster of 20 disks, the

system policy has allotted GEMS 40 GB to store this data set. Three failures
are induced, but GEMS detects and re-replicates lost data. The discrepancy
between actual and perceived storage indicates the time needed to discover

failures via file scanning.

4.2.1 Simple Replication Experiment

In this section, we present the original replica method in GEMS on actual

simulation data. GEMS relies upon several other resources that are used for

data and metadata storage, as well as compute hosts. In these tests, we used 20

heterogeneous Chirp storage servers and a the dual-processor GEMS server1, all

of which were running Linux.

During this 12 hour experiment, all machines remained available to other non-

GEMS users. The storage space utilized as reported by GEMS along with the

actual physical storage utilized was recorded and plotted. An important practical

aspect of this test is that storage availability fluctuates not only as a function of

the storage utilized by GEMS but also the storage utilized by all other non-GEMS

1gems.cse.nd.edu

80

users. In this test, we assume all stored data is output data and is subject to tight

replication limits. The GEMS components then react appropriately, replicating if

available storage permits and deleting as storage becomes limited.

Figure 4.1 presents the system’s functionality during this test with key events

labelled. At the outset the distributed storage pool contains no GEMS data and

the replication component of GEMS is not running. To start, multiple GEM-

Sput operations are executed. For simplicity, in each GEMSput the number of

replications requested for each file was set to 3. Once the GEMSput operations

completed, we turned on the replication method and it attempted to provide all

replications requested. Near hour 4, GEMS runs out of space to create additional

replicas, so the usage level flattens out. GEMS processes iteratively adjust the

storage to make sure that no record has 3 replicas while another record has not

been given the 2 replicas it is permitted.

Once replication levelled off, we deleted the GEMS files from an increasing

number of clients to simulate resource owners who have decided to temporarily

evict GEMS from their system or experienced a hardware failure and replaced it

with equivalent but empty storage device, simulating churn. Interestingly, for the

smaller storage losses GEMS records little to no deviation in total capacity. The

replication process continues from its current point in the file list and restores the

missing copies as it discovers them.

Generally speaking, this test shows that GEMS can greedily consume the

amount of resources that it has been granted, then safely protect storage resources

from being overused.

81

4.2.2 Discussion

While this method showed some signs of success, its simplicity results in po-

tential problems:

1. Replication is a blocking operation that impedes progress through the file

list;

2. Faults are handled in the order observed, without respect to severity; and

3. If fault handling fails temporarily due to unavailability of existing replicas

or other problems, the method must abort the fault handling and continue

the loop.

A more advanced method is need to separate fault observation from repair, im-

proving concurrency and adding flexibility. Faults should be prioritized to quickly

prevent total replica loss and ensure that files more important to users are handled

first. Fault handling failures themselves should also be handled appropriately.

4.3 Fault Prioritization and Feedback Control

The common technique to gain storage reliability over a long period of time

is the creation of data replicas on multiple servers, but in the presence of server

failures, ongoing corrective action must be taken to prevent the loss of high value

and low value data. Such a system is difficult to control, and replica management

is typically handled in an ad hoc manner, as shown above. In this section, we claim

that repairing prioritized faults is a scheduling problem, founded on the need to

minimize a risk-based error function, E. Citing experiments on a prototype replica

system for molecular simulations, we apply concepts from control system theory

to analyze and handle the application of corrective action.

82

4.3.1 Discussion

To achieve fault-tolerance and data preservation over long periods of time,

replicas of each datum stored in the system are created and spread across large

numbers of devices. The creation of replicas amplifies the size and scope of the

data management problem. Additional replicas demand additional storage space.

Appropriate metadata regarding the status of the replicas must be constantly

maintained to keep the system intact. When data is to be retrieved, existing

replicas must be located, and access to the data must be granted to the user.

In a writable system, changes to the data in one replica must be propagated to

all copies in a consistent way. Additionally, the system is dynamic. Appropriate

response actions must be taken if a file can no longer be accessed. Analogously,

action must be taken if a whole storage device or file server becomes unresponsive.

In this section, we describe our solution to the replica management problem.

Our architecture is presented in Section 4.3.2, and in Section 4.3.3 we provide our

model for replica systems in general, and show how it can be used to analyze the

actions of a replica management system.

4.3.2 Control System Architecture

GEMS is an active replication system. Over time, the server processes actively

probe for problems and determine a response, typically creating additional replicas

or garbage collecting storage for later use. The active maintenance in GEMS

consists of three components, the Auditor, Replicator, and Garbage Collector.

The Auditor uses the metadatabase as a guide, and contacts the storage servers

to determine whether the actual system is consistent with the information in the

database. If a fault is detected, relevant information is compiled into a Problem

83

Storage Storage StorageStorage

Catalog

U

O
b

se
rv

a
tio

n

Priority Queue

Plant

Controller

C
o

rre
ctio

n

Auditor Replicator

X
File copy

Figure 4.2: GEMS replica control loop.

object, ranked with a priority value, and enqueued in a Priority Queue. The

Replicator monitors the Priority Queue, removes the Problem object representing

the highest ranked fault, and determines a response.

In the case of a typical server failure, the lost file must be identified by con-

sulting the metadatabase. Existing copies of this file are looked up, free space

is located on a Chirp storage server, and the file is copied to restore the replica

count to its desired level. If files are over-replicated, or otherwise inserted into the

GEMS storage space inconsistently with the metadatabase, they will be detected

by the Garbage Collector component and deleted to free space.

The maintenance process is shown in Figure 4.2. The Observation step in the

control loop represents the active probing of the Auditor component for faults.

Corrective action is shown as the Correction signal from the controller.

4.3.3 Control Model

In following, we discuss some principles to allow the use of control system

theory to analyze our replica management system. We begin with basic definitions

84

and symbols, and then describe some basic tools from control system theory that

prove useful when analyzing the GEMS system.

4.4 Fault Management Philosophy

The GEMS framework is subject to many of the same error modes that plague

its cousin grid distributed systems. Sample sources of faults include: an errant

user, the desktop hardware, the OS, the TCP connection, the local switch, nu-

merous routers, the storage server software and its hardware, etc. Even though

the apparent severity of one of the mentioned failures may differ by orders of mag-

nitude (the loss of one node due to hard drive failure versus the loss of an entire

DNS domain due to router failure), the GEMS design embraces the spectrum of

failure with one unified resolution policy. Observed fault handling is a routine

maintenance operation.

To give this concept substance we introduce the concept of a Problem. A Prob-

lem is an object in GEMS which can be assigned a priority based on its severity

and queued for resolution. Problems are generated through Auditors which con-

tinuously audit the system state with respect to the metadata, physical reality,

and user requests as reflected in the metadata. On the failure side of the Prob-

lem continuum, one example would be the loss of a local switch providing access

to ten nodes, say, Cluster A. The Auditor would recognize that the metadata

pointing to Cluster A is now inconsistent and for each unavailable file a Problem

will be instantiated with all of the pertinent information necessary for calculation

of a Problem priority and resolution. On the maintenance side of the Problem

continuum, consider a client who submits a record of ten files into the database

with a requested replication of 5 each. The replica will make sure the first copy

85

of each file is submitted to stable storage by the client tool but the remaining

requested copies will be handled through the instantiation of Problems as the

metadata shows an insufficient number of replications with respect to the users

request. Hence, Problems can be subtyped to provide a useful abstraction for

system operations.

4.4.1 Definitions

Fundamental to the analysis of a replica system is the number of replicas

of a given file. The system contains N files, where each file fi has xi replicas,

fi1...fixi
. Each replica must be stored on a server c, which means that for each fij

in existence, ∃k : fij ∈ ck. We loosely say fi ∈ ck if ∃j : fij ∈ ck. The replica count

is constantly changed as files are lost due to storage loss, or as files are replicated,

so we have xi(t) representing the number of replicas for fi at time t. If xi = 0,

then fi is permanently lost. Each file has a size in bytes, si. The total storage

consumed by the system can be expressed as:

S(t) =

N
∑

i=1

sixi(t). (4.1)

The number of storage servers and the amount of storage offered is also con-

stantly changing over time. Of the M storage servers, dj represents the amount of

disk space offered by server cj. Thus physical storage limit of a server represents

a constraint on the files that may be stored there:

∀cj ,
∑

i:fi∈cj

si < dj . (4.2)

The amount of available storage C in the system at a given time t may be

86

expressed as:

C(t) =

M
∑

j=1

dj(t). (4.3)

A clear consequence of (4.2) is that C ≥ S.

At the time of data insertion into the system, the user may specify how many

replicas are requested for a given file, which we call ui. If xi < ui, then the user’s

desired replication level is not being met, and replication should occur. The total

storage requested by all users is:

U =

N
∑

i=1

siui. (4.4)

We consider U to be the reference signal to the GEMS system; the GEMS

system is constructed to keep the underlying storage in line with the requested

replica level.

4.4.2 System Response Analysis

We begin this discussion with an example: an experimental use of the system

over a short period of time, as shown in Figure 4.3.

This experiment proceeded over a period of 5 hours. A GEMS installation

was configured, and access was granted to Chirp storage servers running on 19

machines. The system was configured such that the amount of apparently available

storage for GEMS was near 350 GB. The given diagram plots the amount of storage

apparently available as observed internally by GEMS, and the amount of storage

apparently consumed as observed by GEMS. Both observations are significantly

delayed behind real time.

For the first 1.5 hours, data was inserted into the system using GEMSput.

87

 0

 100000

 200000

 300000

 400000

 500000

 0 1 2 3 4 5

S
to

ra
ge

 (
M

B
)

Time (hours)

Space used by GEMS

MB available to GEMS
MB used by GEMS

Figure 4.3: System response to induced server faults.

The input data consisted of 50 files, each 337.6 MB in size, each replicated 10

times. At hour 1.5, the system contained 500 files. Shortly after data insertion,

a fault was induced on one of the storage servers, causing it to lose all GEMS

data. This means that those replicas were permanently lost, but that the amount

of storage available was not reduced. The effect is almost imperceptible on this

plot. At hour 2, faults were induced on 4 servers, causing a noticeable bump in

the amount of storage apparently consumed. At hour 3, faults were induced on 7

servers, causing an even more significant bump.

This type of diagram may be compared to a diagram describing the response of

a system to an impulse. In this simple experiment, since all the files are equivalent,

the input signal can be described as U = 500 × 337.6MB, requiring the system

to maintain 500 files of 337.6 MB each. Deviation from U may be measured over

time to determine how poorly the system is able to respond to the forced change in

state. A variety of error functions may be developed to quantify the performance

of the system.

A simple metric is simply the storage used by the system. GEMS should not

leave free space unused when additional file replicas are requested. For t in the

88

runtime of the experiment, the error function in (4.5) simply measures how well

GEMS is filling the available space with data.

E =

∫

t

min(C(t), U(t))− S(t) dt. (4.5)

Equation (4.5) offers no information about what is filling that space, whether

it is high priority data, or even whether some files are over-replicated. If the

system is full, i.e. U ≥ C, this equation is a equivalent to:

E =

∫

t

N
∑

i=1

(ui − xi)si dt. (4.6)

Since the system should not be rewarded for over-replication, we have:

E =

∫

t

N
∑

i=1

(max(ui − xi), 0)si dt. (4.7)

For many purposes, including fairness, file size is almost irrelevant to the worth

of data. In many cases, if a single file is lost, of any size, the amount of work

that the researcher would have to do to diagnose the problem and rescript the

simulation run is similar. Strictly in terms of per-file replication counts, one could

measure unweighted replica shortages as:

E =

∫

t

N
∑

i=1

(max(ui − xi), 0) dt. (4.8)

A related measurement is the number of files that have been completely lost

due to the loss of all of their replicas. We measure this as:

Z(t) = (The count of files permanently lost.) (4.9)

89

4.4.3 Optimal System Response

Most users of storage systems can specify which files are more important than

others. GEMS makes expressing this evaluation easy, and provides a few ways

of specifying data worth to the system. As discussed in Section 3.2.4, GEMS

maintains a great deal of metadata about the data sets it stores which can be

used.

The performance of a replica management system should be measured in terms

of what the users require from the system. This is partially captured in the

difference ui − xi, but this does not capture the value of the data.

A simple observation from the experience of running simulations is that input

files are more valuable than output files. This is especially true in the GEMS en-

vironment, which is designed to promote the sharing of input files: it is convenient

to have pre-computed output files, but if lost they may always be recomputed by

combining the input files and the execution information from the GEMS meta-

database. Additionally, other factors may weight the value of data files.

Data value would not be important if GEMS had unlimited ability to respond

to faults, but this is not the case. The typical response to a fault, as described in

our experiment, is to create an additional replica. The ability to create additional

replicas is limited by several factors, including the availability of source servers,

destination servers, and the network. GEMS limits the stress on servers by ensur-

ing that the replication process never makes use of a given server for more than

one task at a time, i.e., a server is either transmitting a single file, receiving a

single file, or idle. GEMS does not currently explicitly limit its consumption of

network resources.

The result of these observations and constraints is that faults in a large system

90

such as GEMS must be prioritized: they can not all be handled or repaired at

once, and they do not all represent a threat to data of the same value. This line

of thinking led to the creation of the Priority Queue in the GEMS controller,

between the Auditor and Replicator in Figure 4.2.

The architecture necessary is simple enough, but the priority assignment sch-

eme has not been dealt with. Given a certain set of faults, what is the appropriate

action to take?

If we assume that we have an error function E that is correct, then we simply

must minimize E. At each opportunity, the system must take the action that will

likely result in the minimum value of E. Since future values of the cost function are

affected by unknown, unpredictable events such as server failures, we must make

standard assumptions about the future status of the system. For example, we can

assume that all servers are equally likely to fail, regardless of the content that is

stored on them. This implies that we may minimize E by locally minimizing the

cost function. If the cost function E is easy to understand, this is easy to do.

Our cost function is simply the sum of a set of values that result from observed

faults. Each fault is prioritized in some way. So the set of actions that we may take

is made up of the set of corrective actions we may take to repair an observed fault,

and minimizing the cost function is equivalent to repairing the highest priority

fault first.

4.4.4 Determining a Priority System

The remaining problem is to find a method to pick an appropriate E. This

is now equivalent to the problem of prioritizing faults. The priority of a fault is

then some function applied to the available information about that fault.

91

Field Type

RequestedReplicas integer

CurrentReplicas integer

Duration date

Size integer

InputFile boolean

FileMetadata object

Priority integer

Figure 4.4. The Problem object in GEMS.

In a typical replica management system, there are several available statistics

about a fault. We have the number of requested replicas from the user, the number

of replicas intended to be allocated by the system, the number of observed existing

replicas on storage servers, the time elapsed since the fault was detected, and the

size of the affected file. In the GEMS system, we also have information about

whether the file was an input file to a simulation. GEMS represents each observed

fault as a Problem object, with fields summarized in Figure 4.4.

Each Problem observed by the Auditor represents a file that is below its re-

quested replica count and thus is in need of additional replication. The Request-

edReplicas field indicates how many replicas of this file were requested by the

user, and indicates indirectly how valuable the user feels this file is. The Curren-

tReplicas field indicates how many replicas currently exist in the system, which

is a volatile observation. The system stamps each Problem with the time of ob-

servation, stored under Duration. The size of the file is stored as Size. File size

may affect the resulting response in a variety of ways, for example, the system

may choose to delay replicating a very large file to allow hundreds or thousands

of smaller file copies to complete first: performance which may be desirable under

92

many of the error definitions given above. The InputFile field is true if the user

has indicated that the given file is an input file to a simulation. FileMetadata is

a compound field that provides the filename and replica locations, and is needed

to perform the repair. Based upon all of this information, the Priority field can

then be used to determine which Problem to process next, highest Priority first.

Each Problem object contains a set of members which are necessary for the

Problem’s resolution and which also serve as the parameters for the priority cal-

culations. From the set of priority members a priority is calculated internally

by the Problem on instantiation. Of key interest is the ability for the Problem

to recalculate its own priority. For example, the priority queue could trigger all

Problems in the queue to recalculate their priority (stale Problem member data

is addressed in the following section).

A good demonstration of the priority recalculation utility leads us into the dis-

cussion of priority function parameters. Classical job starvation concerns would

prompt us to include “time in queue” as a parameter with varies in proportion to

an increased priority. Problems involving a host failure which has only been recog-

nized for a short period are not handled immediately, which gives the host system

a chance to recover, eliminating an unnecessary file transfer. A second parameter

of importance for our scientific user base is file type. Whereas an output file may

be automatically regenerated because the metadata contains enough information

to derive the output files, the input configuration files are irreplaceable without

human intervention. To again reduce the probability of permanent data loss we

increase priority in with respect to the number of remaining replications. Addi-

tional parameters such as file size allow us the ability to fine tune the prioritization

for improved response to massive failure scenarios. An important observation in

93

biomolecular simulation data sets is that input files tend to be small, and output

files are large. This allows us to aggressively replicate the input files while being

more cavalier about output files, which saves storage space and bandwidth.

In GEMS, the priority function (P) is related to the above error functions but

is also influenced by more general notions of fairness, as well as known observations

about the underlying storage system. For example, it is known that many storage

servers that are unavailable will eventually come back, so a delay (D) component

is introduced, and the priority is based around the duration in minutes (M) of the

Problem, scaled by the risk of total file loss (K). We adopt the convention that

Problems with P ≤ 0 are left in the queue. Currently:

P = MK −D (4.10)

4.5 Experiments with Prioritization

In this experiment, we demonstrate that the new replicator functionality im-

proves upon the previous functionality, which is similar to functionality obtained

in a system with limited access to simulation metadata. Such a data-agnostic

system could only repair errors in the order observed, one at a time, and could

not respond dynamically to a rapidly changing storage fabric. Our prototype can

emulate this behavior if we make all the priorities equivalent, and perform in-order

responses.

Our example shows that the prototype can respond to faults in the order

specified by the priority function. In this case, small files have priority over large

files, which is typical in a biomolecular simulation environment where the input

files and configuration files are irreplaceable, and the output files represent derived

94

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2000

4000

6000

8000

10000

Time (seconds)

S
to

ra
ge

 U
til

iz
ed

 (
M

B
)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

P
ro

bl
em

s
In

 Q
ue

ue

MB

Problems
Avg Priority (Scaled)

Storing 1000 Files

Auditor Start

All Problems
Handled

Replicator Start
Auditor Stop

1000 "Rep Req"
Problems In Queue

Figure 4.5. Priority queue performance.

data and are only required to speed the retrieval time.

The underlying experimental setup consisted of the client machine, the GEMS

server, and an underlying storage network of various heterogeneous Linux ma-

chines from the Notre Dame campus network running the Chirp file server. The

client machine, a 900MHz AMD Linux system, controlled the experiment by com-

municating with the GEMS server 2, via the GEMS clients.

As demonstrated in Figure 4.5, we start by disabling the GEMS storage man-

agement components, the Auditor, Replicator, and GarbageCollector. The simu-

lation data sets, about 3 GB total, are added to the system, so each file has one

copy on some Chirp server. The Auditor is then turned on and replica shortages

are detected: the files need to be replicated up to the requested level. The graphic

shows the average priority of problems, which are scored by, in this case, the size

of the file and the replication count. The Replicator is turned on, and the average

2gems.cse.nd.edu

95

priority quickly drops as high priority problems are quickly handled by replicating

these small files on other Chirp hosts. The average priority slowly levels off as

larger, low priority output files are copied over the network, increasing the disk

usage level.

4.6 Summary

Replica control systems have complex dynamics that must be controlled care-

fully to minimize the risk of the loss of high and low valued data. There is a need

to quantify the state of the system and its current level of risk in a cost function.

The resulting error function for the system may be then be used to control the

system in a systematic way, as opposed to an ad hoc manner.

Specifically, our approach solves the three problems mentioned in Section 4.2.2.

Concurrency is enabled by the division of the Replicator and Auditor components

and parallel use of the network connections among storage providers; a compre-

hensive prioritization scheme is employed that utilizes much available information;

and faults that cannot be immediately repaired may be simply requeued.

The replication model in GEMS evolved from a simple, automated find-and-fix

agent to a multicomponent, prioritized, parallelized controller with multiple levels

of fault management. This control model enables the construction of repositories

on unreliable resources which would otherwise be unsuitable for data services, and

better utilizes resources that often go untapped: the storage devices and peer-to-

peer network connections in opportunistic computing networks. These networks

can be used as a fabric for the computation and administration techniques explored

further in the next chapter.

96

CHAPTER 5

GRID INTEGRATION AND DERIVATION

Data repositories are an integral part of modern scientific computing systems.

While computer processing power has continued to increase, available disk band-

width and network performance have not kept up - necessitating proper attention

to the design of distributed storage systems that do not restrict performance for

scientific users. Grid computing poses additional design constraints on storage

systems, insisting on scalability, interoperable administrative control, and flexible

architectures. While a variety of grid storage systems have been developed, users

have several outstanding needs: to work with replicated data sets, to customize

system behavior within a grid, and to quickly tie together remotely administered

grids or independently operated resources. This is particularly true in the small

virtual organization case, in which a subset of possible users seek to coordinate

subcomponents of existing grids into a workable collaborative system. Our ap-

proach to this problem starts with the storage system and intends to enable this

functionality by creating ad hoc storage grids.

5.1 Overview

Previous work on large scale storage has taken several forms, including build-

ing globally rooted filesystems, distributed databases, or interface description for

97

explicit data movement. While the filesystem model enables existing software, it

restricts user ability to customize the system by masking system configuration and

data placement decisions. Database models excel at representing scientific data

in application-oriented ways, but similarly restrict user decision making. Explicit

data movement technologies allow for optimal performance and customization,

but also require expertise and time investment in scripting and programming.

A cooperative grid storage system consists of a network of storage resources

which have been provided to for common usage. These systems provide an eco-

nomical method to increase the utilization of existing resources or to donate re-

sources to prioritized projects without the administrative commitment that is

often required. For example, reporting underutilized desktop workstation hard

drives to a common catalog and allowing remote access enables other users to

store large data sets they would otherwise not be able to maintain. Additionally,

replication may be performed in this setting to increase survivability or improve

data movement parallelism as discussed below.

The next generation grid will overcome the limitations of these systems - both

in customizability, which enables locally optimal performance, and in ease of util-

ity which enables maintainable software. We claim that the solution to these

problems involves flexible systems that are hybrids on several design axes, includ-

ing the filesystem vs. database axis and the explicit vs. implicit data location axis.

The administration of these systems will be reconfigurable at the user level, allow-

ing for integration of grid resources into larger systems and derivation of smaller

grids; likewise, enhanced or limited user privileges will be administered by users

on their own data environments. Applications developed on such a system will

accommodate these hybridizations, enabling system-aware workflow structures.

98

This chapter reports grid-enabling design concepts developed in conjunction

with the GEMS system. While the system originated as a repository for molec-

ular dynamics simulations, it evolved into a general-purpose storage integrator,

enabling storage resource aggregation, replica management and maintenance, high

level user control over storage policy and access control, and an application-

friendly computation environment. Additionally, we will describe the program-

ming model used to access this metaresource, a high level database-driven process

called a parameterized workflow. We then describe how the unstructured volunteer

fabric may be integrated into a viable back end for these workflows by integrating

and deriving grids from swaths of individual services.

Existing “big iron” grid systems have provided data access [22] to grid resources

and integrated complex I/O systems with user programs [3]. Contrarily, GEMS

tackles unreliable storage resources with an opportunistic approach to repository

construction, enabling stakeholders to share physical and data resources securely

at the user level. However, GEMS implements many important grid design con-

cepts, offering three major grid-enabling features:

1. Integration of existing resources: GEMS corrals free disk space into

a unified resource, increasing utilization of these systems. This meets the

primary grid design feature of enabling arbitrary aggregation of the resources

available to the user. These storage resources are used as a basis for a

parallelizable data service in support of a complex, distributed computing

system.

2. Abstraction of heterogeneous underlying systems: GEMS relies on

underlying portable software that allows many different systems to be repre-

sented. Additionally, GEMS-specific software is portable and relies on web

99

service-like [147] communication protocols. This enables a variety of access

techniques for data clients.

3. Organization-delegated authentication: Grid systems must accommo-

date scalable authentication techniques by delegating control to underlying

stakeholder organizations. GEMS offers multiple contributions in this area,

including an indirect authentication technique and the capacity for the ad-

ministrative delegation of user privileges.

In the following sections, we will describe how these features allow users to

access GEMS as a grid. This represents a comprehensive case study of a the

integration of system built around the overdrive controller concept with real-world

distributed computing issues such as data movement, resource management, and

authentication.

5.2 Data Services for Simulation

This section describes the use of GEMS in conjunction with a distributed

computing service.

5.2.1 Overview

Cooperative storage systems have been assembled to provide users with ac-

cess to large amounts of useful space, but locating, accessing, and efficiently em-

ploying such distributed data sets in scientific simulation or analysis is another

monumental problem. In this section, we describe simple techniques compatible

with existing software that may be used on clusters or grids to access cataloged,

replicated data sets: software tools that allow user code to use a replica system as

100

a scientific file system. The importance of operating in-place, close to the data, is

demonstrated by the performance improvements gained by using data locations

as a guide when scheduling computation. A new replica management system

called GEMS is proposed to improve the research capabilities of two important

computing infrastructures: university networks (groups of clusters) and volunteer

computer resources (Internet computing).

5.2.2 Discussion

Modern shared computational clusters and grids offer users a great deal of

capacity for code execution. When multiple independent jobs are executed in

such systems, the total system may obtain a performance speedup that is linear

in the number of compute nodes after input data has been distributed to the nodes

and before output data is recovered. The data movement mechanism - the manner

in which data is moved among file servers and compute resources - is limited by

the network, and individual file servers are limited by performance specifications

and network connectivity. Even on small compute clusters, batches of jobs that

operate on sizable files will quickly find that a simple centralized storage device

will become the bottleneck. Larger scientific tasks that require large batches of

thousands of jobs or more will overwhelm a centralized service, resulting in poor

performance for all jobs.

A potential solution to this problem is to utilize multiple data storage services

at different locations in the network. Developing such a distributed file service in-

volves dealing with several challenges, including logical name resolution, efficient

matchmaking, and data movement. First, in order to gain access to data, jobs

must be able to resolve given logical file names into physical file locations, i.e.,

101

where the actual file may be obtained. Jobs must also be able to store new data

in the system in a permanent way - not just in temporary space on the compute

node - somewhere in the distributed system. Second, jobs gain significant a per-

formance improvement from being close to the data. If the compute network and

the storage network occupy the same physical machines, a significant performance

improvement can be obtained by matching jobs to machines that have the required

data sets. Third, a mechanism for data movement must exist to support such a

system, which allows a running job to gain access to the data associated with a

physical location, either by staging whole files or through a virtual filesystem.

Our alternative approach recognizes the replica creation process as an asyn-

chronous data pre-staging process, in which data sets are moved to potential com-

pute sites in advance. In our model, the exploitation of compute and storage site

collocation allows reads and writes directly to the local file server. Upon job com-

pletion, output data is committed to the system, replicated by the system in an

asynchronous manner, and actively maintained by auditing services. This overlay

system allows users to employ a vast network of independently operated stor-

age servers reliably and without explicit data staging. Such an approach effectively

builds a computation system atop an existing replica location system, thus adding

the benefits of parallelism to the fault tolerance benefits of data replication.

The replica creation process offers much, yet its implementation incurs costs

that must be justified to scientific users. In this section, we offer three contribu-

tions to motivate the use of this type of system. First, we characterize comput-

ing models that employ replica sites as data sources, while considering the pro-

grammatic interface to these methods. Second, we present an experiment from a

real-world biomolecular dynamics application employing a significant number of

102

Traditional file staging model:

Rec
ov

er
 F

ile
s

 J
ob

 R
ea

dy

Com
pl
et

e
Exe

cu
tio

n

 D
et

er
m

in
e

Site

Dep
lo
y
File

s

Beg
in
 E

xe
cu

tio
n

Filesystem
Computation

Local

Replica-aware computation model:

Com
m

it
File

s

 J
ob

 R
ea

dy

Lo
ca

te
 F

ile
s

 D
et

er
m

in
e

Site

Beg
in
 E

xe
cu

tio
n

Computation
Filesystem
Virtual

Com
pl
et

e
Exe

cu
tio

n

Figure 5.1. Grid data access models.

In the traditional file staging model, the computation site is determined before
data files are considered, because all data is assumed to come from a centralized

source. In the distributed, replica-based computation model, the replica
locations are considered when selecting the computation site, and a virtual
filesystem is used to connect jobs to data services, because the files are not

explicitly copied over the network.

processors and data sources. Third, we explore a reusable mathematical model

that predicts job turnaround time as a function of obtainable system specifics such

as data bandwidth and job runtime.

5.2.3 Replica-aware Computation

Shared replica management systems have been designed to meet the storage

requirements of users requiring a variety of functionality. Users benefit from in-

creased storage space: especially short term storage space, as the shared workspace

may increase utilization of the underlying systems. Additionally, replicated data

sets are more resilient to hardware failure or loss, as replicas serve as backup

103

copies. User groups that desire to publish their data inside a virtual organiza-

tion benefit from cataloged replica systems, which provide a searchable catalog of

metadata and allow for data sharing and reuse.

The Parrot adapter has been previously developed [133] to treat the whole

distributed file system as a single filesystem. By trapping file operations from a

running process, the adapter may allow the process to access files from remote

servers in a transparent way. This adapter allows for the user to choose the

compute site, the input source site, and the output destination site independently.

The replica management system is combined with these tools to locate data. A

new external system is needed to locate input sites, find sites to safely store

outputs, and obtain a compute site that is not already occupied. To obtain good

performance, the three sites should be collocated.

Automated resolution allows clients of the replica management system to map

file locations in the searchable, database-like namespace to the physical namespace

of the virtual filesystem. In this work, we call the entries in replica namespace

the abstract filenames, as opposed to the virtual filenames compatible with the

adapter. Name resolution maps abstract names in a /label/path/file format to

virtual filenames in a /protocol/host/path/file format. The replica manage-

ment system provides the additional ability to obtain data set labels by searching

over the metadata, providing the ability to perform computation in a completely

application-oriented way, as shown in Figure 5.2.

The first line of the script uses the client toolkit to locate the data set label

required to obtain the necessary input files for the transmute task. The second

line invokes the toolkit to resolve the abstract file names to virtual file names

compatible with the adapter by:

104

> KEY=$(GEMSmatch reagents=acidbase)

> GEMSrun --input HCl /$KEY/hcl

--input NaOH /$KEY/naoh

--output NaCl salt

--output HOH water

reagents=saltwater

--exec transmute HCl NaOH

to NaCl HOH

Figure 5.2. Example GEMSrun script with abstract data locations.

1. Defining input tokens for abstract files and output tokens for new files

(e.g. the output file salt is represented by NaCl);

2. Substituting the virtual file names in place of the tokens

(e.g. NaOH → /protocol/host/path/naoh); and

3. Submitting the user task (transmute) to an available compute system, which

uses the adapter to actually perform the file operations.

The result of this script is a new entry in the replica system, containing two files,

salt and water, which may be located by using the tag-value pair:

reagents=saltwater.

Clearly, more complex tasks would involve very lengthy command lines. Since

existing job schedulers already require users to explicitly define input and out-

put files, simple extensions to the syntax of these job scheduler scripts may be

preprocessed by the GEMSrun client to provide a more familiar syntax for job

submitters.

In a replica location system, a service maintains a database of replica locations.

This service may be queried in three ways for the purposes of this paper: to map

105

metadata tags to data set labels, to map data set labels to a set of file names, or

to map a data set label and file name to a storage site. Once the site has been

obtained, the data source may be accessed as described above.

While a replica management system does not spawn computation itself, we

demonstrate a tool to interface with existing computation systems to access, an-

alyze, and create data in a compatible way. In this section, we outline four com-

putation modes, that is, ways to effectively perform computation utilizing replica

access, including:

1. Local Computation on Remote Data; which allows the local workstation to

access remote data sources and create new data in the replica system over

a virtual filesystem.

2. Scheduled Computation on Remote Data; which interfaces with an existing

scheduler to create jobs that access data over a virtual filesystem.

3. Remote Computation on Remote Data; which utilizes the ability to directly

send jobs to remote systems for processing.

4. Multiple Name Resolution; which is a more complex scheduled method,

guiding the matchmaking process with respect to data locations.

Local Computation on Remote Data (LCRD)

In many common cases, the user simply desires to run a single job on the local

workstation. The LCRD model enables users to start new jobs that require data

access to the replica management system. This mode is based upon a typical

command consisting of an operation on abstract data set identities, comprising

the input and output locations. These abstract arguments, which do not specify

the actual data location, are translated by the replica system into the physical

106

file locations required by the virtual filesystem adapter, in a manner analogous to

shell parameter parsing and expansion. Thus a task that requires access to remote,

abstracted data sets may be translated into a local task operating on data that

is virtually local. An example execution of this method is shown in Figure 5.3, in

the LCRD frame.

Optimizing this operation is quite simple. First, the output data location is

determined. The preferred output location is a server on the local host, but if this

is not available or not allowed by the relevant access control policy, a server that

is not currently busy will be selected. In the worst case, a remote, busy machine

will be selected. If any required input files from the system have replicas on a

local server, these hosts are selected as data sources. Otherwise, a remote, idle

service will be selected to provide the file, and if this is not possible the worst case

behavior of a busy remote server will be selected.

Scheduled Computation on Remote Data (SCRD)

We augment the specification for scheduled remote jobs by allowing users to

specify input and output locations that reside in the replica management system,

and use these locations in the commands and arguments. The client translates

this augmented submission script into a submission script compatible with the

replica system by making necessary substitutions: resolving the abstract data

locations into virtual filesystem locations, and ensuring that the resulting job does

in fact run atop the adapter. The data sets required by the resulting job are then

location-independent because of the adapter, i.e., no data staging is necessary.

As shown in the SCRD frame of Figure 5.3, jobs are sent to the scheduler with

requested destination hosts, illustrated by the “@” markup. The scheduler honors

the request and submits the job to the appropriate compute site.

107

LCRD SCRD

job()

 Metadatabase

Match
1flocate()

4

adapter

1f

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Virtual Filesystem Operations

Local Computation

Storage

1c

1f

Storage

c2

1f f 2

Storage

c3

f 2

Storage

c

GEMSrun(f)1

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Scheduler

adapter adapter

f

locate() 2flocate()

 Metadatabase

Storage

c2

1f f 2

Match
1f

Storage

c3

f 1 c3job() @ f2 c4job() @

1fjob() f2job()

Storage

1c

1

Storage

c4

f 2

GEMSrun(f) GEMSrun(f)1 2

Local Computation on Remote Data Scheduled Computation on Remote Data

RCRD MNR

 Metadatabase

Match
1flocate() 2flocate()

Storage

c4

1fjob() f2job()

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Storage

1c

1f

Storage

c2

1f f 2

Storage

c3

f 2

GEMSrun(f)GEMSrun(f) 21

 Metadatabase

Match
1flocate() 2flocate()

query

response

S
to

ra
g

e
S

e
rv

e
rs

C
lie

n
t

Scheduler

adapteradapter

Storage

1c

1f f 2

Storage

c3

f 2

Storage

c4

f 1 c3job() @ f2 c4job() @

1f

Storage

c2

1fjob()f 2job()

GEMSrun(f)GEMSrun(f) 21

Remote Computation on Remote Data Multiple Name Resolution

Figure 5.3: Computation in a replica management system.

108

Remote Computation on Remote Data (RCRD)

The file server used in this work allows the user to execute jobs inside a server-

side execution environment. The user makes use of this technique by sending jobs

directly to a file server for computation. The method is similar to the sched-

uled SCRD method, however, we are missing two important concepts: external

centralized matchmaking and scheduling.

An example of replica access is shown in Figure 5.3, in the RCRD frame. Two

jobs are submitted to the system by the user. Each specifies a target file, f1 or f2.

The requests are translated into replica location operations. The request for f1 is

received first, and the response indicates that the file can be accessed on host c3.

This host is then marked “busy”. The client then submits the job to host c3. The

second response arrives at the server, which locates the file on c3 and c4. Since c3

is busy, the job is sent to c4.

Multiple Name Resolution (MNR)

As seen above, the local computation method selects replicas relative to the

given computation site, which is immutable. The scheduled and remote com-

putation methods select replicas relative to a variety of potential compute sites,

presenting challenges of interest to designers of grid computing systems.

1. In an environment in which replica locations are free to change or fail, replica

locations may need to be re-selected after job deployment.

2. Specifically for scheduled jobs, if the job is not deployed to the specific

host that optimizes the file transfer, it may be beneficial to re-select replica

locations to minimize transfer relative to the actual computation site.

Clearly property (1) is a harder constraint than property (2) but both represent

essential design issues.

109

A potential solution involves resolving the replica locations twice. A first res-

olution is performed by the job submission routine, which now selects only the

computation site. The computation site is chosen in such a way that the resulting

file transfers will be minimized. Then, after deployment, we have a second resolu-

tion: the compute job again resolves replica locations, essentially performing an

LCRD operation described above. At this point, all replica locations may change

due to storage server failure or computation site surprises, but the selection of

compute site is fixed, greatly simplifying the choice. This may produce very good

throughput at the small but significant cost of a second query to the centralized

replica location service1.

In summary, we have a scheduled method similar to the SCRD but more

robust and efficient because of the complex handling of replica locations. Below,

the algorithm for the Multiple Name Resolution method is outlined:

1A second query is not absolutely necessary: results from the first query could be packaged,

deployed, and reused. There is a fault-tolerance trade off here that is outside the current focus.

110

Job Submission

The following algorithm is performed by the client.

1. For each potential compute host ci, compute the network transfer
ni required to perform computation on that host.

2. Compute appropriate ranks and submit the Late Resolution al-
gorithm as a job to the scheduler.

Late Resolution

The following algorithm is performed by the job upon arrival on a
compute host.

1. Determine the host this task is occupying.

2. Locate all required files, and prefer locations that are on this host.

3. Resolve abstract file locations to virtual file locations in the user
job argument string.

4. Execute the user job atop the adapter.

This algorithm is illustrated in Figure 5.3, in the MNR frame. In a manner

similar to the SCRD illustration, the user submits jobs, the replica management

system suggests appropriate hosts, and the jobs are sent to the external scheduler.

However, the external scheduler places job(f2) on c3 first, then places job(f1) on

c4. Simply applying the SCRD method here would cause two network file accesses:

each job would begin accessing files found on a different host. However, using the

MNR, job(f2) utilizes the Late Resolution method and obtains access to the local

copy of f2. job(f1) utilizes the Late Resolution method, and cannot locate a local

copy of f1 or the originally preferred copy on c3, but is able to locate the copy on

c2. The net result is that one job obtains access to a local file, and one job must

access a file over the network.

Summary

LCRD jobs can be executed in any environment in which a replica location

service is available, creating a useful and practical prototyping tool for running

111

simulation in the presence of any replica location system. They even can be

submitted to job schedulers, implicitly creating an “unguided” MNR method.

SCRD jobs provide a useful and often requested additional functionality to

existing job schedulers: they allow matchmaking based on replica location. How-

ever, once the job arrives, it functions as a LCRD job, meaning that if a different

compute site is allocated by the scheduler, all file access must occur over the

network, because name resolution has permanently occurred2.

RCRD jobs require the user to have compute access to the remote machine,

over a system such as SSH or Chirp. A special case that could benefit from

such a system are Internet computing applications as discussed below, because

such applications often require an application-specific job scheduling policy. The

RCRD method would allow such applications to use the data locations as an

additional guide in the process.

The MNR is a robust and complex method for job scheduling. By both guid-

ing the job to an appropriate compute site and making corrections upon arrival,

it gains the benefits of the replicated data sources and the global view of the

scheduler. Practically, it relies upon the ability to package additional code as a

wrapper around the user job, which may be a constraint in some environments.

5.2.4 Applications

This section describes how these concepts may be applied to the target appli-

cation, molecular dynamics. We first discuss two environments in which replica

storage systems and job schedulers may be combined using the above principles to

increase utilization of existing resources and benefit users by creating useful and

2A variation would be to instruct the scheduler that a given job is only eligible to be run on

the specified host, and must otherwise wait- which would provide good collocation but would

fill job queues in many applications.

112

efficient virtual workspaces. We then provide experimental results that show how

the system performs in these settings, and interpret them with a mathematical

model.

5.2.4.1 Operating Environments

The University Network (LAN)

Many universities have clusters or laboratories with a variety of machines con-

nected over a relatively fast internal local area network. These clusters may be

combined into useful high throughput, high utilization systems with the appro-

priate software. For example, an engineering building at the University of Notre

Dame, which contains over 200 Linux and Solaris machines, has been combined

into a Condor [79] system. The default Condor installation package used on

campus includes the Chirp [133] file services, totalling over 7 TB of available dis-

tributed storage. Additionally, the University is served by a centralized AFS [69]

installation. Users have a large pool of computing and storage resources at their

convenience, however, permanent storage and physical file location management

must be handled by the individual users.

New jobs submitted via Condor require that input data must be immediately

staged to the host, either explicitly by file transfer or implicitly by AFS. While

the local network is capable of serving data for a handful of compute bound jobs,

cases have arisen in which a small number of output heavy simulation jobs have

caused debilitating effects on the network.

Our strategy replicates the data files in GEMS. Users then submit a batch

of GEMSrun requests to the GEMS server, generating Condor submit files via

automated client tools, so that the computation proceeds on a host which can

113

serve that data locally, thus eliminating ad hoc file transfer.

Internet Computing (WAN)

A variety of applications are suited for the “@ Home” computing model, in

which volunteers allow their computers to be used for large-scale scientific projects

when they would otherwise be idle. Popular examples include SETI @ Home

[11, 12] and Folding @ Home [98]. The range of potential applications is limited

because of the perceived data movement bottleneck, so applications are typically

chosen only if the amount of data transfer is relatively small. Applications that

require heavy amounts of input and output present a list of challenges, including

how to move the data to a compute host in the first place.

GEMS offers a strategy to approach these problems. First, by increasing the

number of data servers, we decrease the load on the central data server. Original

input data may then be served once to a set of volunteer hosts, and the replicas

will be automatically maintained. Data can then be managed with fairness and

load balancing as described previously [158]. Output data would be written to the

local disk, and asynchronously replicated among the volunteer machines. Subse-

quent post-processing of the output data would be performed by locating existing

replicas of the data and computing on the storage sites, without any additional

data transfers.

5.2.4.2 Experimental Results

In this section, we describe performance experiments utilizing the replica man-

agement system GEMS combined with the Condor job scheduler. We intend to

show improvement in the amount of useful work completed for our target appli-

cation by collocating data and computation with GEMS and performing compu-

114

tation atop the Parrot personal filesystem.

In our experiment, we use VMD [70] to postprocess a 350 MB ProtoMol

[84] output trajectory file, performing an RMSD based clustering calculation. We

first tested the university network LAN environment as typified by low latency,

high bandwidth connections among tightly clustered compute hosts or clusters

of hosts. Our experimental testbed3 typifies this setting, consisting of 32 dual

processor Intel Pentium III 1.4 GHz machines with 1 GB of RAM, connected by a

dedicated 1000Mb interconnect, and running Linux 2.6.9. In this environment we

analyzed the average runtime performance of three competing computation and

storage models: “Staging”, “Remote Access”, and “Collocation”.

Periodic executions of the same postprocessing task were submitted to the

cluster and runtimes were averaged with standard deviations indicated by the error

bars. As shown in the Cluster Configuration graph of Figure 5.4, we measured

three computation techniques on this testbed.

The “Staging” model ships the input file from a centralized storage server for

each execution of the task. “Remote Access” indicates that each VMD job ran

atop the adapter, with the constraint that data must be obtained from a remote

replica location. A third test was performed using “Collocation”, as discussed in

Section 5.2.3. In this case, jobs are scheduled to only execute on hosts that have

the required data file. Performance for the replica-based methods are superior as

the number of concurrent jobs increases, due to the increased scalability of the

data service.

A second battery of tests was performed on the same cluster, tuned to per-

form as an Internet Computing system. The file server on each machine was

“throttled” to limit the data bandwidth from any given file server to 1 MB/s.

3loco*.cse.nd.edu

115

16 32 64
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Jobs = Number of Processors

A
ve

ra
ge

 [C
om

pu
ta

tio
n

+
 D

at
a

T
ra

ns
fe

r]
 (

se
cs

)

T1 − Central Storage − Staging

T2 − Distributed Storage − Remote Access

T3 − Distributed Storage − Collocation

Data Staging Times for T1

T1 StD Values +/−:
16proc 215
32proc 165
64proc 84

Cluster Configuration

16 32 64
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Jobs = Number of Processors

A
ve

ra
ge

 [C
om

pu
ta

tio
n

+
 D

at
a

T
ra

ns
fe

r]
 (

se
cs

)

T1 − Central Storage − Staging

T2 − Distributed Storage − Remote Access

T3 − Distributed Storage − Collocation

Internet Configuration

Figure 5.4. Total job turnaround time for GEMS jobs.

116

While this testbed does not model all important properties of WAN performance

or “@ Home” computing, it is useful to illustrate the idealized performance of the

three computation methods.

As shown in the Internet Configuration graph of Figure 5.4, “Staging” and

“Remote Access” perform similarly, as job execution is limited by access to data.

The performance of “Collocation” is equivalent to that obtained in the “Cluster

Configuration”, yielding a significant speedup of greater than 2 when compared

to the Staging and Remote Access models.

We see that an SCRD algorithm, as described in Section 5.2.3 becomes crucial

in order to obtain good performance. On the wide-area network, jobs must be

close to the data.

5.2.4.3 Bandwidth Analysis

Since an important performance goal of a replica system is to increase the

available bandwidth parallelism in the system, it is of interest to consider the

relationship between the parallelizable and sequential tasks that a system may

perform. In this subsection we will consider the above experiment more formally.

Our analysis essentially follows Amdahl’s rule [9] with bandwidth considerations.

Each processor in this framework alternates between two significant phases: a

sequential phase and a parallel phase. The parallel phases are independent and

perfectly parallelizable, for example, the computation done by each independent

job. The sequential phases are tied to some centralized resource such as a single

file server. Additional system configurations may be modeled by assuming the

data access is parallel and the replica location operations are serial, such as in the

case of a replica system.

117

The following model is diagrammed in Figure 5.5. First, we consider the case

of a single data server with n independent processing jobs which periodically issue

large file reads. If S is the file size and B′ is the apparent bandwidth, with a fixed

processing time of J , the the turnaround time for a single job is

T =
S

B′
+ J. (5.1)

If there are r jobs currently reading and the total available bandwidth is B,

the apparent bandwidth is B′ = B
r
. The apparent number of jobs contending for

bandwidth, may be denoted as the number of reading jobs:

r = 1 +
(n− 1) S

B′

S
B′

+ J
. (5.2)

Thus a reading job must suffer from the contention caused by itself and the fraction

of the (n− 1) other jobs that are in the read state.

To obtain the modeled job turnaround time, we must solve Equation (5.2) for

B′ to determine our apparent data access rate.

B′ =
−Sn + JB +

√
S2n2 − 2SnJB + J2B2 + 4JBS

J
(5.3)

To obtain the turnaround time for the job, we use the access rate from equation

(5.1). That is, given the appropriate S, n, B, J , we can obtain the apparent

bandwidth B′ for a job and plug in to obtain job turnaround time T , taking into

account the deteriorating performance of the centralized component as n increases.

Analytical results are shown in Figure 5.6 along with experimental job runtimes

with these parameters. It should be noted that the job phase cycles are not in

lockstep with other processors due to small scale variations in system performance.

118

{

{read read read

readread

read read

readreadread

read

read

read

cpu

cpu

cpu

cpu

cpucpu

cpu

cpu

cpu

cpu

cpu cpu

cpu

cpu

cpu

cpu

n

Data Server

B

B’ Jr=3

Processors

Time

Figure 5.5. Symbols used in bandwidth analysis of data consumption
jobs.

Graphical depiction of the symbols used in the system analysis, shown as a
Gantt chart. The system consists of n = 4 processors, r of which are expected to
be reading at any given time. The data server has a maximum bandwidth of B,
only B′ of which is available to any given process. The job length is J seconds.

At the instant shown, r = 3 so B′ = B
3
.

Performance heterogeneity among processors is not considered.

The resulting figure indicates that for our simulated workload, we can expect

good multiprocessor speedup until about 20 processors are utilized, after which

bandwidth constraints increasingly cause sequential performance.

More generally, the model may be applied to the replica case. Assuming rea-

sonable load balancing that could be obtained through the random selection of

replica sites, the available bandwidth B would be multiplied by the number of

replica sites. So given a workload with a bandwidth dependent I/O phase and a

parallelizable phase, the model may be applied to predict the turnaround perfor-

mance.

119

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Number of Jobs

Jo
b

T
ur

na
ro

un
d

T
im

e
(s

ec
on

ds
)

Figure 5.6. Total job turnaround time for the analytical model.

System parameters: J = 50± 10 seconds, B=10 MB/s, and S=280 MB.
The model is plotted as a curve; actual runtimes were averaged at the points

shown. Error bars indicate a 95% confidence interval.

5.2.4.4 Queueing Theoretic Analysis

Our model for the data consuming application here essentially models a set

of jobs which alternate between two states: reading and processing. This type

of model is commonly analyzed through the use of queuing theory, a form of

mathematical modelling focused on the abstract behavior of systems of customers

and services. This technique originated in telecommunications networks, where

it is commonly employed today, and is also useful in economic models, workflow

analysis, and other applications. In a general queueing system, customers move

from state to state as described by a deterministic or probabilistic routing protocol.

At each state, customers wait for service in accordance with a given queueing

discipline. Queuing theory allows the analyst to form and answer useful questions

about the behavior of the system, such as:

120

Data Processing State

Processor Sharing Queue (PS) Infinite Server Queue (IS)

Data Download State

Figure 5.7. Queueing theoretic model for data consumption jobs.

• Where do the customers spend most of their time?

This question may be answered by obtaining the steady-state probability

vector (π).

• What is the mean number of customers in a given state?

This question may be answered by obtaining the marginal probability that

a given service state has a given number of customers waiting, and applying

averaging.

The turnaround time measurement above may be analyzed by applying a queue

model as shown in Figure 5.7. In this framework, the customers are user jobs that

progress around the closed loop system, moving from the data download state

to the data processing state and back. The data download state is modelled as

a processor sharing (PS) queue: the download rate is shared among the jobs in

that state, thus the service time is proportional to the number of jobs currently

downloading data. The data processing state is modelled as an infinite server (IS)

queue, thus the service time is deterministic.

Queueing system analysis is often based around exponential service times and

standard First-Come-First-Serve (FCFS) queues. Using Kendall’s notation, the

PS queue is a M/G/1-PS queue and the IS queue is M/G/∞. However, these

exponential service times only roughly model the semi-deterministic behavior of

predictable user downloads and processing tasks. In the remainder of this section

121

−1r1−

r −1

c

Data Download States Data Processing States

d

p

1−p

Figure 5.8. Discretized Markov model for data consumption jobs.

we address these approximation problems and demonstrate how models for the

data consumption application may be obtained using known techniques.

Markov Modelling

In this first model, we apply a discrete time Markov chain (DTMC) [23] to

the application. Each job moves forward through a Markov chain, progressing

from discretized download states to discretized computing states and back, as

shown in Figure 5.8. There are d download states and c computing states for

each of the n jobs. This state space may be simply multiplied out in an “n-

dimensional” Cartesian manner. To simulate the effect of random access to shared

network, a downloading job makes progress with probability r−1, and does not with

probability 1− r−1. Note that r may be easily obtained at each potential state by

inspection. To simulate the effect of a user job competing for CPU time against

ambient local tasks, a job makes progress in a given timestep with probability p

and does not make progress with probability 1− p.

The expected turnaround time for jobs in this network may then be found

by obtaining the probability distribution vector of the DTMC system. Then, the

mean value of r may be obtained by summing to obtain the probabilities of each

possible value of r and applying averaging. However, obtaining the probability

distribution would require powering the DTMC transition probability matrix until

122

1

cd

Data Download States Data Processing States

1

Figure 5.9. Cox distribution model for data consumption jobs.

convergence. This square matrix is m ×m, where m = (d + c)n. The number of

nonzero entries in each row is O(2n) as each job may or may not make progress.

Thus, this may be seen to be a very expensive technique for this application.

BCMP Networks

The previous approach is problematic for its arbitrary discretization of the

substates as well as its large computational cost. A continuous time Markov

chain (CTMC) may be applied to avoid the arbitrary discretization while still

obtaining the rich state probability information. This more accurate model may

be obtained through the use of the highly generalized BCMP theorem (named for

the authors) [16], which allows for multiple queue types and provides closed form

probability results. To obtain our near-deterministic state transition times in this

framework, we use a Cox distribution function as shown in Figure 5.9. In this

service time distribution, the download substate passes from di → di+1 at in an

exponential service discipline with mean service time 1. The mean total service

time through the d substates is then d, with variation smaller than 1. A similar

distribution is given for the c compute states.

123

The probability distribution π for the possible states of jobs in the system is

then obtainable [23] by evaluating

π(S1, S2) = f1(S1)f2(S2), where (5.4)

f1(S1) = k1!
d

∏

l=1

1

k1l!
, (5.5)

f2(S2) =
c

∏

l=1

1

k2l!
, (5.6)

and where Si represents the number of jobs in each substate of state i, ki is the

number of jobs in state i and kil is the number of jobs in state i, substate l.

This method may be used to obtain a more accurate model of the probabilities

but still samples each possible job/state situation and requires heavy sampling of π

to obtain aggregate performance information. As shown above, only the expected

value of r is required to obtain meaningful system performance prediction.

Mean Value Analysis

Our third queueing theoretic approach emphasizes the need to simply obtain

mean values of important performance characteristics at the expense of the full

probability distribution. The mean value analysis (MVA) [113] allows the mean

number of jobs in each state to be obtained via a recursive technique. The frame-

work models the mean value of the turnaround time or total service time (T̄)

observed by a job in a state to be equal to the service time of that job alone plus

the service time of the mean number of jobs at that state (K̄) in a system with

n− 1 jobs.

Following the MVA outline in the simpler case of exponential service times

[23], the method starts by formulating the form of the mean service time at each

124

state, in our case,

T̄1(n) = µ−1

1 (1 + K̄1(n− 1)) (5.7)

T̄2(n) = µ−1

2 , (5.8)

where µi indicates the mean service rate at state i. Then the throughput (λ) of

the loop system is formulated as

λ(n) =
n

T̄1(n) + T̄2(n)
. (5.9)

Finally, the form of K̄(n) is obtained, by multiplying

K̄i(n) = λ(n)T̄i(n). (5.10)

This method thus obtains the mean system observations without analyzing the

whole Markov system or obtaining all state probabilities. However, the method

is considered memory intensive [32] and must be additionally extended to handle

more general queueing disciplines.

5.3 Parameterized Workflows

Managing data on a complex, dynamic underlying infrastructure could be very

difficult in the large scale applications covered in previous sections. The GEMS

approach enables the combination of its general-purpose metadata catalog as de-

scribed in Section 3.2.4. GEMS seamlessly combines metadata programming with

distributed job/data parallelism as described above in Section 5.2.3. Experimental

scientific workloads are more often driven by adaptive parameter investigations

125

than well-known static sequences. Existing popular grid programming models in-

clude the parameter sweep and the workflow. In a parameter sweep, the same

computation element is independently performed using each eligible point of some

parameter domain as input. In a workflow, a partially ordered set of data move-

ment and computation elements is run to completion. An existing example of a

hybrid model is the parameter optimization, in which the output of the computa-

tion is optimized within a given parameter domain.

While these models are extremely powerful and encapsulate a variety of appli-

cations, they fail to capture other important computations such as postprocessing

analysis, query-based computing, and interactive computing. Given a computa-

tion y ← P (x), examples for these cases include:

• “For each completed simulation in category C, compute the average of state

variable yi and store it.”

• “For each completed simulation PC(x), if the output matches Q, re-run the

simulation with parameter modification ∂x.”

• “Plot the current state of each simulation. Restart a user-selected set of

simulations from their last checkpoint after altering state variable xi.”

Workflows built within the GEMS framework are supported by a the ability to

parameterize workflows, thus seeding the resulting execution. While existing pro-

gramming tools such as shells support all of the operations performed by workflow

tools, workflows are useful for three software engineering-related reasons:

1. Encapsulation: Operations performed within a workflow task form a log-

ical group.

126

2. Clarity: The task dependency structure may be described by a simple graph

and and the state of of a running instance may be similarly diagrammed.

3. Restartability: Partially completed workflows may be restarted based on

previously completed, safely stored work. The ability to quickly determine

the minimum amount of new work that must be performed to renew an

attempt to achieve a target or explore a new target limits the damage done

by faults and enables exploratory interaction.

Restartability is of critical importance to large scale batches executing on un-

reliable resources, as exemplified by the TPS case in Section 3.4.1. Clarity and

encapsulation are beneficial when implementing complex batches from applica-

tions such as hyperdynamics in Section 3.4.2.

Any new workflow system functionality should not impede these abilities: with-

out them the user might as well use a fully functional programming language.

Thus, the parameterized workflow alters this model in only a few well-defined

ways First, workflow targets are parameter tuples, not files or operations. The

existence of these may be easily queried as shown above. Second, workflow targets

may be parameterized, resulting in function call-like tasks. This results in several

problems that must be solved by the new framework. Task parameters must be

arithmetically manipulated and propagated into the actual task execution. Ad-

ditionally, operations within workflow targets must be properly parameterized.

Inputs and output file locations are also parameterized values that must be linked

into the user computation.

127

5.3.1 Workflow Formulation

Consider a batch of scientific simulations S, over which several random seeds

may be used, and the simulation time is broken into manageable, checkpointable

segments. Each evaluation S(u, r, t) of the simulation is defined by a user name u,

a random seed r, and a time segment t, for m random seeds and n segments. Each

evaluation depends on the previous evaluation with respect to time but within the

same random seed group.

In a static workflow system the user would have to generate a Makefile-like

script containing m × n workflow tasks with hand-parameterized filenames and

other objects. In a parameterized workflow system this may be framed by simply

stating that S(u, r, t) : S(u, r, t − 1); that is, each segment of execution time is

dependent on the previous. A base case S(u, r, t = 0) is inserted into the system

as an initial simulation state or base case. A target S(sorin, 312, 100) may then

be specified, the system would generate the 100 resulting tasks and execute them.

Parameters are passed into user code by filtering a user-specified configuration file

with sed-like operations, then the user task is executed as specified by the work-

flow node. Thus each workflow task must contain a header, a dependency list,

a mapping from header parameters to metadata values, a mapping from config-

uration file tokens to header parameters, and an execution string. The resulting

example workload fills a rectangular parameter space but includes dependency

information as shown in Figure 5.10 a).

More complex, interactive workflow-like structures may also be simply instan-

tiated within this model. Consider the same molecular simulation example with

the addition of user steering: the user may modify the force fields applied withing

the experiment, thus forking a new trajectory through the parameter space as

128

(Τ
, ρ

)

time

simulation segments simulation segments

time

(Τ
, ρ

)

a) b)

Figure 5.10. Parameter sweep and workflow diagrams.

a) In a parameter sweep [2, 25], user jobs typically fill a square parameter space.
b) To allow for interactive parameter execution, the system has to allow the

dynamic user creation of execution branches.

shown in Figure 5.10 b). This model satisfies the complexity required by the data

flow inherent in the hyperdynamics method, which requires the propagation of

information from multiple ancestor computations.

In this case, user requests simply create new targets and tasks are launched

with respect to the dependency state of the whole workflow. The tree-like search

structure is a simple consequence of a minor change to the parameterized depen-

dency rule, such as

S(u, r, t,branch = p) :

S(u, r, t− 1, branch = p) (5.11)

or S(identity = p, time = t− 1).

Thus a branch parameter is added and the segment identity code is referenced.

Segments depend on either the previous segment in time or the branch point

129

when appropriate. Thus a simple, automated data sweep may be made through

the parameter space to fulfill the user targets.

5.3.2 Scalable Parameterized Job Submission

In this section we consider a real-world approach to the parameter exploration

problem. In this approach, a branch-without-bound algorithm is applied to ex-

plore all possible paths through the hyperdynamics parameter space. This algo-

rithm tests the architecture of the system as it consumes resources exponentially

over time as the branches expand. While the computation is easily parallelizable

in our application, a distributed scientific repository is employed to store the simu-

lation results (segments) for reuse in the parameter exploration as well as archival

purposes, any limits of which create a bound on the branchability of the search.

While data movement in GEMS is entirely parallelized, certain operations

within the system rely on a centralized component that ensures synchronization

and a consistent, searchable scientific namespace. Four potential operations must

be considered: data insertion, metadata search, retrieval, and notification. The

creation of a new config in hyperdynamics can involve multiple executions of each,

depending on the segment concerned and the state of the computing site.

Data insertion and retrieval are indexed operations that allow for the use of

unique database keys. Insertion simply inserts the file and application metadata

into their respective tables and refers the client to an appropriate reserved storage

location. Data movement proceeds while the server is free to perform other work:

upon completion, the server is notified and verifies the file statistics. The ensu-

ing data replication is an asynchronous server process that does not significantly

compete with client operations. Likewise, data retrieval is an indexed operation

130

that refers a client to a storage site at which the requested files may be accessed.

Parameter search, however, is a non-indexed search of simple application-

formatted metadata tags and values. This more costly operation is a highlight of

our system as it enables the scientific filesystem abstraction used above, however,

it exacts a centralized cost on the distributed algorithms used. Notification allows

a client to be notified when a record exists matching a given parameter query;

our framework provides a disconnected, scalable callback mechanism. While this

operation is also non-indexed it is less of a constraint in practice as the number

of outstanding notification requests is small.

Notification and job start control create resource management issues when

exploring a non-rectangular parameter space (Figure 5.10). In our application, as

a job proceeds, resulting data records enable additional computational parallelism.

Several potential job start mechanisms could be employed:

1. Node wait:

A job is submitted for each node in the search space (or, as an optimization,

for each horizontal row). However, in the exponential search case, more

than half of the nodes would spend more than half of the time waiting to be

notified, reducing system utilization by more than 50%.

2. Row wait:

A job is submitted for the first row. Upon completion, jobs are recursively

submitted for each possible branch generated by that row. This job-oriented

approach is supported by systems like DAGMan. However, each node must

be represented by a job, again clogging the scheduler and reducing the bulk

in-place processing enabled by the row-oriented approach, multiplying data

movement costs by a factor equal to the number of segments. Alternatively,

131

the job could wait until the row is complete before spawning branch rows,

however, this would reduce the available parallelism by a factor equal to the

number of segments.

3. Client wait:

The client manages all notifications. The client spawns a blocked local task

for each possible node; upon notification the task proceeds to submit the

appropriate job. However, this simply transfers the scalability questions

from server-side procedures to client side tools.

In our framework, we employed a simple client-side tool that enqueued poten-

tial blocked local tasks, and a small number of these tasks were actualized in a

bootstrapping step. Tasks were promoted into and out of the queue upon any

notification into a small finite pool of actual blocked tasks, in an order consis-

tent with expected notification time (based on segment number). When blocked

tasks received their notification, they proceeded to job submission. This approach

prevented the construction of a complex multi-channel client-side service, while

enabling a great deal of computational parallelism. This bottlenecking procedure

is diagrammed in Figure 5.11.

5.3.3 Workflow Performance Analysis

In this section, a scalability experiment is reported using the GEMS replica

management system, the Condor computing system, an underlying network of

Chirp file servers, and the HYD molecular hyperdynamics toolkit developed for

this work. The implementation of a full search of all possible paths through the

parameter space was submitted to Condor, using the GEMS/Chirp storage system

for all algorithmic data operations.

132

FIFO

notice
Notification

Service

Computing
Servicesubmission

in
se

rtio
n

Distributed
FabricClient−side Bottleneck

(blocked tasks)

Potential Tasks
(parameter sets)

Figure 5.11. Bottlenecked job submission model.

Local tasks depend on a record-based notification service and are released to
block at the bottleneck at which point they register for notification in a

controlled manner.

The computing infrastructure at Notre Dame upon which GEMS and Condor

rely is a widely heterogeneous group of 540 Intel and SPARC processors, of which

only Intel were used for this experiment. Reported MIPS performance ranged from

346 to 5696, and data movement was coordinated with job location in accordance

with GEMS techniques over on-campus LAN connections. The GEMS server, the

potential centralized constraint on distributed performance, operates on a Postgres

8.2.4 installation of two 2.4 GHz Opteron processors4.

A full search of 50ps segments at all possible bias levels was performed up for

a total path length of 10 segments. The simulator operated on a 400 atom gas

phase Argon system at T = 73 Kelvin, ρ = 0.1066 g/cm3. This method produces

210 segments as each possible branch is taken, with each segment totalling about

6 MB. Condor usage and database load levels for Postgres processes are shown in

Figure 5.12; both metrics were sampled at 1 minute intervals.

4gems.cse.nd.edu

133

0 100 200 300 400 500 600 700 800
0

100

200

Number of Concurrent Jobs

0 100 200 300 400 500 600 700 800
0

2

4

Time (minutes)

Database Load Level

Workflow restarted

Figure 5.12. Condor usage and database load levels for the all paths
hyperdynamics experiment.

Upon termination of the original workflow at minute 700, 40% of the required

segments were stored. Note the slow growth in parallelism due to branch jobs

entering the ready state over time, an irregular process due to compute site het-

erogeneity and other factors. The workflow was restarted the next day to finish

off the set. The preponderance of branch tasks were immediately sent to the com-

puting system as their dependencies were already satisfied, however, a great deal

of metadata processing was required to probe, locate and obtain the requisite data

segments. Since little or no processing interleaved these metadata operations, the

metadata server was overwhelmed, forcing jobs to retry5, timeout, and fail.

Running tasks alternate between I/O operations and computation. Here, I/O

operations consist of centralized metadata operations as well as data movement

5GEMS clients employed a simple retry mechanism whereby they retried after 1, 2, 4, and 8

seconds, then failed.

134

0 2 4 6 8 10
0

0.05

0.1

0.15

Segment Number

I/O
 R

at
io

Insertion

Notification

Metadata

Retrieval

a) b)

Figure 5.13. Performance results for the hyperdynamics workflow.

a) I/O Ratio I (Equation 5.12) per segment. Averages are reported with 95%
confidence intervals where appropriate. b) Centralized time consumed on the

replica management server per operation.

operations. A checkpoint, for example, consists of a metadata insertion, a reser-

vation, parallel data movement, and record committal. Computation is fully in-

dependent per node. An important measure of system congestion is thus the

I/O Ratio (I), computed as:

I =
Time spent in GEMS clients

Time spent in computation
, (5.12)

where computation includes ProtoMol and Matlab operations. This ratio is

plotted per segment in Figure 5.13 a). Thus, the scalability in terms of number of

leaves on the search tree is considered. Plotting the ratio in the segment domain

indicates the scalability of the search algorithm.

Additionally, individual operations were profiled for performance for a similar,

shorter run up to segment 4. The server was already managing results from

135

previous users, totalling about 75,000 configs consisting of over 7,000,000 replica

locations. The relative server response time as measured by the server for each

operation is shown in Figure 5.13 b). Metadata operations were the most common

operation during the run and were also the most expensive.

This experiment demonstrates that while a centralized metadata system may

be employed to efficiently manage workflows that interleave metadata operations

with computation, when all tasks request intense synchronization and metadata

information simultaneously, performance is greatly affected. Thus while a full

automated search of the parameter space is potentially possible under nominal

conditions, selective pruning and interaction with user-identifiable parameter re-

gions should be attempted to gain better resource utility on practical systems.

5.4 Grid Integration

A founding design feature of grid computing is the ability to allow access re-

sources to users across administrative domains. An administrative domain may

be commonly conceived as a local UNIX installation managed by a system ad-

ministrator. Grid construction allows users outside the local system to run jobs

or allocate storage on the resource. A system administrator may enable this by

first creating a local user that has access to these services, then installing a grid

software system that runs as this user. The new system maintains an independent

authentication and authorization scheme intended to scale to many users. For ex-

ample, the Globus system includes a public key authentication system combined

with a virtual organization model to authorize grid operations.

This solves the basic grid problem but has certain limitations. Positively, it al-

lows a new abstraction layer - the grid security system - above the operating system

136

layer in a scalable way. However, it shoehorns users into a single authentication

scheme orchestrated by administrators, not users. This adds to administrative

workloads while restricting the ability of users to share their access to resources

with others. Typical systems do not allow users to grant privileges to another

user without compromising their own account, by revealing a password or private

key. Access control lists allow the addition user names and permissions but are an

authorization scheme. GEMS provides a method to turn arbitrary access control

lists into a globally visible authentication scheme as well.

Consider a case in which research group leaders from distant universities desire

to construct a relatively secure cooperative database, building upon existing (grid-

enabled) resources. We call this the grid integration problem, which is concerned

with constructing new grids from existing grids or their fragments, ultimately cre-

ating a grid-of-grids. In the pre-grid era, administrators would have to agree on

a global user list and propagate it out. Using grid tools, they could establish a

global security authority and ensure that all components agree to use it. Both

solutions are problematic, as global user lists are difficult to manage, and a glob-

alized security system may be overwhelming, limiting the ability of users to create

subgroups or employ previous methods (such as UNIX or DNS authentication).

5.5 Grid Derivation

For any of these complex tasks, the user must be able to specify at some level

where they will run and where the data will be stored. The controller model takes

a high level view on this process. In the distant university case, the construction

of the cooperative distributed database should not be taken to mean that within

the database all records are equal from a security perspective. In fact, many cases

137

could arise in which users could agree to share resources, say, in a pair-wise way

within the greater structure. This would involve selecting certain resources for use

in the derived system and ensuring the security system works for the users and

systems involved: a local procedure which should have no global side effects. This

process again creates a data landscape in which a subgroup of users have access to

a subset of possible resources and data records. We call this the grid derivation

problem, which creates a record-specific grid-within-grid abstraction.

Grid derivation starts with the well-known process of matchmaking, a process

analogous to selecting rows from a database table. The process is augmented

because it results in a new environment: one in which other users can partici-

pate. Our simplified implementation begins with a small scale user process: the

selection of the requested resources. Resources may be organized into clusters re-

flecting network topology or geographical distance to enable certain functionality

described below. This information is organized into a storage map and may be

stored for later use.

The creation of a data landscape begins when a user combines a data record

containing data files and metadata tags with a storage map and access control list

(ACL), resulting in a config. A typical use of a config is the input and output files

of a simulator program, combined with metadata such as the options passed to

the program. This config is instantiated registered with the greater system and

entrusted to its control.

The storage map defines the derived grid resources upon which the data files

will reside, defining the data landscape in terms of system-level security and data

movement performance. The ACL is propagated to these storage sites and applied

to the appropriate files. While this may be performed with existing tools, an

138

important challenge remains: how does information from the config propagate

up to the greater system? Users must be able to administer their data at the

global level. For example, they must be able to delete a config and its underlying

widely replicated files. To do this they must authenticate to the greater system.

The ability to provide meta-grid control of diverse resources will constitute our

solution to the grid integration and derivation problems.

5.6 The Rendition Protocol for Access Control

The process by which a user performs authenticated operations within the

config data landscape is called the rendition protocol. This protocol applies in

systems that implement the grid controller model, in which a controller manages

the global policy but is agnostic with respect to system specifics such as a password

list. In this case, the system may only interact in an authenticated manner with

underlying physical storage sites that implement direct authentication protocols.

Upon this fabric we intend to build an indirect protocol that enables the controller

to authenticate a channel for a certain user with respect to a config.

Thus we reiterate our data-driven focus: operations in the system change the

data landscape. Critical operations at the controller level must be authenticated

through a storage site for a config, because only here is the ACL enforceable

and the data stored and protected. The controller model explicitly allows users

to use old protocols to interact with the underlying system, relying on direct

authentication methods.

The rendition protocol was first presented in 2006 [159].

139

5.6.1 Overview

Distributed computation systems have become an important tool for scientific

simulation, and a similarly distributed replica management system may be em-

ployed to increase the locality and availability of storage services. While users of

such systems may have low expectations regarding the security and reliability of

the computation involved, they expect that committed data sets resulting from

complete jobs will be protected against storage faults, accidents and intrusion.

We offer a solution to the distributed storage security problem that has no global

view on user names or authentication specifics. Access control is handled by a

rendition protocol, which is similar to a rendezvous protocol but is driven by the

capability of the client user to effect change in the data on the underlying storage.

The rendition protocol solution allows users to obtain an initially anonymous

channel to the controller. The user may then request access to modify a config,

at which point the controller creates a challenge which must be satisfied for the

execution of the operation. This challenge typically takes the form of a file oper-

ation with respect to the storage site and ACL in question, such as the creation

of a numbered marker file in a directory from which all users are restricted except

those known to be authorized for the operation by the ACL. Upon the hand over

of the file, the controller is notified to inspect the satisfaction of challenge, carry

out the operation, and return the appropriate notice.

This protocol may be thought of as similar to other existing indirect protocols

that delegate authentication to an external authority, but in fact rendition offers

greater efficacy. The simplicity of the scheme allows ordinary users to delegate

authentication to the whole storage fabric, a diverse array of heterogeneous sites,

each of which may implement a subset of the available physical authentication

140

protocols. This derivation of responsibility for security enables users to make use

of local system knowledge to create ad hoc collaborative systems without global

consequences.

5.6.2 Discussion

A variety of options exist to parallelize and distribute storage over clusters or

grids, but several technical and organizational issues must be considered. Current

computational environments span multiple administrative domains, such as two or

more university clusters combined into a unified resource to increase the utilization

of compute resources. A current authorization strategy in such systems is to

execute these jobs as a nearly privilegeless anonymous user that has access only

to pre-specified remote files over the network.

Distributing storage across the compute system in such a setting presents

additional difficulties. Users may be willing to allow the anonymous third-party

system to execute jobs on their behalf, but will need to be able to access the storage

directly upon data creation. A strategy to solve this problem would be to create a

master user list and replicate it to all storage sites, allowing user access over a pre-

defined protocol. Managing users in such a system becomes extremely burdensome

as the user list would contain members from all collaborating institutions.

More advanced methods have been proposed including grid authentication pro-

tocols that take into account the existence of distributed administrative domains.

However, choosing one such protocol implies that all users must agree to the pro-

tocol, and would find it difficult to fall back on simpler, localized, pre-existing

schemes.

Consider the case of an ad hoc collaboration between researchers at two dis-

141

tant universities. Each contributes storage servers to the project, and one of the

researchers installs a replica management system to synchronize data sets between

the sites. This researcher may be unwilling or unable to provide accounts for all

eligible users from the other university to interact with the management database.

Similar problems arise in many experiences with cooperative computing, and

the premise of the approach presented here originates from typical assumptions

and properties of this situation. Users and authentication methods employed are

considered secondary to the ability of users to modify the data sets and servers

involved, and the ability to authenticate via a given protocol as a given user is less

important than the ability to access a given data set at a given site. This observa-

tion motivates a system that operates at high level, independent of protocols and

user names, and can stay within its purpose: the management of distributed data

sets. The centralized service then acts as little more than a guide, coordinating

interaction among users and storage sites. These user-site pairs handle security in

a pairwise way, and system changes are propagated up to the management system.

As a solution to our considered problem, client tools could be employed that

interact with the local storage service as a method of proving their identity to the

greater system. This allows researchers to simply administer their own machines

instead of a grid, and allows the replica system to simply manage replicas instead

of users.

5.6.3 Assumptions in Shared Commodity Systems

Shared replica management systems have been designed to meet the storage

requirements of users requiring a variety of functionality. Users benefit from in-

creased storage space: especially short term storage space, as the shared workspace

142

may increase utilization of the underlying systems. Additionally, replicated data

sets are more resilient. User groups that desire to publish their data inside a virtual

organization benefit from cataloged replica systems, which provide a searchable

catalog of metadata and allow for data sharing and reuse.

Such systems have a certain typical set of user requirements and assumptions.

First, users must basically trust the machines that they are borrowing, the net-

work, and the administrators from whom they obtain these resources. Specifically,

the model here assumes that if a user is willing to delegate computation to a site,

then that site may be trusted to serve the output data. Additionally, there is an

assumption that the system will be in a partial failure state at all times, with some

machines unavailable for a variety of reasons. Middleware computation systems

attempt to build this fragile infrastructure into a useful resource through fault-

tolerant checkpointing and job restarts; storage solutions such as ours presented

here attempt to create a viable, scalable, and secure storage solution through

replication and replica management. Finally, the data sets involved are of rel-

atively low value, for example, data transmission is typically performed in the

clear. Note that this does not allow us to assume that the data sets are intended

to be publicly readable. These assumptions correspond to those taken by users of

commonly available opportunistic computation systems such as Condor.

The protocol described in this section attempts to utilize this fundamentally

unreliable and uncontrollable resource fabric into a secure system for communica-

tion between previously unauthenticable users and a replica management database

while keeping data secure and providing exceptional flexibility.

143

5.6.4 Properties of Access Control in a Replica System

Our relevant system architecture consists of a network of storage devices widely

distributed and independently maintained. The storage sites may be configured

in various ways, deploying different subsets of the available connection protocols.

The storage providers desire to collaborate - to obtain the benefits of a replica

system - and thus allow limited access to a centralized service replica management

system (RMS). Users may be able to authenticate to some subset of the available

storage sites using one or more protocols. The set of users may be multiplied

in a set of pairs (protocol , name), called the set of subjects. Each real-world

user corresponds to multiple subjects, based on the accounts and account types

available. However, the RMS is not aware of any global list of subjects in advance.

Additionally, users may desire to access the data that they may store in the system

over more than one protocol.

Centrally, the RMS catalogs a large number of storage devices as they advertise

their resources to the system, but cannot manage the lists of users from various

domains. The services offered are unable to authenticate users over the network.

The immediate result is a simple read-only lookup service that guides users to

data sources.

The storage sites implement a variety of authentication protocols, and are

drawn from multiple administrative domains. Users may access data in the system

by following a metadata lookup to the RMS with a connection to an appropriate

replica site, after which they may obtain the required data file. In a large, multiple

organization system, users desire to gain access to multiple domains using multiple

protocols, which is acceptable because the user/server relationships may be defined

by the users.

144

Storage

Storage

Storage

Storage

 GEMSd

(Globus,CN=Ed)(UNIX,Bob)

(UNIX,Abe) (Globus,CN=Cy)

NFS Globus

Figure 5.14. Read-only access controlled by local storage servers.

To effect change in the system, such as to delete a record or to modify a

metadata entry for a record, two systems must be protected: the metadatabase

and the servers. This represents a challenge to the multiple domain model, because

the metadatabase and the storage server may have different conceptions of who

the user is. For example, a user may be able to authenticate to a nearby storage

site that contains a replica of a data set that the user wishes to delete, but the user

is unable to authenticate to the centralized server- a necessary ability to delete a

replica set that may be owned by another user and distributed widely.

No global list of users is available to the RMS, since the RMS is unable to im-

plement an authentication test for each subject. However, a user may demonstrate

the ability to modify a stored data set by interacting with a storage site. Since

the RMS is able to observe such interaction, an indirect method of authentication

is possible. By demonstrating the ability to change the storage system, the user

has authenticated in a meaningful way to the RMS.

145

5.6.5 System Specifics

In this section, we develop the specific capabilities of the software components

relevant to this work. The data structure of a data set stored in the system

is shown as a diagram in Figure 5.15. Each data set, or config, is indexed by

a numeric key, but is commonly accessed by a unique metadata lookup query.

Configs have an owner and ACL as shown: owners always have full access to

the config and may grant full or limited access to other subjects. The config

consists of any number of files with their path information, as in an archive. The

storage map indicates which storage sites are eligible to receive and serve the

data files. Additionally, the map indicates the cluster topology to the replication

service. The replication service uses this information to split replica locations

among available clusters. The map is also used when retrieving data to obtain

a nearby replica. This structure increases the performance of data access, and

increases data survivability when whole clusters may be offline.

The map takes on critical importance in the security of the data set. Users

may use the replica servers as rendezvous locations when gaining access to the

config in question, so the servers must be trusted by the specific user to enforce

the ACLs appropriately.

The system allows the users to create virtual workspaces in which they create

storage and grant access control to other users. The benefit of the methods

described here is that the centralized service does not have to maintain a list of

these users, or even be able to authenticate them directly over their desired protocol.

Different operations require different types of authentication in this system.

There are four authentication methods that are implemented by the RMS server.

• none, to access the public search facility;

146

Metadata Config Key Config Entry

4321
name=Abe
sim=chem
p=3

}
owner (UNIX,Abe)

jims_cluster

map my_cluster
abe*

jim01
jim02

acl (Other,Jim,read)

bin/chem

data/stats
abe01

jim01
jim02

(3)

(2)
abe01
jim02

files

{

Figure 5.15. Metadata layout with ACL.

A user-specified number of copies of each file are stored across the storage map,
all are protected by the same ACL.

• insert, to insert a new config into the system;

• config, to modify or delete a config;

• admin, to rewrite the configuration of the entire system.

The most common use of an archival system is to consume data from it to

perform new computation. While the data files are protected on the storage

servers, locating this data is a publically available service. Searches may be used

to map metadata to configs, or configs to file replica locations. This is equivalent

to simply observing a resource catalog.

Data insertion is performed by client tools after authentication using the ren-

dition protocol. The client simply contacts the metadatabase with a request for

a challenge, and specifies an desired authentication method. The response to

the challenge takes is a rendezvous location on a storage server that the meta-

database administrator and the user trust to allow insertion into the system. The

147

rendezvous location takes the form of a tuple containing an appropriate storage

server, a new config key to uniquely identify this data set, and randomly gener-

ated code number for this transaction: (host , config , code). The server creates a

directory on the given host named /<config>/RDVS/<code>, and sets the ACL

on this directory to allow the client write access. The client then contacts the

storage server and creates a marker file at the given path. Upon completion, the

metaserver is notified over the channel, the result is verified, and the channel may

be thought of as authenticated.

One the config has been created, the ACL is generalized to meet the owner’s

request allowing access to other eligible subjects. Such subjects do not need to

authenticate to the centralized service as described above. The replication process,

coordinated by the metadatabase, propagates the ACL to other eligible storage

sites along with the data files.

Metadata modification or config deletion is performed upon satisfaction of the

config rendition protocol. In this protocol, the client contacts the metadatabase

server and indicates which config is to be affected. The reply takes the form given

above, but the host given is selected from the storage servers that currently contain

replicas of the stored data. Additionally, the rendezvous directory is placed within

the directory allocated for that config. Thus the protocol takes on an element of

realism: clients that can demonstrate access to the stored data files are granted

access to modify the metadata associated with the config.

The authenticated subject is not a full representation of the user subject in

the traditional sense of a login. Since the subject has been authenticated for a

certain config, the authenticated subject must be considered a limited subject

(protocol , name, config), as access has only been granted by the system for the

148

config in question.

If a certain storage site is authorized to serve replicas of a given config, the

storage site effectively acts as an authentication authority for the user with respect

to the configs which it stores. Thus the site effectively speaks for the user with

respect to that config. As a result, users must construct storage maps appropri-

ately, weighing the benefits gained from “broader”, more distributed maps with

the security risks involved in spreading data far and wide. In typical cases, this

is equivalent to or easier than constructing a matchmaking script like those used

in common computation systems. When the storage network is the computation

network this is elementary.

A last protocol is available to allow administrators to modify behavior of the

whole system during operation, allowing for remote administration. The system

configuration specifies a rendezvous location that may be used to satisfy the pro-

tocol, and upon satisfaction of the protocol, a new configuration file may be fed

into the server.

A generic form of the protocol is outlined in Figure 5.16.

5.6.6 Application

Again, we consider the university network as a commonly used tool for scientific

research. Here we provide an example to motivate the usefulness of the new

system. The Notre Dame GEMS and Condor installations are employed as the

testbed. Since all the storage hosts in question share a network file system, the

UNIX authentication protocol is a common choice for a GEMS authentication

method. Users will typically allow hostname authentication as a fallback access

method, and Globus authentication is possible via a local certificate authority.

149

Rendition Procedure for Storage Access

Client operations Metaserver operations

1. Client obtains an anonymous secure
channel to the metaserver.

2. Client requests access to config c as
user n.

3. Metaserver issues a rendezvous chal-
lenge involving a host h in the map
associated with c.

4. Client authenticates directly to host
h using method m.

5. Client satisfies challenge.
6. Client notifies metaserver that chal-

lenge is satisfied.
7. Metaserver inspects host h for com-

pletion of challenge.
8. Metaserver notifies client that in-

spection was successful; the channel
is authenticated as m : n for c.

9. Client transmits metadatabase
operation regarding config c to
metaserver.

Figure 5.16: Outline of the rendition protocol.

150

The Notre Dame Condor system has been combined with Condor systems at

nearby universities to increase the opportunities for resource sharing and collab-

oration. To unify the storage into a single logical system as well, users would

expect to have to be able to authenticate under some uniform protocol. However,

the GEMS protocol allows users to interact with the system by authenticating

through only the subset of servers that are relevant to the data set in question,

relieving the administrative burden of managing users in a global way.

The GEMS system allows replicas of user data sets to be automatically repli-

cated to remote computation sites. Users may use a simple storage map to inform

the system that the *.nd.edu and, for example, *.purdue.edu computation and

storage resources are eligible to be used. The map would be used to ensure that

data access would be localized to a campus network.

In practice, the GEMS installation could not be immediately configured to

authenticate users from multiple universities. However, as individual stake holders

allow each other access to storage sites at their respective locales and develop a

complex system of user groups and virtual organizations, GEMS is able to grow

in parallel with the system, relying on storage providers to serve as the authority

on storage access, which is the objective all along.

A more abstract example of the protocol in action is shown in Figure 5.17. In

this special case, we demonstrate the additional ability of the system to authenti-

cate users to whom access has been granted on a pre-existing config. In this case,

user Abe has stored a config on his server, but has deployed an ACL that allows

user Guy full access using the “Other” protocol. Abe’s environment is capable of

authenticating UNIX users and Other users, however, the metadatabase is unable

to authenticate Other users. The config in question has been replicated, perhaps

151

Storage

(UNIX,Abe)

 GEMSd

(Other,Guy)

NFS, Other(DNS,RMS) Other

(Other,Guy)

Figure 5.17. User authentication at a rendezvous point.

to other domains, so deleting the config must be performed at the RMS (GEMSd)

level. Since Abe has allowed Guy full access, Guy should be able to perform dele-

tion but is unable to gain config access at the RMS level. However, the client tool

that performs deletion using the rendition protocol is able to render a marker file

at a rendezvous location on the storage site. This is checked by the RMS, which

authenticates over a hostname protocol. Thus the connection between the RMS

and Guy is indirectly authenticated, as indicated by the italicized subject label

(Other, Guy).

As a second example, consider the simple collaboration shown in Figure 5.18.

In this case, user B inserts a data record with a config policy that allows storage

and access at domain C. Collaboration and shared data administration are possi-

ble even though each user is unable to authenticate at a remote site. Moreover, a

job submitted by user B running in domain C may access data, perhaps using a

simple DNS based authentication. This reinforces the notion that data replication

may be viewed as an asynchronous job pre-staging process.

152

Storage Storage

GEMSd

Domain C

USER CUSER B

Asynchronous replication

Insertion

Domain B

Domain A

Job submission JOB B

Data
Access

Figure 5.18. Simple three-domain collaboration.

The ability of users to create secure, derived data landscapes enables the ele-

mentary creation of a data workspace in which a foreign user may be permitted

to operate by a previous user. Since the controller needs no a priori knowledge of

the user names, an existing user can simply add foreign users to the ACL on a set

of permitted records. The foreign user may then use their permission to access

the system by performing the rendition protocol through a config controlled by

a previously trusted user. Thus a trust chain is established by ordinary users to

both

1. securely, incrementally, and locally expand the user base of the system, and

2. construct a system-manageable trust and accounting structure.

A diagram of example operation is shown in Figure 5.19. The rendition-based

trust chain infrastructure solves a common problem in trust delegation: trust

delegates must not receive too much information from the delegator. Passwords

and other credentials simply cannot be passed to a third party. Likewise, the

authentication system cannot be globally affected by ordinary users. Yet users

153

Config: 142

Config: 498

Config: 312

Config: 941

Config: 605

Config: 290

 142

Config: 881 Config: 791

Config: 002

 290 290

GEMSd

Domain D

USER B

USER D

Domain B

Dependency:

Domain C

USER C

Independent jurisdiction

USER E

Dependency: Dependency:

Domain A

Domain E

Figure 5.19. Trust chain construction.

are able to delegate access to records via an ACL, and the config data structure

provides a physical authentication test. Practically speaking, outside users then

gain insertion privileges to the data landscape in a dependent way.

5.6.7 Summary

ren · di · tion n. 1. The act of submitting for approval [10];

2. An explanation of something that is not immediately ob-

vious [157].

The protocol presented in this section results from several observations about

the properties of widely distributed replica management systems: the wide vari-

ety of users, access methods, and administrative domains; the distinction between

centralized metadata and user data files; and an implicit trust of storage providers,

that storage providers will keep the data sets secure. The purpose of replication

154

here is not for security purposes but for reliability, availability, and performance

purposes. This model is consistent with the security model of opportunistic com-

putation systems because in such systems users must trust some number of sites

to create correct data sets.

The new method presented herein attempts to authenticate users in a limited

way, avoiding difficulties caused by squeezing users into a single authentication

protocol, as well as the administrative challenge of managing all users and re-

sources as a whole. Thus the user identity of a client connection to the system is

never “immediately obvious”, and an explanation is provided in the form of a file

operation submitted for approval.

5.7 Summary

This chapter has laid out the GEMS system as an example implementation

of a grid infrastructure. GEMS offers high performance scalable data services to

running grid jobs, offers an organized programming model, enables the construc-

tion and customization of workspaces, and manages access control through a novel

technique.

The main topic of this work has been the construction of a model for grid

controllers. This chapter has emphasized that the solution techniques used along

the way were in accordance with that model. In the next chapter, another grid

problem is presented and solved using the grid controller paradigm.

155

CHAPTER 6

SCHEDULING POLICY

Researchers conducting computer simulations can often provide estimates of

computation time for a given type of simulation, which may be used by the com-

pute cluster to aid in resource allocation and scheduling. However, the low quality

of these estimates can cause deadline misses and unpredictable behavior. This

problem is exacerbated on complex compute resources, clusters, and grids. Past-

deadline jobs may be killed to provide resources for others, but the effect on the

throughput of whole batches not fully understood. In this chapter, we examine

models for simple job schedulers and examine the quality of the deadline guarantee

given. Simulation results based on actual runtimes are provided and discussed.

The scheduling policy techniques described in this chapter were originally re-

ported in 2007 [162].

6.1 Overview

The emergence of commodity compute clusters and grids has provided re-

searchers with an important tool for simulation. Batch systems such as PBS [68]

and LSF [167] provide users with a cluster of compute hosts to which jobs may

be submitted, while grid engines such as Condor-G [55] and Globus GRAM [37]

create an access point for widely distributed compute systems. Although such

156

resources often suffer from poor internal communication speed compared to a

multiprocessor shared memory machine, they have been used with considerable

success by researchers who need to submit a batch of independent jobs for pro-

cessing. The vast majority of this work has focused on how to successfully share

and complete computing tasks such as computation and storage to achieve a large

scientific objective.

However, an often unaddressed aspect of grid computing is the notion of

deadline-driven scheduling [129]. Unlike traditional deadline scheduling from the

realm of real-time computing [81], the problem of deadline scheduling in the grid

context is significantly more difficult. The critical difference that emerges in grid

computing is the dynamic nature of the grid resources themselves.

Previous work in the area of grid deadline scheduling considered only the im-

pact of low quality estimations on throughput with regards to deadline scheduling

[129]. The effects of policing when coupled with variable quality deadline esti-

mations in the context of grid computing have not been fully investigated. In

addition, previous work in grid scheduling has typically focused on each task

being completely independent. For many types of scientific simulation such as

parameter sweeps and parameter explorations, this is not the case. In these cases,

tasks can often be grouped into a batch of related tasks that while computation-

ally independent, the utility of the final scientific result is dependent upon the

completion of all tasks.

Thus, the motivation of our investigation here is to answer the following ques-

tion: Given an environment of related tasks with low quality information, how

strictly should policing be enforced and what effects will result on throughput and

deadline guarantees? In this topic, we make several key contributions. First,

157

we offer insight into the effects of policing when the system contains low quality

run-time estimations. We offer a broad set of simulation studies incorporating

both real world data as well as synthetic data. Second, we formalize a model

whereby batches of jobs can be specified with differing deadlines, and applied this

to real world scenarios. Finally, we offer insight into how to police. In short, when

multiple users offer bad estimates, who should pay the price?

Our solution is based on the control model proposed in the introduction to this

dissertation. In the deadline-driven case here, relatively small system perturba-

tions can lead to relatively large batch completion unpredictability. We apply an

overdrive metascheduler with new policy principles to control an existing, abstract

batch system. The controller ameliorates the scheduling challenges by taking into

account both the magnitude of the run-time perturbations as well as the value

of user jobs. Thus, probabilistically proportionate responses may be applied to

reduce system unpredictability. Additionally, we provide an incentive for users

to strive for good run-time estimates, creating a game theoretic environment in

which users are anticipated to be motivated to enhance their estimates, promoting

better system utility.

The remainder of this chapter is organized as follows. Next, Section 6.2 moti-

vates our work by providing cases that exemplify the trade offs directly considered

in this work. Then, Section 6.3 formalizes the system model used in Section 6.4

for our simulation studies based on both synthetic and real world data.

158

6.2 Case Studies

6.2.1 Applications

For our first example case, a CPU design was optimized through simulation

with SimpleScalar [27], a tool for simulating the performance of real programs on

a range of modern processors utilizing execution-driven simulation. Tasks varied

in run-time from as shown in Table 6.1. Most importantly, the utility of the

results themselves was dependent upon the completeness in that no points were

missing from the results. In the second simulation case, network simulations were

conducted using the NS-2 [95] simulator. NS-2 is a discrete event simulator that

provides packet-level granularity for simulating networks. During execution of the

above simulations, the run-time statistics were sampled.

6.2.2 Grid Middleware

Over the past few years, the GIPSE (Grid Interface for Parameter Sweeps

and Exploration) toolkit has been developed [163]. Rather than exposing the

task-centric nature of the grid, the tool allows the user to solve problems using a

research-oriented interface. GIPSE manages the creation and monitoring of jobs

on the compute grid, as well as maintaining a database of all the relevant data

about previously completed jobs, including input parameters and output results,

job metadata such as the executable and resources used, job computation time,

and other useful information.

It is this requirement for timeliness the large body of work in real-time multi-

processor scheduling can be brought to bear. In essence, the problem can be

reduced to an admission control and scheduling problem. For the researcher,

the question is simple: given a group of tasks, can they be finished on time?

159

However, it is the nature of grid computing that makes this problem significantly

more difficult than the traditional multi-processor scheduling problems faced in

real-time.

6.3 A Model for Deadline-Driven Grids

As discussed above, there is a great need for ad hoc compute clusters and grids

that can provide reasonable schedule guarantees. In this section, we lay out a

model to meet such demands, as shown in Figure 6.1.

The object of the system is to complete several batches of jobs, where each

batch has a deadline given by the user. For each batch Bi ∈ B, Bi = {Jijk}, where

each job J has three indices, the batch number, the task type, and a uniquifier.

Each batch has an independent deadline, Bi.deadline. The system can identify a

job Jijk as an instance of task Tj ∈ T , belonging to batch Bi, and different from

all other jobs in the system.

To obtain a response from the scheduler as to whether Bi is feasible given the

current system state, each job is given a computation time estimate, Jijk.est . The

user also provides each job with a corresponding input set Iijk, which is a set of

input parameters valid for task Tj , which is the parameter space for Tj , denoted

Tj .I. Each parameter is indexed, so Iijk[0], Iijk[1], ...Iijk[m− 1] ∈ Iijk. The actual

computation time is obtained empirically by the grid; in this model, each task

has a device that may be applied to an input set to determine computation time.

Hence, once submitted to a compute resource, the computation time Jijk.c is

obtained by evaluating Jijk.c = Tj .device(Iijk).

A compute grid G consists of N homogeneous processing hosts, that are each

capable of executing any job in a non-preemptive, single-processing manner. The

160

jobs currently running on the grid at time t are said to be in the set Rt. If a

job J is added to Rt, then J.start = t. If more jobs are submitted to the grid

than available hosts, they are queued in the FIFO wait queue W . When a job Ji

completes execution, Rt+1 := Rt − {Ji}, an event is triggered back to the user,

and if W is not empty, it is popped to obtain job Jj , which is added to Rt+1.

The scheduler S accepts a batch Bi from the user at any time, and can deter-

mine whether the batch has a feasible deadline in several heuristic ways. In the

FIFO model, which we use1, S builds up a calendar into the future, stacking onto

R all jobs in W ∪ {Bi}. If each job meets the deadline, success is returned for the

batch, but since the guarantee is based upon the accuracy of the task estimates

provided, there is the possibility of deadline misses.

The value of the batch in a simulation research setting represents, for example,

data points on a plot. This work assumes the researcher cannot accept partially

complete data sets. Since the user penalty for having a rejected batch is less than

that from a late or incomplete batch, it is better to force the user to negotiate:

to adjust their submission to meet a deadline than to provide a less accurate

guarantee, providing poor results.

This is based on the assumption that the user can supply per task estimates

where the actual runtime is centered around the estimated computation time, but

offset by a random value that is within a given percentage of the actual time.

We call this value the Quality of Estimate (QoE) to avoid conflict with [43].

For example, if the simulated user can always provide the scheduler with a time

estimate such that the actual runtime is within 40% of the estimate, and not

1For simplicity and compatibility with our experimental results on a Condor system.

161

biased higher or lower, we say the QoE is 40%. So we assert:

∣

∣

∣

Jijk.est− Jijk.c

Jijk.est

∣

∣

∣
≤ QoE. (6.1)

For any set of batches B, after submission to the scheduler, we have an ac-

ceptance ratio that indicates the size of the subset of B that was accepted. Ad-

ditionally, we use the definition of guarantee ratio as given in [91], on batches, so

the ratio represents the number of batches in which all jobs met the deadline for

that batch, divided by the number of batches accepted by the scheduler.

To help free up space for a new batch that arrives at a given scheduling event,

the scheduler may be permitted to kill jobs that have been running in R for longer

than they were allocated based on their estimate. So we say that J is eligible to

be killed at time t if:

t− J.start > J.est . (6.2)

To demonstrate an intermediate approach as motivated in Section 6.4, we

can instruct the scheduler to kill jobs that have exceeded a certain threshold K,

meaning we kill jobs when:

t− J.start > J.est × (1 + K). (6.3)

For example, if K = 0.5, jobs are allowed to exceed their estimate by 50% before

becoming a possible victim.

Choosing K is difficult, because it is not easily possible to choose a value

that provides the users with flexibility for errors and still promotes fairness and

deadline guarantees. To help select jobs for termination, and ameliorate these

issues, we may assign a probability p that a job will be killed at a scheduling

162

event at time t, as:

p = 1− J.est

t− J.start
. (6.4)

For example, a job that had exceeded its estimate by a factor of 2 at a given

scheduling event would have a 50% chance of being killed.

6.4 Simulation

To investigate the properties of the system presented in Section 6.3, a sim-

ulator was written that corresponds to that model. The results in this section

demonstrate the performance of scheduler policy under idealized and experimen-

tal workloads.

The simulator, designed to allow the study of computation time estimates

over time is named East. The program allows the researcher to set up a virtual

compute grid and scheduler combination. Virtual tasks may be defined, assigned

input parameters, grouped into batches, and sent to a virtual compute cluster.

A table of computation time devices is given in Table 6.1. The experimental run

times were obtained from the Condor system as discussed in Section 6.2. SS refers

to a table of runtime information from the SimpleScalar cases and may be used to

lookup the runtime for a job given an input set, I. Similarly, NS refers to a table

of runtimes for NS-2.

Each of the following tests is based on a varying QoE, as defined above in

(6.1). For each QoE value, 10 tests were run, and the results were averaged. The

standard deviation of the tests is shown by the bars around each data point. For

each job, the estimate given to the scheduler was randomly selected from the set of

estimates that satisfy (6.1). Batches of fixed size arrived at the scheduler between

random, uniformly distributed intervals around a given mean value. The input

163

TABLE 6.1

COMPUTATION TIME DEVICES IN THE EAST SIMULATOR

Type Name Device Median Mean Min Max

Ideal SumDevice
∑

I[i] 22 22 0 45

Ideal PolyDevice
∑

kiI[i] 123 198 0 804

Experimental SS-Device SS[I] 218 237 137 615

Experimental NS-Device NS[I] 297 426 87 3442

Note: SS and NS refer to database tables.

set for each job was randomly, uniformly selected from the space of valid input

for the appropriate device. The simulated compute resources comprise a simple

N node cluster. The batch size was scaled up as the number of hosts increased to

simulate more complex systems.

6.4.1 Low-Quality Estimates

In this test, the acceptance and guarantee ratios for the scheduler were mea-

sured against the QoE. As shown in Figure 6.2, increasing the error in the estimate

has a significant effect on scheduler acceptance, especially in complex systems.

This was observed in many cases to be due to a single large over-estimation of

the runtime of a long job, which forces the schedule past the deadline, and results

in rejection. Additionally, the guarantee ratio for whole batches is perfect when

the estimates are exact, but even when they vary widely, the effect is that the

guarantee ratio rarely drops. This is because the deadlines are somewhat permis-

sive, but tight enough that not all batches are accepted. However, in the complex

case with 128 hosts, a heavy job rate, and very bad estimates, almost no jobs

164

are accepted, because nearly all batches will have at least one extremely long job

with an overestimated runtime, forcing batch rejection. In these extreme cases,

the Batch Guarantee Ratio is shown as 0 because no batches were considered.

Overall, while the guarantee ratio is nearly perfect, the acceptance ratio is not.

This indicates that users could intentionally provide underestimates to increase

their acceptance ratio, hogging the system.

In our next test, Figure 6.3, we attempt to police the system fairly and increase

the scheduler acceptance rate by killing jobs that have exceeded their estimate.

However, when the scheduler is instructed to kill jobs that have exceeded their

estimate in order to accept future jobs, many fewer batches are able to complete.

This is aggravated by the fact that we are measuring the Batch Guarantee Ratio,

so killing one job that is slightly over time results in a loss of the whole batch. In

addition, there is little to no gain in scheduler acceptance. This is because many

of the jobs that were killed were close to completion at the time of kill, which

means that very little schedule time was freed.

Similar results are obtained when using runtimes from real NS-2 runs as shown

in Figures 6.4 and 6.5, in which we repeat the above experiments using experi-

mentally observed NS-2 runtimes.

6.4.2 Grace Periods

The fact that so many jobs are killed near their completion time motivates the

implementation of grace periods. The simple technique of granting jobs a thresh-

old, or grace period, before killing them was also simulated for the PolyDevice

tasks. For a range of values of K, the same simulation was performed, where

jobs were killed according to the method described above. Although the results in

165

Figure 6.6 show that larger grace periods result in more throughput as measured

by the batch guarantee ratio, this is an unfair, easily manipulated system policy.

6.4.3 Probabilistic Enforcement

Applying the probabilistic policy, as describe in Equation (6.4) and shown

in Figure 6.7, acceptance ratios match up with ratios as given in the previously

shown hard enforcement and non-enforcement policies. The batch guarantee ratio

is much improved. This is due to the policy, which rarely kills jobs that are near

their estimate. However, throughput as measured by the batch guarantee ratio

still does not approach that of the unpoliced system.

6.4.4 Protecting Users from Bad Estimates

The intent of a policed system is to provide better results for users overall,

especially those that use the system properly. Users that intentionally abuse the

system, for example, by providing low estimates to increase the probability of

batch acceptance, should receive poor results, if this is necessary to continue to

provide good results to other users.

In this experiment, we compare the results obtained by two groups of users:

Group A, which submits NS-Device tasks with estimates centered on the correct

value, and Group B, which always submits an underestimate. Estimates for Group

B were generated by randomly selecting an estimate inside the given QoE range,

until an underestimate was obtained. Acceptance and guarantee ratios are shown

in Figure 6.8. These results show that Group A users obtain better results: more

of their accepted batches complete on time, because very few of their jobs are

killed, compared to the Group B users.

166

6.5 Summary

While real-time computing and grid computing both emphasize scheduling,

their ultimate goals are often different and result in trade offs. Strictly enforcing

computation time estimates on the grid can greatly reduce throughput in heavily

loaded, complex systems. However, failure to enforce a schedule is unfair to the

other users of a shared compute system, and necessitates policy to prevent users

from cheating the system by providing misleading estimates.

Tests performed with a new grid scheduling simulator showed that killing jobs

that exceed their estimates can greatly reduce throughput, especially in complex

environments. A more balanced approach is required. We offered a probabilistic

policy that reduces the throughput penalty by probabilistically forgiving users

extra time for over-running jobs. The new policy is also difficult to manipulate,

and offers the best results to users that provide the best estimates.

167

0 1

Bi+1

Bi+2

Bi

J i12

J i11

J i01

N−1

2

1

0

Hosts

User

Tasks

Response
Submit

Scheduler Compute Grid

W

R

Figure 6.1. Deadline-driven grid computing model.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 8

N = 32

N = 128

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io

N = 8, 32

N = 128

Figure 6.2: Acceptance and guarantee ratios for batches of jobs without enforce-
ment. Batches of PolyDevice jobs.

168

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 8

N = 32

N = 128

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io

N = 8

N =
32

N =
128

Figure 6.3: Acceptance and guarantee ratios for batches of jobs with hard enforce-
ment. Batches of PolyDevice jobs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 8

N = 32

N = 128

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io

N = 8, 32

N =
128

Figure 6.4: Acceptance and guarantee ratios for batches of jobs without enforce-
ment. Batches of NS-Device jobs.

169

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 8

N = 32

N = 128

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io

N = 8

N = 32N = 128

Figure 6.5: Acceptance and guarantee ratios for batches of jobs with hard enforce-
ment. Batches of NS-Device jobs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 0.00, 0.25, 0.50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io

K = 0.00

K = 0.25

K = 0.50

Figure 6.6: Acceptance and guarantee ratios for batches of jobs with enforcement
level K. Batches of PolyDevice jobs.

170

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 8

N = 32

N =
128

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io

N = 8

N = 32

N = 128

Figure 6.7: Acceptance and guarantee ratios for batches of jobs with probabilistic
enforcement. Batches of NS-Device jobs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ac
ce

pt
 R

at
io

N = 32, 128, Group B

N = 32, Group A

N = 128, Group A

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Estimate Error Range (QoE)

Ba
tc

h
G

ua
ra

nt
ee

 R
at

io N = 32, Group A

N = 32, Group B

N = 128, Group A

N = 128, Group B

Figure 6.8: Acceptance and guarantee ratios for batches of jobs with probabilistic
enforcement. Batches of NS-Device jobs.
Data with dots indicates the Group A users, who provided estimates centered on
the correct running time, undotted lines indicate Group B users, who provided

consistent underestimates. This enforcement method demonstrates an
intermediate approach between hard enforcement and no enforcement, with
intermediate guarantee ratios as a result. As shown, if users can keep their

running times within 50% of the estimate, they achieve similar acceptance ratios
to users that deliberately underestimate, while obtaining much better guarantee
ratios on their batches. (Standard deviation information removed for clarity.)

171

1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
at

ch
 G

ua
ra

nt
ee

 R
at

io

None Probabilistic Hard

Summary of Deadline Enforcement Methods

Figure 6.9: Guarantee ratios for batches of jobs with probabilistic enforcement.
Batches of NS-Device jobs, N = 32, QoE = 50%.
Data compiled from previous diagrams. All users Group A: unbiased estimates.
In summary, no enforcement allows for most jobs to complete on time, because

of necessary over-estimation for worst case input parameter sets. Since this
policy is easily abused, this policy is compared against the probabilistic

enforcement method and the hard enforcement method. This illustrates the
trade-off between deadline enforcement and high throughput.

172

CHAPTER 7

CONCLUSION

Scientific computing systems are expected to increase in size and complexity,

creating an ever more pressing need for control abstractions and management

solutions. These world-wide computing systems will continue to pose challenges

until appropriate controls, methods, software are developed, implemented, and

communicated to administrators and end users.

Programming the grid is ideally as simple as possible, however, users currently

must be aware of many technical details of the resources utilized. Additionally,

users must often orchestrate complex operations before and after jobs are executed.

Interacting with a higher level controller may be a viable technique to change the

semantics used by the programmer from an imperative model to a declarative

framework. The shift emphasized here is one from a systems programming model

to a policy programming model. If complex user tasks can be represented simply

as policy rules, autonomic agents can perform the underlying systems operations.

While this basic concept has been previously pioneered via matchmaking, broker-

ing, or other techniques, we have presented a general solution based on a feedback

loop model.

Additionally, managing the grid should be elementary. In fact, managing con-

tinental scale infrastructures is not easy and automatic tools must be developed

to enable the fluid deployment of grid resources. Our work has attempted to

173

push administrative tasks away from site administration, treating resources as

immutable objects. We have provided a model whereby swaths of these sites can

be managed by user level controllers, which ultimately report to application users.

Thus underlying sites can remain unaware of grids into which they are integrated,

simplifying resource requirements.

7.1 Summary

We have provided the motivation, description and two examples of overdrive

controllers for scientific computing on the grid. Each example remained based

in its original domain - data storage or scheduling - but was shown to benefit in

control and usability through the addition of an overdrive system.

The GEMS system started as a design requirement for a repository built upon

existing volunteer resources. Chapter 3 described how GEMS meets the basic

definition of a simulation repository, enabling simplified management of common

data tasks in scientific applications, including metadata and basic integration with

computational tools. However, higher level control of the system was required to

keep user files alive on the unreliable underlying storage fabric, requiring the

construction of a control loop layer as described in Chapter 4. GEMS was subse-

quently expanded into a comprehensive grid system in Chapter 5, enabling com-

plex job/data coordination, grid construction and usability features, and a new

authentication technique.

Similarly, East started as an deadline-driven computing application based on

the availability of job metadata in grid systems. Heavy-handed estimate enforce-

ment could be employed to attempt to improve the quality of the system guaran-

tees, but was shown to be oppressive in unpredictable computing environments. A

174

new metascheduling layer was added, as described in Chapter 6, to make decisions

about which jobs to prioritize based on the quality of user-provided information.

This technique thus attempts to control system response to user requests as well

as control user behavior in the game theoretic sense by a stabilizing preference for

honest users.

In summary, the overdrive controller model provides a framework for under-

standing and reasoning about the coarse grained operation of distributed systems.

Additionally, it provides a numerical flavor to analyzing the aggregate effects of

system behavior. It can be used to describe points of interest in replica manage-

ment systems, metaschedulers, and potentially other systems as well.

7.2 Next Generation Grids

How do we get more from conglomerations of existing systems

without modifying their internals?

Achieving future goals in grid computing will require new software frameworks

in addition to resources and investments. To propagate the full benefits of grid-

enabled technologies to more users and stakeholders, several problems must be

addressed.

1. Usability:

Programming on the grid or any distributed system is different from work-

ing with the local machine, which is acceptable if reasonable usability is

in place. Systems designers must present a tangible programming model

that encapsulates scalable aggregate functionality without hiding important

performance details.

175

2. Manageability:

The automatic management of distributed systems can be thought of as us-

ability for administrators or systems managers. Management and optimiza-

tion can be grouped under the category of parameter tuning, an automated

iterative process that selects the magic numbers that make a system work

well - or work at all.

Appropriate administrative tools lower the risk involved in grid installa-

tion or integration. New systems can act as a front-end to existing sys-

tems (overdrive), an alternative parallel route to perform system operations

(short-circuit), or as a technique that necessarily replaces the existing system

(disruptive technology).

3. Visibility:

The physical remoteness of large distributed systems reduces the ability for

users to obtain information about the system behavior. Beyond debugging

broken software, system visibility enables users to realize the emergent prop-

erties of complex systems.

The overdrive controller model provides potential solutions for these abstract

design requirements that will shape future work with the model.

Usability is a difficult target, at once requiring the conservation of existing

frameworks while also requesting new, simpler, labor-saving innovations. The

overdrive controller leaves existing systems intact, allowing a very conservative

approach. However, the new framework offered is considerably different, migrat-

ing from an command-driven do-this model to a hands-off this-must-be-done

model. For example, in replica management, user operations were augmented

176

from file movement operations to high-level cluster definition and replica request

operations, resulting in complex management operations carried out by the con-

troller.

Manageability is a similarly difficult topic. Controlling existing software re-

quires the installation of more software. However, in the limited context of param-

eter tuning, controllers may offer a great deal of benefit. The model is designed

to correct itself, pointing back to a sustainable steady state. For example, in

the context of user quotas, GEMS automatically selects the maximum file replica

count - and implements appropriate system changes - when available space be-

comes restricted. This number is iteratively updated as user requests increase and

the available disk space ebbs and flows.

Since input and output are well-defined features of the overdrive controller

model, an ideal controller would also improve system visibility. The internal sys-

tem model could also be published to authorized clients, demonstrating the state

of the system in as much as the controller is aware of it. However, controllers

increase the asynchronicity of the system, making query results more difficult to

understand, as the perceived system state and controller activity are delayed.

7.3 Future Work

Scientific computing systems have continued to function as social projects,

combining teams of scientists, engineers, and technicians. Proposed petaflop ca-

pacity supercomputers, networks of university desktop machines, and production

grids that span continents are modern infrastructures that rely on users and ad-

ministrators collaborating effectively. While modern hardware provides more com-

puting power than ever and interoperability standards have made heterogeneous

177

computing a reality, users are still unable to shape computing environments to

their short term needs. Systems designers must enhance scientific control of com-

puting environments, allowing for the dynamic creation of composite or derivative

computing frameworks customized and optimized for target applications- a form

of scientific ergonomics.

The GEMS and East project domains have a great amount of potential for

future work in these areas. Both emphasize the ability to customize the behavior

of existing resources to satisfy more demanding requirements. Additionally, the

controller model itself could be applied to other problems in large-scale distributed

computing.

7.3.1 Opportunistic Storage

Current work with GEMS has enabled researchers to quickly integrate storage

infrastructures and carve out scientific workspaces in desktop grid environments.

Future work in distributed storage will study the manner in which small groups of

researchers interact through data sharing across large infrastructures, and attempt

to address their needs. While these systems have been approached in the past as

global optimal replica placement problems, mathematical models will be applied

to study performance for the real world usage patterns of collaborating users.

Future work will additionally provide comprehensive access delegation techniques

inspired by indirect authentication methods and develop applications to large-scale

scientific computing, Internet computing, and other areas.

A first topic to consider in shared storage over wide-area networks is the nexus

of locality, survivability, flexibility, and cost. If an opportunistic storage fabric is

used, much replica management must be performed to combat churn, thus increas-

178

ing the bandwidth cost for the benefit of greater flexibility. This greater flexibility

could increase locality, by allowing the replica manager to migrate replicas to

a user-created storage server, as discussed in Chapter 5. Real-world wide-area

applications and user groups could be studied as they patch together user-level

solutions for these problems within greater existing grid.

A second topic is data interoperability. GEMS currently provides three API-

like interfaces that must be addressed by users:

1. The parameterized metadatabase, which provides a somewhat low-level,

application-independent key/value tagging system;

2. A web services-like XML interface to the central GEMSd component, acces-

sible over the network or through the provided clients;

3. Additionally, replica location information obtained from the clients may be

used to obtain direct access to files on the underlying Chirp servers over the

Chirp wire protocol.

Each of these features was designed to be as user-friendly as possible, providing

higher-level functionality for the common scientific tasks of data set submission

and retrieval. This interface operates quite differently from, for example, a POSIX

interface, but the POSIX interface excels at portability as exemplified by imple-

mentations such as Parrot or FUSE [57]. Since GEMS does not implement a

commonly used filesystem or database interface, users must invest time and effort

to integrate GEMS with their workloads.

The data set tagging framework could be augmented with an optional interface

and tools that mimics existing programmatic interfaces to data sources such as

the Protein Data Bank [20] or GenBank [19]. This would ease the introduction of

179

GEMS data sources into existing operating environments.

Additionally, the central metadatabase should allow transactions as a stan-

dardized web service. This would allow document and data archives to use GEMS

as a back end for emerging, standardized data services in a variety of application

areas. Underlying data stored on file servers in raw formats could be converted

and merged into the XML data stream by forwarding connections through inter-

mediate translation services, located centrally on the GEMS server or dispersed

throughout the storage network. Data movement and access delegation in this

two-hop transfer/translate/transfer setup would be an interesting area for study

as well.

7.3.2 Timeliness in Distributed Computing

The East simulator was developed to investigate the effects of a deadline com-

puting framework to promote predictable behavior when resources are congested.

The simulator is currently being extended to investigate job migration strategies

for algorithms that suffer from barrier synchronization delays.

A multiprocessor barrier operation is a programmatic step which must be

passed by all processes at the same time. This method may used to begin a syn-

chronized all-to-all computation or, in a Monte Carlo setting, to allow intermediate

processing to interleave rounds of parallel computation. Executing barriers on the

grid is challenging for a variety of reasons, including

1. heterogeneity of computation resources;

2. resource unreliability; and

3. the potentially high cost of job migration.

180

For example, previous work [156] scheduling a barrier-dependent molecular dy-

namics computation in an opportunistic computing system used dedicated clusters

of faster processors to advance jobs that were lagging behind or encountered re-

source failure.

Our future work will generalize the barrier scheduling problem for an arbitrary

case in which multiple competing users schedule these workloads, and using East,

we will investigate several related problems. First, we will show that the greedy

approach of always holding onto processors while waiting for a barrier to pass is

deadlock-prone, complicating simple strategies and resulting in considerable job

migration or staging costs. Second, assuming a small number of high performance

processors are available for use, we will investigate architectural questions such as

1. How to integrate these with the rest of the opportunistic system;

2. How many to reserve for the catch-up case;

3. How to promote jobs to the catch-up cluster; and

4. What the throughput costs are of specialized strategies compared to a tra-

ditional raw throughput case.

Additionally, parameterized computation histories may be tapped to enhance

user understanding of computational resources required by their parameter ex-

plorations. Studying these histories will require the application of computational

geometry and applying them to new runs will need high dimensional interpolation

techniques.

181

APPENDIX A

GEMS DEVELOPMENT

2006 2007 2008
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Li
ne

s
of

 C
od

e GEMSview

ChirpTool

GEMSreserve

GEMScommit

ChirpAcl

StorageMap

Dispatcher

*UI

GEMSnotify

Figure A.1. Lines of code in GEMS over time.

The graphic above plots lines of code in the GEMS CVS repository as a splined

function of time. Denoted milestones indicate classes of interest that were intro-

duced to satisfy new concepts and requirements.

182

• GEMSview, ChirpTool: GEMSview (Section 3.3.1) provided a graphical

data browser for GEMS, and the ChirpTool implemented a Chirp command-

line tool in the Java platform, together increasing user accessibility to the

system.

• GEMSreserve, GEMScommit: Implemented a two-phase data insertion

procedure for GEMS data sets. The resulting code overhaul resulted in some

code size reduction as GEMSput was reimplemented atop these operations.

• ChirpAcl, StorageMap: Increased the ability of both GEMS services

and clients to implement storage and access control policy in the resource

network. Covered in Chapter 5.

• Dispatcher, *UI: A variety of graphical user interfaces were added to

GEMS, accessible through GEMSview. Much of the formerly command-line

client functionality is now accessible through point-and-click tools.

• GEMSnotify: Provides client notification upon matching data set inser-

tion. Enables the parameterized workflow paradigm discussed in Section 5.3.

GEMS is an open-source project available at:

http://sourceforge.net/projects/gems-nd

183

APPENDIX B

VITA

Justin Michael Joseph Wozniak is a native of the state of Illinois in the USA.

He graduated from St. Edwards High School, Elgin, IL, in 1996. His Bachelor of

Science in Mathematics and Computer Science with minors in Latin and Chem-

istry was awarded by the University of Illinois at Urbana-Champaign in 2000.

His Master of Mathematics in Computer Science was awarded by the University

of Waterloo, ON, in 2003. Upon completion of the doctoral requirements at the

University of Notre Dame, he will take a postdoctoral appointment at Argonne

National Laboratory, residing in Chicago, IL, with his wife Venus and daughter

Gracie Day.

184

BIBLIOGRAPHY

1. G. Abla, G. Wallace, D. Schissel, S. Flanagan, Q. Peng and J. Burruss,
Shared display wall based collaboration environment in the control room of
the DIII-D national fusion facility. In Proc. Workshop on Advanced Collab-
orative Environments (2005).

2. D. Abramson, J. Giddy and L. Kotler, High performance parametric model-
ing with Nimrod/G: Killer application for the global grid. In Proc. Interna-
tional Parallel and Distributed Processing Symposium (2000).

3. D. Abramson and J. Kommineni, A flexible I/O scheme for grid workflows. In
Proc. International Parallel and Distributed Processing Symposium (2004).

4. J. K. Adelman-McCarthy, The sixth data release of the Sloan Digital Sky
Survey. ArXiv e-Prints, 707 (2007).

5. A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur,
J. Howell, J. Lorch, M. Theimer and R. Wattenhofer, Farsite: Federated,
available, and reliable storage for an incompletely trusted environment. In
Proc. Symposium on Operating Systems Design and Implementation (2002).

6. D. Agarwal, S. Sachs and W. Johnston, The reality of collaboratories. Com-
puter Physics Communications , 110(1-3) (1998).

7. M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang,
L. Zhen and M. Parashar, AutoMate: Enabling autonomic applications on
the grid. In Proc. Autonomic Computing Workshop (2003).

8. G. A. Alvarez, W. A. Burkhard and F. Cristian, Tolerating multiple failures
in RAID architectures with optimal storage and uniform declustering. In
Proc. International Symposium on Computer Architecture (1997).

9. G. M. Amdahl, Validity of the single-processor approach to achieving large
scale computing capabilities. In AFIPS Conference Proceedings (1967).

10. The American Heritage Dictionary of the English Language. Houghton Mif-
flin Company, Fourth Edition.

185

11. D. P. Anderson, BOINC: A system for public-resource computing and stor-
age. In Proc. Workshop on Grid Computing (2004).

12. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer,
SETI@home: An experiment in public-resource computing. Communications
of the ACM , 45(11) (2002).

13. T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli
and R. Y. Wang, Serverless network file systems. In Proc. Symposium on
Operating System Principles (1995).

14. Apache Ant. Web site, http://ant.apache.org.

15. M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, T. J.
Giuli and P. Bungale, A fresh look at the reliability of long term digital
storage. In EuroSys (2006).

16. F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios, Open, closed,
and mixed networks of queues with different classes of customers. J. ACM ,
22(2) (1975).

17. J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau and
M. Livny, Explicit control in a batch-aware distributed file system. In Proc.
USENIX Symposium on Networked Systems Design and Implementation
(2004).

18. J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. C. A. Dusseau,
R. H. Arpaci-Dusseau and M. Livny, Flexibility, manageability, and perfor-
mance in a grid storage appliance. In Proc. High Performance Distributed
Computing (2002).

19. D. Benton, Recent changes in the GenBank on-line service. Nucleic Acids
Research, 18 (1990).

20. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I. N. Shindyalov and P. E. Bourne, The protein data bank. Nucleic Acids
Research (2000).

21. F. C. Bernstein, T. F. Koetzle, G. J. Williams, J. Edgar F. Meyer, M. D.
Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi and M. Tasumi, The
protein data bank: A computer-based archival file for macromolecular struc-
tures. Journal of Molecular Biology , 112(3) (1977).

22. J. Bester, I. Foster, C. Kesselman, J. Tedesco and S. Tuecke, GASS: A data
movement and access service for wide area computing systems. In Proc. I/O
in Parallel and Distributed Systems (1999).

186

23. G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, Queueing Networks and
Markov Chains. Wiley Interscience, second edition (2006).

24. P. G. Bolhuis, D. Chandler, C. Dellago and P. L. Geissler, Transition path
sampling: Throwing ropes over rough mountain passes, in the dark. Annual
Review of Biophysics and Biophysical Chemistry , 53 (2002).

25. P. Brenner, J. M. Wozniak, D. Thain, A. Striegel, J. W. Peng and J. A. Iza-
guirre, Biomolecular path sampling enabled by processing in network storage.
In Proc. Workshop on High Performance Computational Biology (2007).

26. D. Britton, A. Cass, P. Clarke, J. Coles, A. Doyle, N. Geddes, J. Gordon,
R. Jones, D. Kelsey, S. Lloyd, R. Middleton, S. Pearce and D. Tovey, GridPP:
Meeting the particle physics computing challenge. In UK e-Science All Hands
Conference (2005).

27. D. Burger, T. M. Austin and S. Bennett, Evaluating future microprocessors:
the SimpleScalar tool set. Technical Report 1308, University of Wisconsin,
Madison, WI (1996).

28. J. Burruss, T. Fredian and M. Thompsonc, Security on the US Fusion Grid.
Fusion Engineering and Design, 81(15-17) (2006).

29. H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, Heuristics for
scheduling parameter sweep applications in grid environments. In Proc. Het-
erogeneous Computing Workshop (2000).

30. H. Casanova, G. Obertelli, F. Berman and R. Wolski, The AppLeS parameter
sweep template: User-level middleware for the grid. In Proc. Supercomputing
(2000).

31. T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM , 43(2) (1996).

32. K. M. Chandy and D. Neuse, Linearizer: a heuristic algorithm for queueing
network models of computing systems. Communications of the ACM , 25(2)
(1982).

33. K. I. Chang, K. W. Bowyer and P. J. Flynn, An evaluation of multi-modal
2D+3D face biometrics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(4) (2005).

34. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt and M. Ripeanu, Giggle: A framework for con-
structing scalable replica location services. In Proc. Supercomputing (2002).

187

35. A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman and
R. Schwartzkopf, Performance and scalability of a replica location service.
In Proc. High Performance Distributed Computing (2004).

36. E. F. Codd, A relational model of data for large shared data banks. Com-
munications of the ACM , 13(6) (1970).

37. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and
S. Tuecke, A resource management architecture for metacomputing systems.
Lecture Notes in Computer Science, 1459 (1998).

38. K. Czajkowski, I. Foster and C. Kesselman, Resource co-allocation in com-
putational grids. In Proc. High Performance Distributed Computing (1999).

39. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, Wide-area
cooperative storage with CFS. In Proc. Symposium on Operating Systems
Principles (2001).

40. E. Deelman, T. Kosar, C. Kesselman and M. Livny, What makes work-
flows work in an opportunistic environment? Concurrency and Computation:
Practice and Experience, 18 (2006).

41. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gila, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob and D. S. Katz,
Pegasus: A framework for mapping complex scientific workflows onto dis-
tributed systems. Scientific Programming , 13 (2005).

42. R. Dooley, K. Milfield, C. Guiang, S. Parmidighantum and G. Allen, From
proposal to production: Lessons learned developing the computational chem-
istry grid cyberinfrastructure. J. Grid Computing , 4(2) (2006).

43. L. Dunning and S. Ramakrishnan, A heuristic cost estimation method for
optimizing assignment of tasks to processors. In Proc. Symposium on Applied
Computing (1999).

44. H. A. Duran-Limon, G. S. Blair and G. Coulson, Adaptive resource manage-
ment in middleware: A survey. Distributed Systems Online, 5(7) (2004).

45. D. G. Y. et. al., The Sloan Digital Sky Survey: Technical summary. The
Astronomical Journal , 120 (2000).

46. S. I. Feldman, Make - a program for maintaining computer programs. Soft-
ware - Practice and Experience (1979).

47. I. Foster, What is the Grid? A three point checklist. GRIDToday (2002).

188

48. I. Foster and C. Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, first edition (1999).

49. I. Foster and C. Kesselman, editors, The Grid 2: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, second edition (2003).

50. I. Foster, C. Kesselman, J. Nick and S. Tuecke, Grid services for distributed
system integration. Computer , 35 (2002).

51. I. Foster, C. Kesselman, J. Nick and S. Tuecke, The physiology of the grid:
An open grid services architecture for distributed systems integration. Open
Grid Service Infrastructure Working Group, Global Grid Forum (2002).

52. I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, A security architecture for
computational grids. In Proc. Conference on Computers and Security (1998).

53. I. Foster, C. Kesselman and S. Tuecke, The anatomy of the grid. J. Super-
computer Applications, 15 (2001).

54. I. Foster, J. Voeckler, M. Wilde and Y. Zhao, Chimera: A virtual data
system for representing, querying, and automating data derivation. In Proc.
Scientific and Statistical Database Management (2002).

55. J. Frey, T. Tannenbaum, I. Foster, M. Livny and S. Tuecke, Condor-G: A
computation management agent for multi-institutional grids. Cluster Com-
puting , 5(3) (2002).

56. Y. Fu, H. Wang, C. Lu and R. S. Chandra, Distributed utilization control
for real-time clusters with load balancing. In Proc. Real Time and Embedded
Technology and Applications Symposium (2006).

57. FUSE. Web site, http://fuse.sourceforge.net.

58. K. Gaither, Visualization’s role in analyzing computational fluid dynamics
data. IEEE Computer Graphics & Applications, 24(3) (2004).

59. D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan,
F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan, L. Ra-
makrishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu and N. Rey-
Cenvaz, Programming the grid: Distributed software components, P2P and
grid web services for scientific applications. Cluster Computing , 5(3) (2002).

60. D. Gannon, G. Fox, M. Pierce, B. Plale, G. von Laszewski, C. Severance,
J. Hardin, J. Alameda, M. Thomas and J. Boisseau, Grid portals: A scien-
tist’s access point for grid services (draft 1). Global Grid Forum (September
2003), Work in Progress.

189

61. C. F. Gauss, Disquisitiones Arithmeticae. Fleischer (1801).

62. Y. Gil, P. A. Gonzlez-Calero and E. Deelman, On the black art of designing
computational workflows. In Proc. Workshop on Workflows in Support of
Large-Scale Science (2007).

63. S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura
and R. Neyama, Building Web Services with Java: Making Sense of XML,
SOAP, WSDL, and UDDI . Pearson Education, first edition (2001).

64. S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura
and R. Neyama, Building Web Services with Java: Making Sense of XML,
SOAP, WSDL and UDDI . Pearson Education (2001).

65. A. Grimshaw and W. A. Wolf, Legion - a view from 50,000 feet. In Proc.
High Performance Distributed Computing (1996).

66. T. P. G. D. Group, PostgreSQL Reference Manual - Volume 1 SQL Language
Reference. Network Theory Ltd. (2007).

67. J. Hartman and J. Ousterhout, The Zebra striped network file system. In
Proc. Symposium on Operating System Principles (1993).

68. R. L. Henderson and D. Tweten, Portable batch system: Requirement spec-
ification. Technical report, NAS Systems Division, NASA Ames Research
Center (1998).

69. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham and M. West, Scale and performance in a distributed file system.
ACM Transactions on Computer Systems, 6(1) (1988).

70. W. F. Humphrey, A. Dalke and K. Schulten, VMD – Visual Molecular Dy-
namics. J. Molecular Graphics, 14 (1996).

71. L. B. Huston and P. Honeyman, Partially connected operation. Computing
Systems , 8(4) (1995).

72. K. Keahey, K. Doering and I. Foster, From sandbox to playground: Dynamic
virtual environments in the grid. In Proc. Workshop on Grid Computing
(2004).

73. K. Keahey, M. Ripeanu and K. Doering, Dynamic creation and management
of runtime environments in the grid. In Workshop on Designing and Building
Grid Services (2003).

190

74. T. Kosar and M. Livny, Stork: Making data placement a first class citi-
zen in the grid. In Proc. International Conference on Distributed Computing
Systems (2004).

75. A. R. Leach, Molecular Modelling: Principles and Applications. Addison
Wesley Longman (1996).

76. H. Li and M. Muskulus, Analysis and modeling of job arrivals in a production
grid. SIGMETRICS Performance Evaluation Review , 34(4) (2007).

77. J. Li, J. Stribling, T. M. Gil, R. Morris and M. F. Kaashoek, Comparing the
performancs of distributed hash tables under churn. In Proc. Workshop on
Peer-to-Peer Systems (2004).

78. W. Li, R. Byrnes, J. Hayes, V. Reyes, A. Birnbaum, A. Shabab, C. Mosley,
D. Pekurowsky, G. Quinn, I. Shindyalov, H. Casanova, L. Ang, F. Berman,
M. Miller and P. Bourne, The encyclopedia of life project: Grid software
and deployment. J. New Generation Computing on Grid Systems for Life
Sciences (2004).

79. M. Litzkow, M. Livny and M. Mutka, Condor - A hunter of idle workstations.
In Proc. International Conference of Distributed Computing Systems (1988).

80. D. Liu and M. Franklin, GridDB: A data-centric overlay for scientific grids.
In Proc. Very Large Data Bases (2004).

81. J. Lopez, M. Garcia, J. Diaz and D. Garcia, Worst-case utilization bound
for EDF scheduling on real-time multiprocessor systems. Proc. Euromicro
Conference on Real-Time Systems (2000).

82. M. Maisel and G. Wells, Teraflops tackle terabytes on the teragrid. Earth
Observation Magazine, 13(5) (2004).

83. P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal, M. Bakerand
and Y. Muliadi, Preserving peer replicas by rate-limited sampled voting. In
Proc. Symposium on Operating Systems Principles (2003).

84. T. Matthey, T. Cickovski, S. Hampton, A. Ko, Q. Ma, M. Nyerges, T. Raeder,
T. Slabach and J. A. Izaguirre, ProtoMol, an object-oriented framework for
prototyping novel algorithms for molecular dynamics. ACM Transactions on
Mathematical Software, 30(3) (September 2004).

85. M. Mealling and R. Denenberg, Uniform resource identifiers (URIs), URLs,
and uniform resource names (URNs): Clarifications and recommendations.
IETF RFC 3305 (2002).

191

86. G. Mendel, Experiments on plant hybridization. J. Royal Horticultural So-
ciety , 26 (1901).

87. S. Microsystems, Sun Grid Engine. http://gridengine.sunsource.net.

88. R. Moore, Evolution of data grid concepts. In Proc. Global Grid Forum Data
Area Workshop (2004).

89. R. W. Moore, C. Baru, R. Marciano, A. Rajasekar and M. Wan, The Grid:
Blueprint for a New Computing Infrastructure, chapter 5. Morgan Kauf-
mann, first edition (1999).

90. C. Moretti, T. C. Faltemier, D. Thain and P. J. Flynn, Challenges in execut-
ing data intensive biometric workloads on a desktop grid. In Proc. Workshop
on Large Scale and Volatile Desktop Grids (2007).

91. C. S. R. Murthy and G. Manimaran, Resource Management in Real-time
Systems and Networks. MIT Press (April 2001).

92. M. H. Ng, S. Johnston, S. Murdock, B. Wu, K. Tai, H. Fangohr, S. Cox,
J. W. Essex, M. Sansom and P. Jeffreys, Efficient data storage and analysis
for generic biomolecular simulation data. In Proc. UK e-Science All Hands
Meeting (2004).

93. M. H. Nga, S. Johnston, B. Wuc, S. E. Murdock, K. Tai, H. Fangohr, S. J.
Cox, J. W. Essex, M. S. Sansom and P. Jeffreys, BioSimGrid: Grid-enabled
biomolecular simulation data storage and analysis. Future Generation Com-
puter Systems, 22(6) (2006).

94. E. B. Nightingale, P. M. Chen and J. Flinn, Speculative execution in a dis-
tributed file system. ACM Transactions on Computer Systems, 24(4) (2006).

95. NS-2 software package. http://www.isi.edu/nsnam/ns.

96. J. O’Donahue, A. X. Yang and K. Mittal, Java Database Programming Bible.
Wiley Publishing, Inc. (2002).

97. J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson and B. B.
Welch, The Sprite network operating system. IEEE Computer , 21 (1988).

98. V. Pande, I. Baker, J. Chapman, S. P. Elmer, S. Khaliq, S. M. Larson,
Y. M. Rhee, M. R. Shirts, C. Snow, E. Sorin and B. Zagrovic, Atomistic
protein folding simulations on the submillisecond time scale using worldwide
distributed computing. Biopolymers , 68 (2003).

99. M. Parashar and S. Hariri, Autonomic computing: An overview. LCNS , 3566
(2004).

192

100. D. Patterson, G. Gibson and R. Katz, A case for redundant arrays of inex-
pensive disks (RAID). In Proc. Management of Data (1988).

101. IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)-
Application Program Interface (API) [C language] (1996).

102. J. Postel and J. Reynolds, Telnet protocol specification. IETF RFC 854
(1983).

103. R. M. Rahman, K. Barker and R. Alhajj, Study of different replica placement
and maintenance strategies in data grid. In Proc. Cluster Computing and the
Grid (2007).

104. A. Rajasekar, M. Wan, R. Moore, G. Kremenek and T. Guptill, Data grids,
collections and grid bricks. In Proc. Mass Storage Systems and Technologies
(2003).

105. A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Jagath-
eesan, C. Cowart, B. Zhu, S.-Y. Chen and R. Olschanowsky, Storage Re-
source Broker - Managing distributed data in a grid. Computer Society of
India Journal , 33(4) (2003).

106. A. K. Rajasekar and R. W. Moore, Data and metadata collections for scien-
tific applications. In Proc. European High Performance Computing (2001).

107. A. Rajsekar, M. Wan, R. W. Moore and W. Schroeder, Data grid federation.
In Proc. Parallel and Distributed Processing Techniques and Applications
(2004).

108. A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi,
K. Blackburn, D. Meyers and M. Samidi, Scheduling data-intensive workflows
onto storage-constrained distributed resources. In Proc. Cluster Computing
and the Grid (2007).

109. R. Raman, M. Livny and M. H. Solomon, Matchmaking: Distributed re-
source management for high throughput computing. In Proc. High Perfor-
mance Distributed Computing (1998).

110. K. Ranganathan and I. Foster, Simulation studies of computation and data
scheduling algorithms for data grids. J. Grid Computing , 1(1) (2003).

111. C. F. Reilly and J. F. Naughton, Exploring provenance in a distributed
job execution system. In Proc. International Provenance and Annotation
Workshop (2006).

193

112. B. Reiner and K. Hahn, Optimized management of large-scale data sets
stored on tertiary storage systems. Distributed Systems Online, 5(5) (2004).

113. M. Reiser and S. S. Lavenberg, Mean-value analysis of closed multichain
queuing networks. J. ACM , 27(2) (1980).

114. M. Ripeanu and I. Foster, A decentralized, adaptive, replica location service.
In Proc. High Performance Distributed Computing (2002).

115. T. Roblitz, F. Schintke, A. Reinefeld, O. Barring, M. B. Lopez, G. Can-
cio, S. Chapeland, K. Chouikh, L. Cons, P. Poznanski, P. Defert, J. Iven,
T. Kleinwort, B. Panzer-Steindel, J. Polok, C. Rafflin, A. Silverman,
T. Smith, J. V. Eldik, D. Front, M. Biasotto, C. Aiftimiei, E. Ferro,
G. Maron, A. Chierici, L. Dellagnello, M. Serra, M. Michelotto, L. Hess,
V. Lindenstruth, F. Pister, T. M. Steinbeck, D. Groep, M. S. O. Koeroo,
W. S. de Cerff, G. Venekamp, P. Anderson, T. Colles, A. Holt, A. Sco-
bie, M. George, A. Washbrook and R. A. G. Leiva, Autonomic management
of large clusters and their integration into the grid. J. Grid Computing , 2
(2004).

116. T. Ryutov, G. Gheorghiu and C. Neuman, An authorization framework for
metacomputing applications. In Proc. Cluster Computing (1999).

117. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, Design and
implementation of the Sun Network File System. In Proc. USENIX (1985).

118. M. Satyanarayanan, Scalable, secure, and highly available distributed file
access. IEEE Computer , 23(5) (May 1990).

119. T. Schlick, Molecular Modeling and Simulation - An Interdisciplinary Guide.
Springer-Verlag, New York, NY (2002).

120. S. Shinners, Modern Control System Theory and Design. Wiley Interscience
(1998).

121. E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon, R. Morris,
M. F. Kaashoek and J. Kubiatowicz, Proactive replication for data durability.
In Proc. Workshop on Peer-to-Peer Systems (2006).

122. R. D. Skeel and J. A. Izaguirre, An impulse integrator for Langevin dynamics.
Molecular Physics, 100(24) (2002).

123. W. Smith, I. Foster and V. Taylor, Scheduling with advanced reservations. In
Proc. International Parallel and Distributed Processing Symposium (2000).

194

124. P. Stelling, C. DeMatteis, I. T. Foster, C. Kesselman, C. A. Lee and G. von
Laszewski, A fault detection service for wide area distributed computations.
Cluster Computing , 2(2) (1999).

125. H. Stockinger, Defining the grid: a snapshot on the current view. J. Super-
computing , 42(1) (2007).

126. H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman and B. Tier-
ney, File and object replication in data grids. In Proc. High Performance
Distributed Computing (2001).

127. V. S. Sunderam, PVM: A framework for parallel distributed computing. Con-
currency: Practice and Experience, 2(4) (December 1990).

128. K. Tai, S. Murdock, B. Wu, M. Ng, S. Johnston, H. Fanghor, S. J. Cox, P. Jef-
freys, J. W. Essex and M. S. P. Sansom, BioSimGrid: Towards a worldwide
repository for biomolecular simulations. Organic and Biomolecular Chem-
istry , 2 (2004).

129. A. Takefusa, H. Casanova, S. Matsuoka and F. Berman, A study of deadline
scheduling for client-server systems on the computational grid. Proc. High
Performance Distributed Computing (2001).

130. A. Takefusa, S. Matsuoka, H. Nakada, K. Aida and U. Nagashima, Overview
of a perfomance evaluation for global computing scheduling algorithms. In
Proc. High Performance Distributed Computing (1999).

131. A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp and
S. J. Mullender, Experiences with the Amoeba distributed operating sys-
tem. Communications of the ACM , 33(12) (1990).

132. O. Tatebe, N. Soda, Y. Morita, S. Matsuoka and S. Sekiguchi, Gfarm v2:
A grid file system that supports high-performance distributed and parallel
data computing. In Proc. Computing in High Energy and Nuclear Physics
(2004).

133. D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel and J. Izaguirre,
Separating abstractions from resources in a tactical storage system. In Proc.
Supercomputing (2005).

134. D. Thain and M. Livny, Bypass: A tool for building split execution systems.
In Proc. High Performance Distributed Computing (2000).

135. D. Thain and M. Livny, Parrot: Transparent user-level middleware for
data-intensive computing. In Proc. Workshop on Adaptive Grid Middleware
(September 2003).

195

136. D. Thain and C. Moretti, Efficient access to many small files in a filesystem
for grid computing. In Proc. Conference on Grid Computing (2007).

137. D. Thain, C. Moretti and J. Hemmes, Chirp: A practical global file system
for cluster and grid computing. Technical Report 2007-04, University of Notre
Dame (2007).

138. D. Thain, T. Tannenbaum and M. Livny, Distributed computing in prac-
tice: The Condor experience. Concurrency and Computation: Practice and
Experience (2004).

139. Y. Tohma, Incorporating fault tolerance into an autonomic-computing envi-
ronment. Distributed Systems Online, 5(2) (2004).

140. S. Vazhkudai, S. Tuecke and I. Foster, Replica selection in the Globus data
grid. In Proc. Cluster Computing and the Grid (2001).

141. S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N. Tammineedi,
T. Simon and S. L. Scott, Constructing collaborative desktop storage caches
for large scientific datasets. ACM Transactions on Storage, 2(3) (2006).

142. J. S. Vetter and D. A. Reed, Real-time performance monitoring, adaptive
control, and interactive steering of computational grids. International Jour-
nal of High Performance Computing Applications, 14(4) (2000).

143. G. von Laszewski, K. Amin, M. Hategan, N. J. Zaluzec, S. Hampton and
A. Rossi, Gridant: A client-controllable grid workflow system. In Hawaii
International Conference on System Science (2004).

144. G. von Laszewski, J. Gawor, P. Lane, N. Rehn, M. Russell and K. Jackson,
Features of the Java Commodity Grid Kit. Concurrency and Computation:
Practice and Experience, 14(13-15) (2002).

145. A. Voter, A method for accelerating the molecular dynamics simulation of
infrequent events. J. Chem. Phys., 106(11) (1997).

146. A. F. Voter, Hyperdynamics: accelerated molecular dynamics of infrequent
events. Phys. Rev. Lett., 78 (1997).

147. Web services architecture (2004), W3C Web Services Architecture Working
Group.

148. B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS dis-
tributed operating system. In Proc. Symposium on Operating Systems Prin-
ciples (1983).

196

149. D. Walker, The design of a standard message passing interface for distributed
memory concurrent computers. Parallel Computing , 20(4) (1994).

150. E. Walker, T. Minyard and J. Boisseau., GridShell: A login shell for orches-
trating and coordinating applications in a grid enabled environment. In Proc.
Computing, Communications and Control Technologies (2004).

151. A. Walsh, J. Couch and D. H. Steinberg, Java 2 Bible. IDG Books (2000).

152. M. Wan, A. Rajasekar, R. Moore and P. Andrew, A simple mass storage sys-
tem for the SRB data grid. In Proc. Mass Storage Systems and Technologies
(2003).

153. H. Weatherspoon and J. Kubiatowicz, Erasure coding vs. replication: A
quantitative comparison. In Proc. Workshop on Peer-to-Peer Systems (2002).

154. B. S. White, A. S. Grimshaw and A. Nguyen-Tuong, Grid-based file access:
The Legion I/O model. In Proc. High Performance Distributed Computing
(2000).

155. B. S. White, M. Walker, M. Humphrey and A. S. Grimshaw, LegionFS: A
secure and scalable file system supporting cross-domain high-performance
applications. In Proc. Supercomputing (2001).

156. C. J. Woods, M. H. Ng, S. Johnston, S. E. Murdock, B. Wu, K. Tai, H. Fan-
gohr, P. Jeffreys, S. Cox, J. G. Frey, M. S. P. Sansom and J. W. Essex, Grid
computing and biomolecular simulation. Philosophical Transactions of the
Royal Society A, 363(1833) (2005).

157. WordNet 2.0.

158. J. M. Wozniak, P. Brenner, D. Thain, A. Striegel and J. A. Izaguirre, Gen-
erosity and gluttony in GEMS: Grid-Enabled Molecular Simulation. In Proc.
High Performance Distributed Computing (2005).

159. J. M. Wozniak, P. Brenner, D. Thain, A. Striegel and J. A. Izaguirre, Access
control for a replica management database. In Proc. Workshop on Storage
Security and Survivability (2006).

160. J. M. Wozniak, P. Brenner, D. Thain, A. Striegel and J. A. Izaguirre, Apply-
ing feedback control to a replica management system. In Proc. Southeastern
Symposium on System Theory (2006).

161. J. M. Wozniak, P. Brenner, D. Thain, A. Striegel and J. A. Izaguirre, Making
the best of a bad situation: Prioritized storage management in GEMS. Future
Generation Computer Systems, 24(1) (2007).

197

162. J. M. Wozniak, Y. Jiang and A. Striegel, Effects of low-quality computation
time estimates in policed schedulers. In Proc. Annual Simulation Symposium
(2007).

163. J. M. Wozniak, A. Striegel, D. Salyers and J. A. Izaguirre, GIPSE: Stream-
lining the management of simulation on the grid. In Proc. Annual Simulation
Symposium (2005).

164. Q. Xin, E. Miller, T. Schwarz, D. D. E. Long, S. A. Brandt and W. Litwin,
Reliability mechanisms for very large storage systems. In Proc. Mass Storage
Systems and Technologies (2003).

165. Q. Xin, E. L. Miller and S. Thomas J. E. Schwarz, Evaluation of distributed
recovery in large-scale storage systems. In Proc. High Performance Dis-
tributed Computing (2004).

166. Y. Zhao, M. Wilde, I. Foster, J. Voeckler, J. Dobson, E. Glibert, T. Jor-
dan and E. Quigg, Virtual data grid middleware services for data-intensive
science. In Proc. Middleware (2004).

167. S. Zhou, LSF: Load sharing in large-scale heterogeneous distributed systems.
In Proc. Cluster Computing (1992).

This document was prepared & typeset with LATEX2ε, and formatted with
nddiss2ε classfile (v1.0[2004/06/15]) provided by Sameer Vijay.

198

