
Python for Scientific and High
Performance Computing

SC09
Portland, Oregon, United States

Monday, November 16, 2009 1:30PM - 5:00PM
http://www.mcs.anl.gov/~wscullin/python/tut/sc09

http://www.mcs.anl.gov/%7Ewscullin/python/tut/sc09

Introductions

Your presenters:
William R. Scullin

wscullin@alcf.anl.gov
James B. Snyder

 jbsnyder@northwestern.edu
Nick Romero

naromero@alcf.anl.gov
Massimo Di Pierro

 mdipierro@cs.depaul.edu

Overview

We seek to cover:
Python language and interpreter basics
Popular modules and packages for scientific applications
How to improve performance in Python programs
How to visualize and share data using Python
Where to find documentation and resources

Do:
Feel free to interrupt

the slides are a guide - we're only successful if you learn
what you came for; we can go anywhere you'd like

Ask questions
Find us after the tutorial

About the Tutorial Environment

Updated materials and code samples are available at:
http://www.mcs.anl.gov/~wscullin/python/tut/sc09
we suggest you retrieve them before proceeding. They should
remain posted for at least a calendar year.

You should have login instructions, a username and password
for the tutorial environment on the paper on your slip. Accounts
will be terminated no later than 6:30PM USPT today. Do not
leave any code or data on the system you would like to keep.

Your default environment on the remote system is set up for
this tutorial, though the downloadable live dvd should provide a
comparable environment.

http://www.mcs.anl.gov/%7Ewscullin/python/tut/sc09

Outline

1. Introduction
Introductions
Tutorial overview
Why Python and why in scientific and
high performance computing?
Setting up for this tutorial

2. Python basics
Interpreters
data types, keywords, and functions
Control Structures
Exception Handling
I/O
Modules, Classes and OO

3. SciPy and NumPy: fundamentals and
core components

4. Parallel and distributed programming
5. Performance

Best practices for pure Python +
NumPy
Optimizing when necessary

6. Real world experiences and techniques
7. Python for plotting, visualization, and
data sharing

Overview of matplotlib
Example of MC analysis tool

8. Where to find other resources
There's a Python BOF!

9. Final exercise
10. Final questions
11. Acknowledgments

Dynamic programming language
Interpreted & interactive
Object-oriented
Strongly introspective
Provides exception-based error handling
Comes with "Batteries included" (extensive standard
libraries)
Easily extended with C, C++, Fortran, etc...
Well documented (http://docs.python.org/)

http://docs.python.org/

Easy to learn
#include "iostream"
#include "math"
int main(int argc,char** argv)
{
 int n = atoi(argv[1]);
 for(int i=2;
 i<(int) sqrt(n);
 i++)
 {
 p=0;
 while(n % i)
 {
 p+=1;
 n/=i;
 }
 if (p)
 cout << i << "^"
 << p << endl;
 }
 return 0;
}

import math, sys

n = int(sys.argv[1])
for i in range(2,math.sqrt(n)):

 p=0
 while n % i:

 (p,n) = (p+1,n/i)

 if p:
 print i,'^',p

Now try do this in C++

only 24 lines of
python code
uses standard
Python libraries.

from Tkinter import Tk, Label, Canvas, PhotoImage
import math, time
root = Tk()
canvas, aliens, missiles = Canvas(root,width=800,height=400,bg='white'), {}, {}
canvas.pack()
i1, i2 = PhotoImage(format='gif',file="alien.gif"), PhotoImage(format='gif',file="missile.gif")
for x,y,p in [(100+40*j,160-20*i,100*i) for i in range(8) for j in range(15)]:
 aliens[canvas.create_image(x,y,image=i1)]=p
canvas.bind('<Button-1>', lambda e: missiles.update({canvas.create_image(e.x,390,image=i2):10}))
while aliens:
 try:
 for m in missiles:
 canvas.move(m,0,-5)
 if canvas.coords(m)[1]<0:
 score -= missiles[m];
 canvas.delete(m); del missiles[m]
 for a in aliens:
 canvas.move(a,2.0*math.sin(time.time()),0)
 p = canvas.coords(a)
 items = canvas.find_overlapping(p[0]-5,p[1]-5,p[0]+5,p[1]+5)
 for m in items[1:2]:
 canvas.delete(a); del aliens[a]; canvas.delete(m); del missiles[m]
 time.sleep(0.02); root.update()
 except: pass

Why Use Python for Scientific
Computing?

"Batteries included" + rich scientific computing ecosystem
Good balance between computational performance and
time investment

Similar performance to expensive commercial solutions
Many ways to optimize critical components
Only spend time on speed if really needed

Tools are mostly open source and free (many are MIT/BSD
license)
Strong community and commercial support options.
No license management

Science Tools for Python
Large number of science-related modules:

General
NumPy
SciPy

GPGPU Computing
PyCUDA
PyOpenCL

Parallel Computing
PETSc
PyMPI
Pypar
mpi4py

Wrapping
C/C++/Fortran
SWIG
Cython
ctypes

Molecular &
Atomic Modeling
PyMOL
Biskit
GPAW

Geosciences
GIS Python
PyClimate
ClimPy
CDAT

Bayesian Stats
PyMC

Optimization
OpenOpt

For a more complete list: http://www.scipy.org/Topical_Software

Plotting & Visualization
matplotlib
VisIt
Chaco
MayaVi

AI & Machine Learning
pyem
ffnet
pymorph
Monte
hcluster

Biology (inc. neuro)
Brian
SloppyCell
NIPY
PySAT

Symbolic Math
SymPy

Electromagnetics
PyFemax

Astronomy
AstroLib
PySolar

Dynamic Systems
Simpy
PyDSTool

Finite Elements
SfePy

http://www.scipy.org/Topical_Software

Please login to the Tutorial
Environment
Let the presenters know if you have any issues.

Start an iPython session:
santaka:~> wscullin$ ipython
Python 2.6.2 (r262:71600, Sep 30 2009, 00:28:07)
[GCC 3.3.3 (SuSE Linux)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.

IPython 0.9.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object'. ?object also works, ?? prints
more.

In [1]:

Python Basics

Interpreter
Built-in Types, keywords, functions
Control Structures
Exception Handling
I/O
Modules, Classes & OO

Interpreters

 CPython Standard python distribution
What most people think of as "python"
highly portable
http://www.python.org/download/

We're going to use 2.6.2 for this tutorial
The future is 3.x, the future isn't here yet

 iPython
A user friendly interface for testing and debugging
http://ipython.scipy.org/moin/

http://www.python.org/download/
http://ipython.scipy.org/moin/

Other Interpreters You Might See...
Unladen Swallow

Blazing fast, uses llvm and in turn may compile!
x86/x86_64 only really
Sponsored by Google
http://code.google.com/p/unladen-swallow/

 Jython
Python written in Java and running on the JVM
http://www.jython.org/
performance is about what you expect

IronPython
Python running under .NET
http://www.codeplex.com/IronPython

PyPy
Python in... Python
No where near ready for prime time
http://codespeak.net/pypy/dist/pypy/doc/

http://code.google.com/p/unladen-swallow/
http://www.jython.org/
http://www.codeplex.com/IronPython
http://codespeak.net/pypy/dist/pypy/doc/

CPython Interpreter Notes

Compilation affects interpreter performance
Precompiled distributions aim for compatibility and as
few irritations as possible, not performance

compile your own or have your systems admin do it
same note goes for most modules

Regardless of compilation, you'll have the same
bytecode and the same number of instructions
Bytecode is portable, binaries are not
Linking against shared libraries kills portability

Not all modules are available on all platforms
Most are not OS specific (>90%)
x86/x86_64 is still better supported than most

A note about distutils and building
modules
Unless your environment is very generic (ie: a major linux
distribution under x86/x86_64), and even if it is, manual
compilation and installation of modules is a very good idea.

Distutils and setuptools often make incorrect assumptions
about your environment in HPC settings. Your presenters
generally regard distutils as evil as they cross-compile a lot.

If you are running on PowerPC, IA-64, Sparc, or in an
uncommon environment, let module authors know you're there
and report problems!

Built-in Numeric Types
int, float, long, complex - different types of numeric data

>>> a = 1.2 # set a to floating point number
>>> type(a)
<type 'float'>

>>> a = 1 # redefine a as an integer
>>> type(a)
<type 'int'>

>>> a = 1e-10 # redefine a as a float with scientific notation
>>> type(a)
<type 'float'>

>>> a = 1L # redefine a as a long
>>> type(a)
<type 'long'>

>>> a = 1+5j # redefine a as complex
>>> type(a)
<type 'complex'>

Gotchas with Built-in Numeric Types

Python's int and float can become as large in size as your
memory will permit, but ints will be automatically typed as long.
The built-in long datatype is very slow and best avoided.
>>> a=2.0**999
>>> a
5.3575430359313366e+300

>>> import sys
>>> sys.maxint
2147483647
>>> a>sys.maxint
True
>>> a=2.0**9999
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OverflowError: (34, 'Result too large')
>>> a=2**9999
>>> a-((2**9999)-1)
1L

Python's int and float are not decimal types
IEEE 754 compliant (http://docs.python.org/tutorial/floatingpoint.html)
math with two integers always results in an integer

>>> a=1/3 # no type coercion, integer division
>>> a
0

>>> a=1/3.0 # binary op with int and float -> int coerced to float
>>> a
0.33333333333333331
>>> a=1.0/3.0 # float division
>>> a
0.33333333333333331

>>> 0.3
0.29999999999999999 # thanks binary fractions!
>>> a=1.0/10
>>> a
0.10000000000000001

Gotchas with Built-in Numeric Types

http://docs.python.org/tutorial/floatingpoint.html

NumPy Numeric Data Types

NumPy covers all the same numeric data types available in
C/C++ and Fortran as variants of int, float, and complex

all available signed and unsigned as applicable
available in standard lengths
floats are double precision by default
generally available with names similar to C or Fortran

ie: long double is longdouble
generally compatible with Python data types

Built-in Sequence Types
str, unicode - string types

>>> s = 'asd'
>>> u = u'fgh' # prepend u, gives unicode string
>>> s[1]
's'

list - mutable sequence
>>> l = [1,2,'three'] # make list
>>> type(l[2])
<type 'str'>

>>> l[2] = 3; # set 3rd element to 3
>>> l.append(4) # append 4 to the list

tuple - immutable sequence
>>> t = (1,2,'four')

Built-in Mapping Type
dict - match any immutable value to an object

>>> d = {'a' : 1, 'b' : 'two'}
>>> d['b'] # use key 'b' to get object 'two'
'two'

redefine b as a dict with two keys
>>> d['b'] = {'foo' : 128.2, 'bar' : 67.3}
>>> d
{'a': 1, 'b': {'bar': 67.299999999999997, 'foo':
128.19999999999999}}

index nested dict within dict
>>> d['b']['foo']
128.19999999999999

any immutable type can be an index
 >>> d['b'][(1,2,3)]='numbers'

Built-in Sequence & Mapping Type
Gotchas
Python lacks C/C++ or Fortran style arrays.

Best that can be done is nested lists or dictionaries
Tuples, being immutable are a bad idea

You have to be very careful on how you create them
Growing these types will cost performance (minimal pre-
allocation)
NumPy provides real n-dimensional arrays with low
overhead

Python requires that your correctly
 indent your code.

Only applies to indentation
Will help keep your code readable
Use 4 spaces for tabs, and you won't have any problems
(if you indent correctly)

If you have further questions, see PEP 8:
http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/

Control Structures
if - compound conditional statement

if (a and b) or (not c):
 do_something()
elif d:
 do_something_else()
else:
 print "didn't do anything"

while - conditional loop statement
i = 0
while i < 100:
 i += 1

Control Structures
for - iterative loop statement

for item in list:
 do_something_to_item(item)

start = 0, stop = 10
>>> for element in range(0,10):
... print element,
0 1 2 3 4 5 6 7 8 9

start = 0, stop = 20, step size = 2
>>> for element in range(0,20,2):
... print element,
0 2 4 6 8 10 12 14 16 18

Generators

Python makes it very easy to write funtions you can iterate
over- just use yield instead of return at the end of functions
def squares(lastterm):
 for n in range(lastterm):
 yield n**2

>>> for i in squares(4): print i
...
0
1
4
9
16

List Comprehensions

List Comprehensions are powerful tool, replacing Python's
lambda function for functional programming

syntax: [f(x) for x in generator]
you can add a conditional if to a list comprehension

>>> [i for i in squares(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> [i for i in squares(10) if i%2==0]
[0, 4, 16, 36, 64]

>>> [i for i in squares(10) if i%2==0 and i%3==1]
[4, 16, 64]

Exception Handling
try - compound error handling statement

>>> 1/0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by
zero

>>> try:
... 1/0
... except ZeroDivisionError:
... print "Oops! divide by zero!"
... except:
... print "some other exception!"

Oops! divide by zero!

File I/O Basics
Most I/O in Python follows the model laid out for file I/O and
should be familiar to C/C++ programmers.

basic built-in file i/o calls include
open(), close()
write(), writeline(), writelines()
read(), readline(), readlines()
flush()
seek() and tell()
fileno()

basic i/o supports both text and binary files
POSIX like features are available via fctl and os
modules
be a good citizen

if you open, close your descriptors
if you lock, unlock when done

Basic I/O examples
open a text file for reading with default buffering
>>> f=file.open('myfile.txt','r')

for writing use 'w'
for simultaneous reading and writing add '+' to either 'r' or
'w'
for appending use 'a'
to do binary files add 'b'

opens a text file for reading and writing with no buffering.
>>> f=file.open('myfile.txt','w+',0)

 a 1 means line buffering,
 other values are interpreted as buffer sizes in bytes

Let's write ten integers to disk without buffering, then read them
back:
>>> f=open('frogs.dat','w+',0) # open for unbuffered reading and writing
>>> f.writelines([str(my_int) for my_int in range(10)])
>>> f.tell() # we're about to see we've made a mistake
10L # hmm... we seem short on stuff
>>> f.seek(0) # go back to the start of the file
>>> f.tell() # make sure we're there
0L
>>> f.readlines() # Let's see what's written on each line
['0123456789']# we've written 10 chars, no line returns... oops
>>> f.seek(0) # jumping back to start, let's add line returns
>>> f.writelines([str(my_int)+'\n' for my_int in range(10)])
>>> f.tell() # jumping back to start, let's add line returns
20L
>>> f.seek(0)# return to start of the file
>>> f.readline()# grab one line
'0\n'
>>>f.next() # grab what ever comes next
'1\n'
>>> f.readlines() # read all remaining lines in the file
['2\n', '3\n', '4\n', '5\n', '6\n', '7\n', '8\n', '9\n']
>>> f.close() # always clean up after yourself - no need other than courtesy!

Pickling
a.k.a.: serializing Python objects

make a list w/ numeric values, a string, and a dict
>>> a = [1, 3, 5, 'hello', {'key':'value', 'otherkey':'othervalue'}]

use pickle to serialize and dump to a file
>>> import pickle
>>> pickle.dump(a,open('filename.pickle','wb'))

unpickle serialized data
>>> b=pickle.load(open('filename.pickle','rb'))
>>> b
[1, 3, 5, 'hello', {'otherkey': 'othervalue', 'key': 'value'}]

I/O for scientific formats

i/o is relatively weak out of the box - luckily there are the
following alternatives:

h5py
Python bindings for HDF5
http://code.google.com/p/h5py/

netCDF4
 Python bindings for NetCDF
http://netcdf4-python.googlecode.
com/svn/trunk/docs/netCDF4-module.html

mpi4py allows for classic MPI-IO via MPI.File

Modules
import - load module, define in namespace

>>> import random # import module
>>> random.random() # execute module method
0.82585453878964787

>>> import random as rd # import and rename
>>> rd.random()
0.22715542164248681

bring randint into namespace from random
>>> from random import randint
>>> randint(0,10)
4

Classes & Object Orientation
>>> class SomeClass:
... """A simple example class""" # docstring
... pi = 3.14159 # attribute
... def __init__(self, ival=89): # init w/ default
... self.i = ival
... def f(self): # class method
... return 'Hello'
>>> c = SomeClass(42) # instantiate
>>> c.f() # call class method
'hello'

>>> c.pi = 3 # change attribute

>>> print c.i # print attribute
42

N-dimensional homogeneous arrays (ndarray)
Universal functions (ufunc)

built-in linear algebra, FFT, PRNGs
Tools for integrating with C/C++/Fortran
Heavy lifting done by optimized C/Fortran libraries

ATLAS or MKL, UMFPACK, FFTW, etc...

 Creating NumPy Arrays

Initialize with lists: array with 2 rows, 4 cols
>>> import numpy as np
>>> np.array([[1,2,3,4],[8,7,6,5]])
array([[1, 2, 3, 4],
 [8, 7, 6, 5]])

Make array of evenly spaced numbers over an interval
>>> np.linspace(1,100,10)
array([1., 12., 23., 34., 45., 56., 67., 78., 89., 100.])

Create and prepopulate with zeros
>>> np.zeros((2,5))
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])

 Slicing Arrays
>>> a = np.array([[1,2,3,4],[9,8,7,6],[1,6,5,4]])
>>> arow = a[0,:] # get slice referencing row zero
>>> arow
array([1, 2, 3, 4])

>>> cols = a[:,[0,2]] # get slice referencing columns 0 and 2
>>> cols
array([[1, 3],
 [9, 7],
 [1, 5]])

NOTE: arow & cols are NOT copies, they point to the original data
>>> arow[:] = 0
>>> arow
array([0, 0, 0, 0])
>>> a
array([[0, 0, 0, 0],
 [9, 8, 7, 6],
 [1, 6, 5, 4]])

Copy data
>>> copyrow = arow.copy()

Broadcasting with ufuncs
apply operations to many elements with a single call

>>> a = np.array(([1,2,3,4],[8,7,6,5]))
>>> a
array([[1, 2, 3, 4],
 [8, 7, 6, 5]])

Rule 1: Dimensions of one may be prepended to either array
>>> a + 1 # add 1 to each element in array
array([[2, 3, 4, 5],
 [9, 8, 7, 6]])

Rule 2: Arrays may be repeated along dimensions of length 1
>>> a + np.array(([1],[10])) # add 1 to 1st row, 10 to 2nd row
array([[2, 3, 4, 5],
 [18, 17, 16, 15]])

>>> a**([2],[3]) # raise 1st row to power 2, 2nd to 3
array([[1, 4, 9, 16],
 [512, 343, 216, 125]])

SciPy

Extends NumPy with common scientific computing tools
optimization
additional linear algebra
integration
interpolation
FFT
signal and image processing
ODE solvers

Heavy lifting done by C/Fortran code

Parallel & Distributed Programming

threading
useful for certain concurrency issues, not usable for parallel
computing due to Global Interpreter Lock (GIL)

subprocess

 relatively low level control for spawning and managing
processes

multiprocessing - multiple Python instances (processes)

basic, clean multiple process parallelism

MPI

mpi4py exposes your full local MPI API within Python
as scalable as your local MPI

Python Threading

Python threads
real POSIX threads
share memory and state with their parent processes
do not use IPC or message passing
light weight
generally improve latency and throughput
there's a heck of a catch, one that kills performance...

The Infamous GIL
To keep memory coherent, Python only allows a single thread
to run in the interpreter's space at once. This is enforced by the
Global Interpreter Lock, or GIL. It also kills performance for
most serious workloads.

It's not all bad. The GIL:
Is mostly sidestepped for I/O (files and sockets)
Makes writing modules in C much easier
Makes maintaining the interpreter much easier
Makes for any easy target of abuse
Gives people an excuse to write competing threading
modules (please don't)

For the gory details See David Beazley's talk on the GIL: http:
//blip.tv/file/2232410

http://blip.tv/file/2232410
http://blip.tv/file/2232410

Implementation Example: Calculating
Pi

Generate random points inside a square
Identify fraction (f) that fall inside a circle with radius equal
to box width

x2 + y2 < r
Area of quarter of circle (A) = pi*r2 / 4
Area of square (B) = r2

A/B = f = pi/4
pi = 4f

Calculating pi with threads
from threading import Thread, Lock
import random
lock = Lock() # lock for making operations atomic

def calcInside(nsamples,rank):
 global inside # we need something everyone can share
 random.seed(rank)
 for i in range(nsamples):
 x = random.random()
 y = random.random()
 if (x*x)+(y*y)<1:
 lock.acquire() # GIL doesn't always save you
 inside += 1
 lock.release()

if __name__ == '__main__':
 nt=4 # thread count
 inside = 0 # you need to initialize this
 samples=int(12e6/nt)
 threads=[Thread(target=calcInside, args=(samples,i)) for i in range(nt)]

 for t in threads: t.start()
 for t in threads: t.join()

 print (4.0*inside)/(1.0*samples*nt)

Execution Time
nt=1: 15.45±0.22 sec
nt=2: 55.38±0.46 sec

Mac OS X, Python 2.6
Core 2 2.53 GHz

Subprocess
The subprocess module allows the Python interpreter to
spawn and control processes. It is unaffected by the GIL. Using
the subprocess.Popen() call, one may start any process
you'd like.

>>> pi=subprocess.Popen('python -c "import math; print
math.pi"',shell=True,stdout=subprocess.PIPE)
>>> pi.stdout.read()
'3.14159265359\n'
>>> pi.pid
1797
>>> me.wait()
0

It goes without saying, there's better ways to do
subprocesses...

Multiprocessing

Added in Python 2.6
Faster than threads as the GIL is sidestepped
uses subprocesses

both local and remote subprocesses are supported
shared memory between subprocesses is risky

no coherent types
Array and Value are built in
others via multiprocessing.sharedctypes

IPC via pipes and queues
 pipes are not entirely safe

synchronization via locks
Manager allows for safe distributed sharing, but it's slower
than shared memory

Calculating pi with multiprocessing
import multiprocessing as mp
import numpy as np
import random
processes = mp.cpu_count()
nsamples = 120000/processes

def calcInside(rank):
 inside = 0
 random.seed(rank)
 for i in range(nsamples):
 x = random.random();
 y = random.random();
 if (x*x)+(y*y)<1:
 inside += 1
 return (4.0*inside)/nsamples
if __name__ == '__main__':
 pool = mp.Pool(processes)
 result = pool.map(calcInside, range(processes))
 print np.mean(result)

pi with multiprocessing, optimized
import multiprocessing as mp
import numpy as np
processes = mp.cpu_count()
nsamples = int(12e6/processes)
def calcInsideNumPy(rank):
 np.random.seed(rank)

 # "vectorized" sample gen, col 0 = x, col 1 = y
 xy = np.random.random((nsamples,2))
 return 4.0*np.sum(np.sum(xy**2,1)<1)/nsamples

if __name__ == '__main__':
 pool = mp.Pool(processes)
 result = pool.map(calcInsideNumPy, range(processes))
 print np.mean(result)

Execution Time
Unoptimized: 4.76±0.23 sec
Vectorized: 1.30±0.14 sec

mpi4py

wraps your native mpi
prefers MPI2, but can work with MPI1

works best with NumPy data types, but can pass around
any serializable object
provides all MPI2 features
well maintained
distributed with Enthought Python Distribution (EPD)
requires NumPy
portable and scalable
http://mpi4py.scipy.org/

http://mpi4py.scipy.org/

How mpi4py works...

mpi4py jobs must be launched with mpirun
each rank launches its own independent python interpreter
each interpreter only has access to files and libraries
available locally to it, unless distributed to the ranks
communication is handled by MPI layer
any function outside of an if block specifying a rank is
assumed to be global
any limitations of your local MPI are present in mpi4py

Calculating pi with mpi4py
from mpi4py import MPI
import numpy as np
import random
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()
nsamples = int(12e6/mpisize)

inside = 0
random.seed(rank)
for i in range(nsamples):
 x = random.random()
 y = random.random()
 if (x*x)+(y*y)<1:
 inside += 1

mypi = (4.0 * inside)/nsamples
pi = comm.reduce(mypi, op=MPI.SUM, root=0)

if rank==0:
 print (1.0 / mpisize)*pi

Performance

Best practices with pure Python & NumPy
Optimization where needed (we'll talk about this in GPAW)

profiling
inlining

Python Best Practices for Performance

If at all possible...
Don't reinvent the wheel.

someone has probably already done a better job than
your first (and probably third) attempt

Build your own modules against optimized libraries
ESSL, ATLAS, FFTW, MKL

Use NumPy data types & functions instead of built-in Python
ones for homogeneous vectors/arrays
"vectorize" operations on ≥1D data types.

avoid for loops, use single-shot operations
Pre-allocate arrays instead of repeated concatenation

use numpy.zeros, numpy.empty, etc..

Real-World Examples and Techniques:

GPAW

 a massively parallel Python-C code for KS-DFT

 Many firsts:
1. Programming in Python (me)
2. Compiling NumPy on BG/P
3. Running an MPI Python-C code on BG/P
4. Profiling Python, C, and MPI simultaneously
5. Running an application on BG/P codes that links in shared

libraries instead of statics libraries.
6. Particular implementation of DFT algorithm: PAW + real-

space
7. GoogleDocs

This is A LOT of firsts!

GPAW is an implementation of the projector augmented
wave method (PAW) method for Kohn-Sham (KS) -
Density Functional Theory (DFT)

Mean-field approach to Schrodinger equation
Uniform real-space grid
Non-linear sparse eigenvalue problem

10^6 grid points, 10^3 eigenvalues
Solved self-consistently using RMM-DIIS

Nobel prize in Chemistry to Walter Kohn (1998) for DFT
Ab initio atomistic simulation for predicting material
properties
Massively parallel using MPI
Written in Python-C using the NumPy library.

GPAW Overview

Electronic Structure of Nanoparticles

GPAW Strong-scaling Results

GPAW code structure

Built on top of NumPy library.
Not simply a Python wrapper on legacy Fortran/C code
Python for coding the high-level algorithm
C for coding numerical intense operations
Use BLAS and LAPACK whenever possible

Here is some pseudo code for iterative eigensolver:
for i in xrange(max SCF):
 for n in xrange(number of bands):
 R_ng = apply(H_gg,Psi_ng) # Compute residuals
 rk(1.0, R_ng, 0.0, H_mn) # construct Hamiltonian

KS-DFT algorithms are well-known and computationally
intensive parts are known a priori.

KS-DFT is a complex algorithm!

Source Code Timeline

Mostly Python-code, 10% C-code.
90% of wall-clock time spend in C, BLAS, and LAPACK.

Performance Mantra

People are able to code complex algorithms in much less time
by using a high-level language like Python. There can be a
performance penalty in the most pure sense of the term.

"The best performance improvement is the transition from the
nonworking to the working state."
--John Ousterhout

"Premature optimization is the root of all evil."
--Donald Knuth

"You can always optimize it later."
-- Unknown

NumPy - Weakly-typed data structures

Weakly-type data structures are handy. In KS-DFT, we
basically need a real double-precision (G-point) and complex
double-precision (K-point) of everything:

Fortran77/Fortran90 - end up with lots of if-statements and
modules
C++ - handles this with templating and operator overloading
Python - doesn't care, but your C extensions will but that is
only 10% of your code.

NumPy - Memory

BlueGene/P has 512 MB per core.
Compute note kernel ~ 34 MB.
NumPy library ~ 38 MB.
Python Interpreter ~ 12 MB.
Can't always get the last 50 MB, NumPy to blame?

Try this simple test:
import numpy as np
A = np.zero((N,N),dtype=float)

Only 350 MB of memory left on BG/P per core for calculation!

NumPy - FLOPS

Optimized BLAS available via NumPy np.dot. Handles general
inner product of multi-dimensional arrays.

Very difficult to cross-compile on BG/P. Blame disutils!
core/_dotblas.so is a sign of optimized np.dot
Python wrapper overhead is negligible

For very large matrices (~50 MB), there is a big
performance difference

unoptimized - 1% single core peak performance
optimized - 80% single core peak performance

For matrix * vector products, np.dot can yield better
performance than direct call to GEMV!

NumPy - FLOPS

Fused floating-point multiply-add instructions are not created
for AXPY type operation in Python.

for i in xrange(N):
 Y[i] += alpha*X[i]
 C[i] += A[i]*B[i]

2X slower than separate multiple and add instructions,
another 2X due to PPC double FPU
May not be a problem in future version of Python, especially
with LLVM

NumPy - FLOPS

WARNING: If you make heavy, use of BLAS & LAPACK type
operations.

Plan on investing a significant amount of time working to
cross-compile optimized NumPy.
Safest thing is to write your own C-wrappers.
If all your NumPy arrays are < 2-dimensional, Python
wrappers will be simple.
Wrappers for multi-dimensional arrays can be challenging:

SCAL, AXPY is simple
GEMV more difficulty
GEMM non-trivial

Remember C & NumPy arrays are row-ordered by default,
Fortran arrays are column-ordered!

Python BLAS Interface
void dscal_(int*n, double* alpha, double* x, int* incx); // C prototype for Fortran
void zscal_(int*n, void* alpha, void* x, int* incx); // C prototype for Fortran
#define DOUBLEP(a) ((double*)((a)->data)) // Casting for NumPy data struc.
#define COMPLEXP(a) ((double_complex*)((a)->data)) // Casting for NumPy data struc.

PyObject* scal(PyObject *self, PyObject *args)
{
 Py_complex alpha;
 PyArrayObject* x;
 if (!PyArg_ParseTuple(args, "DO", &alpha, &x))
 return NULL;
 int n = x->dimensions[0];
 for (int d = 1; d < x->nd; d++) // NumPy arrays can be multi-dimensional!
 n *= x->dimensions[d];
 int incx = 1;

 if (x->descr->type_num == PyArray_DOUBLE)
 dscal_(&n, &(alpha.real), DOUBLEP(x), &incx);
 else
 zscal_(&n, &alpha, (void*)COMPLEXP(x), &incx);
 Py_RETURN_NONE;
}

Parallel Python Interpreter and
Debugging

Parallel Python Interpreter and
Debugging

MPI-enabled "embedded" Python Interpreter:

int main(int argc, char **argv)
{
 int status;
 MPI_Init(&argc, &argv); // backwards compatible with MPI-1
 Py_Initialize(); // needed because of call in next line
 PyObect* m = Py_InitModule3("_gpaw", functions,
 "C-extension for GPAW\n\n...
\n");
 import_array1(-1); // needed for NumPy C-API
 MPI_Barrier(MPI_COMM_WORLD); // sync up
 status = Py_Main(argc, argv); // call to Python Interpreter
 MPI_Finalize();
 return status;
}

Parallel Python Interpreter and
Debugging

Errors in Python modules are OK, core dumps in C extensions
are problematic:

Python call stack is hidden; this is due to Python's
interpreted nature.
Totalview won't help, sorry.

Profiling Mixed Python-C code

Number of profiling tools available:
gprof, CrayPAT - C, Fortran
import profile - Python
TAU Performance System, http://www.cs.uoregon.
edu/research/tau/home.php (next two slides)

Exclusive time for C, Python, MPI are reported
simultaneously.
Heap memory profiling.
Interfaces with PAPI for performance counters.
Manual and automatic instrumentation available.
Does not cost any $$$.

Finding performance bottlenecks is critical to scalability on
HPC platforms

Profiling Mixed Python-C code

Flat profile shows time spent in Python, C, and MPI simultaneously:

Profiling Mixed Python-C code

Measure heap memory on subroutine entry/exit:

Motivation for Parallel Dense Linear Algebra

KS-DFT calculations depend roughly on two parameters N_g
(number of grid points) and N_e (number of electrons), where
N_e << N_g.

Computation scales:
a*N_g + b*N_g*N_e + c*(N_g)^2*N_e + d*(N_e)^3

Memory scales:
a*N_g*N_e + b*(N_e)^2

As the systems size grows, N_e computation requires parallel
dense linear algebra on subspace matrices

H_mn - Hamiltonian
S_mn - Overlap

Python Interface to BLACS and ScaLAPACK

There is no parallel dense linear algebra in NumPy, there are
some options:

PyACTS, based on Numeric
GAiN, Global Arrays based on NumPy (very new)
Write your own Python interface to ScaLAPACK.

Python Interface to BLACS and ScaLAPACK

Mostly non-Python related challenges:
Best way to understand ScaLAPACK is to read the source
code.
DFT leads to complicated scenarios for ScaLAPACK. H_mn
and O_mn exist on a small subset of MPI_COMM_WORLD.
 ScaLAPACK does not distribute arrays object for you.

Local array must be created in a parallel by the
application developer
ScaLAPACK allows you to manipulate them via
descriptors
Array must be compatible with their native 2D-block
cyclic layout
Distributed arrays assumed to be Fortran-ordered.

Python Interface to BLACS and ScaLAPACK

MPI_COMM_WORLD on a 512-node on 8x8x8 BG/P.

 2048 cores!

Python Interface to BLACS and ScaLAPACK

Physical 1D layout (left) of H_mn, S_mn requires redistribute to
2D block-cyclic layout (right) for use with ScaLAPACK.

Python Interface in BLACS and ScaLAPACK

Source blacs grid (blue) and destination blacs grid (red).
Intermediate BLACS grid needed for SCALAPACK redistribute:

Must encompass both source and destination
For multiple concurrent redist operations, intermediate
cannot overlap.

Python Interface to BLACS and ScaLAPACK

Less than 1000 lines of Python and C code.

Python Interface in BLACS and ScaLAPACK

More information at:
https://trac.fysik.dtu.dk/projects/gpaw/browser/trunk/c/blacs.c
https://trac.fysik.dtu.
dk/projects/gpaw/browser/trunk/gpaw/blacs.py

Summary

The Good:
GPAW has an extraordinary amount
of functionality and scalibity. A lot of
features make coding complex
algorithms easy:

OOP
weakly-typed data structures
Interface with many things other
languages: C, C++, Fortran, etc.

The Bad & Ugly:
NumPy cross-compile.
C Python extensions require
learning NumPy & C API.
Debugging C extensions can be
difficult.
Performance analysis will
always be needed.
OpenMP-like threading not
available due to GIL.
Python will need to support
GPU acceleration in the future.

Acknowledgements

People:
GPAW team

Technical University of Denmark - J. J. Mortensen, M.
Dulak, A. H. Larsen, C. Glinsvaad, K. W. Jacobsen
CSC - IT Center for Scieince, Ltd., - J. Enkovaara

ANL staff - V. A. Morozov, J. P. Greeley
ParaTools, Inc. - S. Shende

Acknowledgements

Funding and Computational resources:
This research used resources at: Argonne Leadership
Computing Facility and the Center for Nanoscale Materials at
Argonne National Laboratory, which is supported by the office
of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357; High Performance Computing Center
North (HPC2N). The Center for Atomic-scale Materials
Design is sponsored by the Lundbeck Foundation. The authors
acknowledge support from the Danish Center for Scientic
Computing.

Python for plotting and visualization

Overview of matplotlib
Example of MC analysis tool written in Python
Looking at data sharing on the web

From a Scientific Library
To a Scientific Application

Massimo Di Pierro

Numerical Algorithms

From Lib to App
(overview)

Numerical AlgorithmsStorage

Store and retrieve information in a relational database

From Lib to App
(overview)

Numerical AlgorithmsStorage Interface

Plotting

Store and retrieve information in a relational database
Provide a user interface
input forms with input validation
represent data (html, xml, csv, json, xls, pdf, rss)
represent data graphically

From Lib to App
(overview)

Numerical AlgorithmsStorage Interface

user

user

user
Plotting

internet

Store and retrieve information in a relational database
Provide a user interface
input forms with input validation
represent data (html, xml, csv, json, xls, pdf, rss)
represent data graphically
Communicate with users over the internet
provide user authentication/authorization/access control
provide persistence (cookies, sessions, cache)
log activity and errors
protect security of data

From Lib to App
(overview)

Ruby on Rails

Django

TurboGears

Pylons

 ...

web2py

gnuplot.py

r.py

Chaco

Dislin

...

matplotlib

How? Use a framework!

web2py is really easy to use

web2py is really powerful and does a lot
for you

web2py is really fast and scalable for
production jobs

I made web2py so I know it best

matplotlib is the best library for plotting I
have ever seen (not just in Python)

Why?

matplotlib gallery

web2py and MVC

code project

code project
application1

application
2

application
3

web2py and MVC

code project
application

1

application=”
dna”

application
3

Models Controllers Views

Data
representation

Data
presentationLogic/Workflow

web2py and MVC

code project
application

1

application=”
dna”

application
3

Models Controllers Views

db.define_table(
‘dna’,
Field(‘sequence’))

def upload_dna():
return dict(form=
crud.create(db.dna))

<h1>
Upload DNA Seq.
</h1>

{{=form}}

Data
representation

Data
presentationLogic/Workflow

Minimal
Complete

Application

web2py and MVC

<h1>
Upload DNA Seq.
</h1>

{{=form}}

web2py and Dispatching

hostnam
e

web2py and Dispatching

app name

web2py and Dispatching

controller

web2py and Dispatching

action
name

web2py and Dispatching

<h1>
Upload DNA Seq.
</h1>

{{=form}}

web2py and Views

{{=form}}

<h1>
Upload DNA Seq.
</h1>

{{=form}}

web2py and Views

authenticatio
n

web2py and Authentication

database interface

web2py and AppAdmin

web based IDE

web2py web based IDE

build a web based application

store DNA sequences

allow upload of DNA sequences

allow analysis of DNA sequences
(reverse, count, align, etc.)

allow plotting of results

Goal

download web2py from web2py.com

unzip web2py and click on the executable

when it asks for a password choose one

visit http://127.0.0.1:8000/admin and login

create a new “dna” application by:
type “dna” in the apposite box and press [submit]

Before we start

http://127.0.0.1:8000/admin

import math, random, uuid, re

db.define_table('dna',
 Field('name'),
 Field('sequence','text'))

def random_gene(n):
 return ''.join(['ATGC'[int(n+10*math.sin(n*k)) % 4] \
 for k in range(10+n)])+'UAA'

def random_dna():
 return ''.join([random_gene(random.randint(0,10)) \
 for k in range(50)])

 if not db(db.dna.id>0).count():
 for k in range(100):
 db.dna.insert(name=uuid.uuid4(),sequence=random_dna())

Define model
in models/db_dna.py

def find_gene_size(a):
 r=re.compile('(UAA|UAG|UGA)(?P<gene>.*?)(UAA|UAG|UGA)')
 return [(g.start(),len(g.group('gene'))) \
 for g in r.finditer(a)]

def needleman_wunsch(a,b,p=0.97):
 """Needleman-Wunsch and Smith-Waterman"""
 z=[]
 for i,r in enumerate(a):
 z.append([])
 for j,c in enumerate(b):
 if r==c:
 z[-1].append(z[i-1][j-1]+1 if i*j>0 else 1)
 else:
 z[-1].append(p*max(z[i-1][j] if i>0 else 0,
 z[i][j-1] if j>0 else 0))
 return z

Define some algorithms

import random, cStringIO
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

def plot(title='title',xlab='x',ylab='y',data={}):
 fig=Figure()
 fig.set_facecolor('white')
 ax=fig.add_subplot(111)
 if title: ax.set_title(title)
 if xlab: ax.set_xlabel(xlab)
 if ylab: ax.set_ylabel(ylab)
 legend=[]
 keys=sorted(data)
 for key in keys:
 stream = data[key]
 (x,y)=([],[])
 for point in stream:
 x.append(point[0])
 y.append(point[1])
 ell=ax.hist(y,20)
 canvas=FigureCanvas(fig)
 response.headers['Content-Type']='image/png'
 stream=cStringIO.StringIO()
 canvas.print_png(stream)
 return stream.getvalue()

in models/matplotlib_helpers.py

def index():
 rows=db(db.dna.id).select(db.dna.id,db.dna.name)
 return dict(rows=rows)
@auth.requires_login()
def gene_size():
 dna = db.dna[request.args(0)] or \
 redirect(URL(r=request,f='index'))
 lengths = find_gene_size(dna.sequence)
 return hist(data={'Lengths':lengths})

Define actions
in controllers/default.py

{{extend 'layout.html'}}

compare

{{for row in rows:}}
{{=row.name}}
[gene sizes]

{{pass}}

Define Views
in views/default/index.html

Try it

def pcolor2d(title='title',xlab='x',ylab='y',
z=[[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]]):
 fig=Figure()
 fig.set_facecolor('white')
 ax=fig.add_subplot(111)
 if title: ax.set_title(title)
 if xlab: ax.set_xlabel(xlab)
 if ylab: ax.set_ylabel(ylab)
 image=ax.imshow(z)
 image.set_interpolation('bilinear')
 canvas=FigureCanvas(fig)
 response.headers['Content-Type']='image/png'
 stream=cStringIO.StringIO()
 canvas.print_png(stream)
 return stream.getvalue()

in models/matplotlib_helpers.py

def needleman_wunsch_plot():
dna1 = db.dna[request.vars.sequence1]
dna2 = db.dna[request.vars.sequence2]
z = needleman_wunsch(dna1.sequence,dna2.sequence)
return pcolor2d(z=z)

def compare():
 form = SQLFORM.factory(
 Field('sequence1',db.dna,
 requires=IS_IN_DB(db,'dna.id','%(name)s')),
 Field('sequence2',db.dna,
 requires=IS_IN_DB(db,'dna.id','%(name)s')))
 if form.accepts(request.vars):
 image=URL(r=request,f='needleman_wunsch_plot',
 vars=form.vars)
 else:
 image=None
 return dict(form=form, image=image)

Define Actions
in controllers/default.py

{{extend 'layout.html'}}

{{=form}}

{{if image:}}
Sequence1 = {{=db.dna[request.vars.sequence1].name}}

Sequence2 = {{=db.dna[request.vars.sequence2].name}}

{{pass}}

Define Views
in views/default/compare.html

Try it

Resources

Python
http://www.python.org/

all the current documentation, software, tutorials, news, and pointers to advice
you'll ever need

GPAW
https://wiki.fysik.dtu.dk/gpaw/

GPAW documentation and code
SciPy and NumPy

http://numpy.scipy.org/
The official NumPy website

http://conference.scipy.org/
The annual SciPy conference

http://www.enthought.com/
Enthought, Inc. the commercial sponsors of SciPy, NumPy, Chaco, EPD and
more

Matplotlib
 http://matplotlib.sourceforge.net/

best 2D package on the planet
mpi4py

http://mpi4py.scipy.org/

Yet More Resources

Tau
http://www.cs.uoregon.edu/research/tau/home.php

official open source site
http://www.paratools.com/index.php

commercial tools and support for Tau
web2py

http://www.web2py.com/
web framework used in this tutorial

Hey! There's a Python BOF
Python for High Performance and Scientific Computing
Primary Session Leader:
Andreas Schreiber (German Aerospace Center)

Secondary Session Leaders:
William R. Scullin (Argonne National Laboratory) Steven
Brandt (Louisiana State University) James B. Snyder (Northwestern
University) Nichols A. Romero (Argonne National Laboratory)
Birds-of-a-Feather Session
Wednesday, 05:30PM - 07:00PM Room A103-104
Abstract:
The Python for High Performance and Scientific Computing BOF is intended to
provide current and potential Python users and tool providers in the high
performance and scientific computing communities a forum to talk about their
current projects; ask questions of experts; explore methodologies; delve into
issues with the language, modules, tools, and libraries; build community; and
discuss the path forward.

Let's review!

Questions?

Acknowledgments

This work is supported in part by the
resources of the Argonne Leadership
Computing Facility at Argonne National
Laboratory, which is supported by the
Office of Science of the U.S. Department
of Energy under contract DE-AC02-
06CH11357.

Extended thanks to

Northwestern University
De Paul University
the families of the presenters
Sameer Shende, ParaTools, Inc.
Enthought, Inc. for their continued
support and sponsorship of SciPy
and NumPy
Lisandro Dalcin for his work on
mpi4py and tolerating a lot of
questions

the members of the Chicago Python
User's Group (ChiPy) for allowing us
to ramble on about science and HPC
the Python community for their
feedback and support
CCT at LSU
numerous others at HPC centers
nationwide

