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Overview

We seek to cover:
Python language and interpreter basics
Popular modules and packages for scientific applications
How to improve performance in Python programs 
How to visualize and share data using Python 
Where to find documentation and resources

Do:
Feel free to interrupt

the slides are a guide - we're only successful if you learn 
what you came for; we can go anywhere you'd like

Ask questions
Find us after the tutorial



About the Tutorial Environment

Updated materials and code samples are available at:
http://www.mcs.anl.gov/~wscullin/python/tut/sc09
we suggest you retrieve them before proceeding. They should 
remain posted for at least a calendar year. 
 
You should have login instructions, a username and password 
for the tutorial environment on the paper on your slip. Accounts 
will be terminated no later than 6:30PM USPT today. Do not 
leave any code or data on the system you would like to keep.

Your default environment on the remote system is set up for 
this  tutorial, though the downloadable live dvd should provide a 
comparable environment.

http://www.mcs.anl.gov/%7Ewscullin/python/tut/sc09
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Dynamic programming language
Interpreted & interactive
Object-oriented
Strongly introspective
Provides exception-based error handling
Comes with "Batteries included" (extensive standard 
libraries)
Easily extended with C, C++, Fortran, etc... 
Well documented (http://docs.python.org/)

http://docs.python.org/


Easy to learn
#include "iostream"
#include "math"
int main(int argc,char** argv)
{
    int n = atoi(argv[1]);
    for(int i=2; 
        i<(int) sqrt(n);
        i++) 
    {
       p=0;
       while(n % i) 
       {
          p+=1;
          n/=i;
       }
       if (p)
          cout << i << "^" 
               << p << endl;
    }
    return 0;
}

import math, sys
 
 
 
n = int(sys.argv[1])
for i in range(2,math.sqrt(n)):
 
 
 
     p=0 
     while n % i:
  
     (p,n) = (p+1,n/i)
     
     if p:
        print i,'^',p 



Now try do this in C++

only 24 lines of 
python code
uses standard 
Python libraries.

from Tkinter import Tk, Label, Canvas, PhotoImage
import math, time
root = Tk()
canvas, aliens, missiles = Canvas(root,width=800,height=400,bg='white'), {}, {}
canvas.pack()
i1, i2 = PhotoImage(format='gif',file="alien.gif"), PhotoImage(format='gif',file="missile.gif")
for x,y,p in [(100+40*j,160-20*i,100*i) for i in range(8) for j in range(15)]:
    aliens[canvas.create_image(x,y,image=i1)]=p
canvas.bind('<Button-1>', lambda e: missiles.update({canvas.create_image(e.x,390,image=i2):10}))
while aliens:
    try:
        for m in missiles:
            canvas.move(m,0,-5)
            if canvas.coords(m)[1]<0: 
                score -= missiles[m];
                canvas.delete(m); del missiles[m]
        for a in aliens:
            canvas.move(a,2.0*math.sin(time.time()),0)
            p = canvas.coords(a)
            items = canvas.find_overlapping(p[0]-5,p[1]-5,p[0]+5,p[1]+5)
            for m in items[1:2]:
                canvas.delete(a); del aliens[a]; canvas.delete(m); del missiles[m]                
        time.sleep(0.02); root.update()
    except: pass



Why Use Python for Scientific 
Computing?

"Batteries included" + rich scientific computing ecosystem
Good balance between computational performance and 
time investment

Similar performance to expensive commercial solutions
Many ways to optimize critical components
Only spend time on speed if really needed

Tools are mostly open source and free (many are MIT/BSD 
license)
Strong community and commercial support options. 
No license management 



Science Tools for Python
Large number of science-related modules:

 
General 
NumPy
SciPy
 
GPGPU Computing 
PyCUDA
PyOpenCL
 
Parallel Computing 
PETSc 
PyMPI
Pypar
mpi4py

Wrapping 
C/C++/Fortran
SWIG
Cython
ctypes
 

Molecular & 
Atomic Modeling
PyMOL
Biskit 
GPAW

Geosciences
GIS Python 
PyClimate
ClimPy 
CDAT
 
Bayesian Stats
PyMC

Optimization
OpenOpt

For a more complete list: http://www.scipy.org/Topical_Software

Plotting & Visualization
matplotlib
VisIt
Chaco
MayaVi
 
AI & Machine Learning
pyem
ffnet
pymorph
Monte
hcluster 
 
Biology (inc. neuro) 
Brian
SloppyCell
NIPY
PySAT 

Symbolic Math
SymPy 

Electromagnetics
PyFemax
 
Astronomy
AstroLib
PySolar 

Dynamic Systems
Simpy 
PyDSTool
 
Finite Elements
SfePy

http://www.scipy.org/Topical_Software


Please login to the Tutorial 
Environment
Let the presenters know if you have any issues.

Start an iPython session:
santaka:~> wscullin$ ipython
Python 2.6.2 (r262:71600, Sep 30 2009, 00:28:07) 
[GCC 3.3.3 (SuSE Linux)] on linux2
Type "help", "copyright", "credits" or "license" for more 
information.

IPython 0.9.1 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object'. ?object also works, ?? prints 
more.

In [1]: 



Python Basics

Interpreter
Built-in Types, keywords, functions
Control Structures
Exception Handling
I/O
Modules, Classes & OO



Interpreters

 CPython Standard python distribution
What most people think of as "python"
highly portable
http://www.python.org/download/

We're going to use 2.6.2 for this tutorial
The future is 3.x, the future isn't here yet

 iPython 
A user friendly interface for testing and debugging 
http://ipython.scipy.org/moin/ 

http://www.python.org/download/
http://ipython.scipy.org/moin/


Other Interpreters You Might See...
Unladen Swallow

Blazing fast, uses llvm and in turn may compile!
x86/x86_64 only really
Sponsored by Google
http://code.google.com/p/unladen-swallow/ 

 Jython
Python written in Java and running on the JVM
http://www.jython.org/
performance is about what you expect

IronPython
Python running under .NET
http://www.codeplex.com/IronPython  

PyPy
Python in... Python
No where near ready for prime time 
http://codespeak.net/pypy/dist/pypy/doc/ 

http://code.google.com/p/unladen-swallow/
http://www.jython.org/
http://www.codeplex.com/IronPython
http://codespeak.net/pypy/dist/pypy/doc/


CPython Interpreter Notes    

Compilation affects interpreter performance
Precompiled distributions aim for compatibility and as 
few irritations as possible, not performance

compile your own or have your systems admin do it
same note goes for most modules

Regardless of compilation, you'll have the same 
bytecode and the same number of instructions
Bytecode is portable, binaries are not
Linking against shared libraries kills portability

Not all modules are available on all platforms
Most are not OS specific (>90%)
x86/x86_64 is still better supported than most



A note about distutils and building 
modules
Unless your environment is very generic (ie: a major linux 
distribution under x86/x86_64), and even if it is, manual 
compilation and installation of modules is a very good idea.

Distutils and setuptools often make incorrect assumptions 
about your environment in HPC settings. Your presenters 
generally regard distutils as evil as they cross-compile a lot.

If you are running on PowerPC, IA-64, Sparc, or in an 
uncommon environment, let module authors know you're there 
and report problems!



Built-in Numeric Types
int, float, long, complex - different types of numeric data

>>> a = 1.2 # set a to floating point number
>>> type(a)
<type 'float'> 
 
>>> a = 1 # redefine a as an integer
>>> type(a)
<type 'int'> 

>>> a = 1e-10 # redefine a as a float with scientific notation
>>> type(a)
<type 'float'>
 
>>> a = 1L # redefine a as a long
>>> type(a)
<type 'long'>
 
>>> a = 1+5j # redefine a as complex
>>> type(a)
<type 'complex'>
 



Gotchas with Built-in Numeric Types

Python's int and float can become as large in size as your 
memory will permit, but ints will be automatically typed as long. 
The built-in long datatype is very slow and best avoided.
>>> a=2.0**999 
>>> a
5.3575430359313366e+300

>>> import sys 
>>> sys.maxint 
2147483647
>>> a>sys.maxint  
True 
>>> a=2.0**9999 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
OverflowError: (34, 'Result too large') 
>>> a=2**9999
>>> a-((2**9999)-1)
1L 



Python's int and float are not decimal types
IEEE 754 compliant (http://docs.python.org/tutorial/floatingpoint.html) 
math with two integers always results in an integer

>>> a=1/3  # no type coercion, integer division
>>> a
0

>>> a=1/3.0 # binary op with int and float -> int coerced to float
>>> a
0.33333333333333331
>>> a=1.0/3.0 # float division
>>> a
0.33333333333333331

>>> 0.3
0.29999999999999999 # thanks binary fractions!
>>> a=1.0/10
>>> a
0.10000000000000001

Gotchas with Built-in Numeric Types

http://docs.python.org/tutorial/floatingpoint.html


NumPy Numeric Data Types

NumPy covers all the same numeric data types available in 
C/C++ and Fortran as variants of int, float, and complex

all available signed and unsigned as applicable 
available in standard lengths 
floats are double precision by default
generally available with names similar to C or Fortran

ie: long double is longdouble
generally compatible with Python data types

 



Built-in Sequence Types
str, unicode - string types

>>> s = 'asd' 
>>> u = u'fgh' # prepend u, gives unicode string
>>> s[1]
's'

list - mutable sequence
>>> l = [1,2,'three'] # make list
>>> type(l[2])
<type 'str'>

>>> l[2] = 3;  # set 3rd element to 3
>>> l.append(4) # append 4 to the list

tuple - immutable sequence 
>>> t = (1,2,'four')



Built-in Mapping Type
dict - match any immutable value to an object

>>> d = {'a' : 1, 'b' : 'two'}
>>> d['b']  # use key 'b' to get object 'two'
'two'
 
# redefine b as a dict with two keys 
>>> d['b'] = {'foo' : 128.2, 'bar' : 67.3} 
>>> d
{'a': 1, 'b': {'bar': 67.299999999999997, 'foo': 
128.19999999999999}}
 
# index nested dict within dict 
>>> d['b']['foo']
128.19999999999999

# any immutable type can be an index 
   >>> d['b'][(1,2,3)]='numbers'



Built-in Sequence & Mapping Type 
Gotchas
Python lacks C/C++ or Fortran style arrays.  

Best that can be done is nested lists or dictionaries
Tuples, being immutable are a bad idea 

You have to be very careful on how you create them
Growing these types will cost performance (minimal pre-
allocation)
NumPy provides real n-dimensional arrays with low 
overhead



Python requires that your correctly
    indent your code.

Only applies to indentation
Will help keep your code readable
Use 4 spaces for tabs, and you won't have any problems
(if you indent correctly)

If you have further questions, see PEP 8:
http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/


Control Structures
if - compound conditional statement 

if (a and b) or (not c):
    do_something()
elif d:
    do_something_else()
else:
    print "didn't do anything"
 
 

while - conditional loop statement 
i = 0 
while i < 100:
    i += 1



Control Structures
for - iterative loop statement

for item in list:
    do_something_to_item(item)
 
# start = 0, stop = 10  
>>> for element in range(0,10):
...    print element,
0 1 2 3 4 5 6 7 8 9
 
# start = 0, stop = 20, step size = 2 
>>> for element in range(0,20,2): 
...     print element,
0 2 4 6 8 10 12 14 16 18



Generators

Python makes it very easy to write funtions you can iterate 
over- just use yield instead of return at the end of functions
def squares(lastterm):
    for n in range(lastterm):
        yield n**2
        
>>> for i in squares(4): print i
... 
0
1
4
9
16 



List Comprehensions 

List Comprehensions are powerful tool, replacing Python's 
lambda function for functional programming

syntax: [f(x) for x in generator] 
you can add a conditional if to a list comprehension 

>>> [i for i in squares(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> [i for i in squares(10) if i%2==0]
[0, 4, 16, 36, 64] 

>>> [i for i in squares(10) if i%2==0 and i%3==1]
[4, 16, 64]



Exception Handling
try - compound error handling statement

>>> 1/0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by 
zero
 
>>> try:
...     1/0
... except ZeroDivisionError:
...     print "Oops! divide by zero!"
... except:
...     print "some other exception!"
 
Oops! divide by zero!



File I/O Basics
Most I/O in Python follows the model laid out for file I/O and 
should be familiar to C/C++ programmers.

basic built-in file i/o calls include
open(), close()
write(), writeline(), writelines()
read(), readline(), readlines()
flush()
seek() and tell()
fileno() 

basic i/o supports both text and binary files
POSIX like features are available via fctl and os 
modules
be a good citizen 

if you open, close your descriptors 
if you lock, unlock when done



Basic I/O examples
# open a text file for reading with default buffering
>>> f=file.open('myfile.txt','r')  

for writing use 'w'
for simultaneous reading and writing add '+' to either 'r' or 
'w'  
for appending use 'a'
to do binary files add 'b'

# opens a text file for reading and writing with no buffering. 
>>> f=file.open('myfile.txt','w+',0)

 a 1 means line buffering, 
 other values are interpreted as buffer sizes in bytes



Let's write ten integers to disk without buffering, then read them 
back:
>>> f=open('frogs.dat','w+',0) # open for unbuffered reading and writing
>>> f.writelines([str(my_int) for my_int in range(10)])
>>> f.tell() # we're about to see we've made a mistake
10L # hmm... we seem short on stuff
>>> f.seek(0) # go back to the start of the file
>>> f.tell() # make sure we're there
0L
>>> f.readlines() # Let's see what's written on each line
['0123456789']# we've written 10 chars, no line returns... oops
>>> f.seek(0) # jumping back to start, let's add line returns
>>> f.writelines([str(my_int)+'\n' for my_int in range(10)])
>>> f.tell() # jumping back to start, let's add line returns
20L
>>> f.seek(0)# return to start of the file
>>> f.readline()# grab one line
'0\n'
>>>f.next() # grab what ever comes next
'1\n'
>>> f.readlines() # read all remaining lines in the file
['2\n', '3\n', '4\n', '5\n', '6\n', '7\n', '8\n', '9\n']
>>> f.close() # always clean up after yourself - no need other than courtesy!
 



Pickling
a.k.a.: serializing Python objects

# make a list w/ numeric values, a string, and a dict
>>> a = [1, 3, 5, 'hello', {'key':'value', 'otherkey':'othervalue'}]

# use pickle to serialize and dump to a file
>>> import pickle
>>> pickle.dump(a,open('filename.pickle','wb'))

# unpickle serialized data
>>> b=pickle.load(open('filename.pickle','rb'))
>>> b
[1, 3, 5, 'hello', {'otherkey': 'othervalue', 'key': 'value'}]



I/O for scientific formats

i/o is relatively weak out of the box - luckily there are the 
following alternatives:

h5py
Python bindings for HDF5
http://code.google.com/p/h5py/

netCDF4 
 Python bindings for NetCDF
http://netcdf4-python.googlecode.
com/svn/trunk/docs/netCDF4-module.html

mpi4py allows for classic MPI-IO via MPI.File



Modules
import - load module, define in namespace

>>> import random # import module
>>> random.random() # execute module method
0.82585453878964787

>>> import random as rd # import and rename
>>> rd.random()
0.22715542164248681

# bring randint into namespace from random
>>> from random import randint
>>> randint(0,10)
4



Classes & Object Orientation
>>> class SomeClass:
...     """A simple example class""" # docstring
...     pi = 3.14159 # attribute
...     def __init__(self, ival=89): # init w/ default
...         self.i = ival
...     def f(self): # class method
...         return 'Hello'
>>> c = SomeClass(42) # instantiate
>>> c.f() # call class method
'hello'

>>> c.pi = 3 # change attribute

>>> print c.i # print attribute
42



N-dimensional homogeneous arrays (ndarray)
Universal functions (ufunc)

built-in linear algebra, FFT, PRNGs
Tools for integrating with C/C++/Fortran
Heavy lifting done by optimized C/Fortran libraries

ATLAS or MKL, UMFPACK, FFTW, etc...



   Creating NumPy Arrays

# Initialize with lists: array with 2 rows, 4 cols
>>> import numpy as np 
>>> np.array([[1,2,3,4],[8,7,6,5]])
array([[1, 2, 3, 4],
       [8, 7, 6, 5]])

# Make array of evenly spaced numbers over an interval
>>> np.linspace(1,100,10)
array([   1.,   12.,   23.,   34.,   45.,   56.,   67.,   78.,   89.,  100.])

# Create and prepopulate with zeros
>>> np.zeros((2,5))
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])



   Slicing Arrays
>>> a = np.array([[1,2,3,4],[9,8,7,6],[1,6,5,4]])
>>> arow = a[0,:] # get slice referencing row zero
>>> arow
array([1, 2, 3, 4])
 
>>> cols = a[:,[0,2]] # get slice referencing columns 0 and 2 
>>> cols 
array([[1, 3],
       [9, 7],
       [1, 5]])
 
# NOTE: arow & cols are NOT copies, they point to the original data 
>>> arow[:] = 0
>>> arow
array([0, 0, 0, 0])
>>> a
array([[0, 0, 0, 0],
       [9, 8, 7, 6],
       [1, 6, 5, 4]])

# Copy data
>>> copyrow = arow.copy()



Broadcasting with ufuncs
apply operations to many elements with a single call

>>> a = np.array(([1,2,3,4],[8,7,6,5]))
>>> a
array([[1, 2, 3, 4],
       [8, 7, 6, 5]])

# Rule 1: Dimensions of one may be prepended to either array
>>> a + 1 # add 1 to each element in array
array([[2, 3, 4, 5],
       [9, 8, 7, 6]])
 

# Rule 2: Arrays may be repeated along dimensions of length 1
>>> a + np.array(([1],[10])) # add 1 to 1st row, 10 to 2nd row
array([[ 2, 3, 4, 5],
       [18, 17, 16, 15]])

>>> a**([2],[3]) # raise 1st row to power 2, 2nd to 3
array([[ 1,    4,    9, 16],
       [512, 343, 216, 125]])



SciPy

Extends NumPy with common scientific computing tools
optimization
additional linear algebra
integration
interpolation
FFT
signal and image processing
ODE solvers

Heavy lifting done by C/Fortran code



Parallel & Distributed Programming

threading
useful for certain concurrency issues, not usable for parallel 
computing due to Global Interpreter Lock (GIL)

 
subprocess

 relatively low level control for spawning and managing 
processes

  
multiprocessing - multiple Python instances (processes)

basic, clean multiple process parallelism 
 
MPI

mpi4py exposes your full local MPI API within Python
as scalable as your local MPI 



Python Threading

Python threads
real POSIX threads
share memory and state with their parent processes
do not use IPC or message passing
light weight
generally improve latency and throughput
there's a heck of a catch, one that kills performance... 



The Infamous GIL
To keep memory coherent, Python only allows a single thread 
to run in the interpreter's space at once. This is enforced by the 
Global Interpreter Lock, or GIL. It also kills performance for 
most serious workloads.

It's not all bad. The GIL:
Is mostly sidestepped for I/O (files and sockets)
Makes writing modules in C much easier
Makes maintaining the interpreter much easier
Makes for any easy target of abuse
Gives people an excuse to write competing threading 
modules (please don't)

For the gory details See David Beazley's talk on the GIL: http:
//blip.tv/file/2232410

http://blip.tv/file/2232410
http://blip.tv/file/2232410


Implementation Example: Calculating 
Pi

Generate random points inside a square
Identify fraction (f) that fall inside a circle with radius equal 
to box width

x2 + y2 < r
Area of quarter of circle (A) = pi*r2 / 4
Area of square (B) = r2

A/B = f = pi/4
pi = 4f



Calculating pi with threads
from threading import Thread, Lock
import random
lock = Lock() # lock for making operations atomic

def calcInside(nsamples,rank):
    global inside # we need something everyone can share
    random.seed(rank)
    for i in range(nsamples):
        x = random.random()
        y = random.random()
        if (x*x)+(y*y)<1:
            lock.acquire() # GIL doesn't always save you
            inside += 1
            lock.release()

if __name__ == '__main__':
    nt=4 # thread count
    inside = 0 # you need to initialize this
    samples=int(12e6/nt)
    threads=[Thread(target=calcInside, args=(samples,i)) for i in range(nt)]
    
    for t in threads: t.start()
    for t in threads: t.join()

    print (4.0*inside)/(1.0*samples*nt)

Execution Time
nt=1: 15.45±0.22 sec
nt=2: 55.38±0.46 sec

Mac OS X, Python 2.6
Core 2 2.53 GHz



Subprocess
The subprocess module allows the Python interpreter to 
spawn and control processes. It is unaffected by the GIL. Using 
the subprocess.Popen() call, one may start any process 
you'd like.
 
>>> pi=subprocess.Popen('python -c "import math; print 
math.pi"',shell=True,stdout=subprocess.PIPE)
>>> pi.stdout.read()
'3.14159265359\n'
>>> pi.pid
1797
>>> me.wait()
0 

It goes without saying, there's better ways to do 
subprocesses...



Multiprocessing

Added in Python 2.6
Faster than threads as the GIL is sidestepped 
uses subprocesses

both local and remote subprocesses are supported
shared memory between subprocesses is risky

no coherent types
Array and Value are built in
others via multiprocessing.sharedctypes 

IPC via pipes and queues
 pipes are not entirely safe

synchronization via locks
Manager allows for safe distributed sharing, but it's slower 
than shared memory 



Calculating pi with multiprocessing
import multiprocessing as mp
import numpy as np
import random
processes = mp.cpu_count()
nsamples = 120000/processes

def calcInside(rank):
    inside = 0
    random.seed(rank)
    for i in range(nsamples):
        x = random.random();
        y = random.random();
        if (x*x)+(y*y)<1:
            inside += 1
    return (4.0*inside)/nsamples
if __name__ == '__main__':
    pool = mp.Pool(processes)
    result = pool.map(calcInside, range(processes))
    print np.mean(result)



pi with multiprocessing, optimized
import multiprocessing as mp
import numpy as np
processes = mp.cpu_count()
nsamples = int(12e6/processes)
def calcInsideNumPy(rank):
    np.random.seed(rank)

    # "vectorized" sample gen, col 0 = x, col 1 = y
    xy = np.random.random((nsamples,2))
    return 4.0*np.sum(np.sum(xy**2,1)<1)/nsamples

if __name__ == '__main__':
    pool = mp.Pool(processes)
    result = pool.map(calcInsideNumPy, range(processes))
    print np.mean(result)

Execution Time
Unoptimized:  4.76±0.23 sec
Vectorized:     1.30±0.14 sec



mpi4py

wraps your native mpi
prefers MPI2, but can work with MPI1

works best with NumPy data types, but can pass around 
any serializable object 
provides all MPI2 features 
well maintained
distributed with Enthought Python Distribution (EPD)
requires NumPy 
portable and scalable 
http://mpi4py.scipy.org/

http://mpi4py.scipy.org/


How mpi4py works...

mpi4py jobs must be launched with mpirun
each rank launches its own independent python interpreter
each interpreter only has access to files and libraries 
available locally to it, unless distributed to the ranks
communication is handled by MPI layer
any function outside of an if block specifying a rank is 
assumed to be global
any limitations of your local MPI are present in mpi4py



Calculating pi with mpi4py
from mpi4py import MPI
import numpy as np
import random
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()
nsamples = int(12e6/mpisize)

inside = 0
random.seed(rank)
for i in range(nsamples):
    x = random.random()
    y = random.random()
    if (x*x)+(y*y)<1:
      inside += 1

mypi = (4.0 * inside)/nsamples  
pi = comm.reduce(mypi, op=MPI.SUM, root=0)
  
if rank==0:
    print (1.0 / mpisize)*pi



Performance

Best practices with pure Python & NumPy
Optimization where needed (we'll talk about this in GPAW)

profiling
inlining



Python Best Practices for Performance

If at all possible... 
Don't reinvent the wheel. 

someone has probably already done a better job than 
your first (and probably third) attempt 

Build your own modules against optimized libraries
ESSL, ATLAS, FFTW, MKL

Use NumPy data types & functions instead of built-in Python 
ones for homogeneous vectors/arrays
"vectorize" operations on ≥1D data types.

avoid for loops, use single-shot operations
Pre-allocate arrays instead of repeated concatenation

use numpy.zeros, numpy.empty, etc..



Real-World Examples and Techniques:

GPAW



 

                    a massively parallel Python-C code for KS-DFT 
 
 Many firsts:
1. Programming in Python (me)
2. Compiling NumPy on BG/P
3. Running an MPI Python-C code on BG/P
4. Profiling Python, C, and MPI simultaneously
5. Running an application on BG/P codes that links in shared 

libraries instead of statics libraries.
6. Particular implementation of DFT algorithm: PAW + real-

space
7. GoogleDocs

This is A LOT of firsts!



GPAW is an implementation of the projector augmented 
wave method (PAW) method for Kohn-Sham (KS) - 
Density Functional Theory (DFT) 

Mean-field approach to Schrodinger equation
Uniform real-space grid
Non-linear sparse eigenvalue problem

10^6 grid points, 10^3 eigenvalues
Solved self-consistently using RMM-DIIS

Nobel prize in Chemistry to Walter Kohn (1998) for DFT 
Ab initio  atomistic simulation for predicting material 
properties
Massively parallel using MPI
Written in Python-C using the NumPy library.

GPAW Overview



Electronic Structure of Nanoparticles



GPAW Strong-scaling Results

 



GPAW code structure

Built on top of NumPy library. 
Not simply a Python wrapper on legacy Fortran/C code
Python for coding the high-level algorithm
C for coding numerical intense operations
Use BLAS and LAPACK whenever possible

 
Here is some pseudo code for iterative eigensolver:
for i in xrange(max SCF): 
    for n in xrange(number of bands): 
         R_ng = apply(H_gg,Psi_ng) # Compute residuals
  rk(1.0, R_ng, 0.0, H_mn) # construct Hamiltonian 

KS-DFT algorithms are well-known and computationally 
intensive parts are known a priori.



KS-DFT is a complex algorithm!



Source Code Timeline

Mostly Python-code, 10% C-code.
90% of wall-clock time spend in C, BLAS, and LAPACK.



Performance Mantra

People are able to code complex algorithms in much less time 
by using a high-level language like Python. There can be a 
performance penalty in the most pure sense of the term.
 
"The best performance improvement is the transition from the 
nonworking to the working state."
--John Ousterhout

"Premature optimization is the root of all evil."
--Donald Knuth

"You can always optimize it later."
-- Unknown



NumPy - Weakly-typed data structures

Weakly-type data structures are handy. In KS-DFT, we 
basically need a real double-precision (G-point) and complex 
double-precision (K-point) of everything:

Fortran77/Fortran90 - end up with lots of if-statements and 
modules
C++ - handles this with templating and operator overloading
Python - doesn't care, but your C extensions will but that is 
only 10% of your code.



NumPy - Memory

BlueGene/P has 512 MB per core. 
Compute note kernel ~ 34 MB.
NumPy library ~ 38 MB.
Python Interpreter ~ 12 MB.
Can't always get the last 50 MB, NumPy to blame?

 
Try this simple test:
import numpy as np
A = np.zero((N,N),dtype=float)
 
Only 350 MB of memory left on BG/P per core for calculation!

 
 



NumPy - FLOPS

Optimized BLAS available via NumPy np.dot. Handles general 
inner product of multi-dimensional arrays. 

Very difficult to cross-compile on BG/P. Blame disutils!
core/_dotblas.so is a sign of optimized np.dot
Python wrapper overhead is negligible

For very large matrices (~50 MB), there is a big 
performance difference

unoptimized - 1% single core peak performance
optimized - 80% single core peak performance

For matrix * vector products, np.dot can yield better 
performance than direct call to GEMV! 



NumPy - FLOPS

Fused floating-point multiply-add instructions are not created 
for AXPY type operation in Python.
 
for i in xrange(N):
    Y[i] += alpha*X[i]
    C[i] += A[i]*B[i]
 

2X slower than separate multiple and add instructions, 
another 2X due to PPC double FPU
May not be a problem in future version of Python, especially 
with LLVM  



NumPy - FLOPS

WARNING: If you make heavy, use of BLAS & LAPACK type 
operations. 

Plan on investing a significant amount of time working to 
cross-compile optimized NumPy.
Safest thing is to write your own C-wrappers.
If all your NumPy arrays are < 2-dimensional, Python 
wrappers will be simple.
Wrappers for multi-dimensional arrays can be challenging:

SCAL, AXPY is simple
GEMV more difficulty
GEMM non-trivial

Remember C & NumPy arrays are row-ordered by default, 
Fortran arrays are column-ordered!

 

 
 



Python BLAS Interface
void dscal_(int*n, double* alpha, double* x, int* incx); // C prototype for Fortran       
void zscal_(int*n, void* alpha, void* x, int* incx); // C prototype for Fortran 
#define DOUBLEP(a) ((double*)((a)->data)) // Casting for NumPy data struc.
#define COMPLEXP(a) ((double_complex*)((a)->data)) // Casting for NumPy data struc.
 
PyObject* scal(PyObject *self, PyObject *args)
{
  Py_complex alpha;
  PyArrayObject* x;
  if (!PyArg_ParseTuple(args, "DO", &alpha, &x)) 
    return NULL;
  int n = x->dimensions[0];
  for (int d = 1; d < x->nd; d++) // NumPy arrays can be multi-dimensional!
    n *= x->dimensions[d];
  int incx = 1;

  if (x->descr->type_num == PyArray_DOUBLE)
    dscal_(&n, &(alpha.real), DOUBLEP(x), &incx);
  else
    zscal_(&n, &alpha, (void*)COMPLEXP(x), &incx);
  Py_RETURN_NONE;
} 



Parallel Python Interpreter and 
Debugging



Parallel Python Interpreter and 
Debugging

MPI-enabled "embedded" Python Interpreter:
 
int main(int argc, char **argv)
{
   int status;
   MPI_Init(&argc, &argv); // backwards compatible with MPI-1
   Py_Initialize(); // needed because of call in next line
   PyObect* m = Py_InitModule3("_gpaw", functions,
                          "C-extension for GPAW\n\n...
\n");
   import_array1(-1); // needed for NumPy C-API
   MPI_Barrier(MPI_COMM_WORLD); // sync up
   status = Py_Main(argc, argv); // call to Python Interpreter
   MPI_Finalize();
   return status;
}



Parallel Python Interpreter and 
Debugging

Errors in Python modules are OK, core dumps in C extensions 
are problematic:

Python call stack is hidden; this is due to Python's 
interpreted nature.
Totalview won't help, sorry.



Profiling Mixed Python-C code

Number of profiling tools available:
gprof, CrayPAT - C, Fortran
import profile - Python
TAU Performance System, http://www.cs.uoregon.
edu/research/tau/home.php (next two slides)

Exclusive time for C, Python, MPI are reported 
simultaneously.
Heap memory profiling.
Interfaces with PAPI for performance counters.
Manual and automatic instrumentation available.
Does not cost any $$$.

Finding performance bottlenecks is critical to scalability on 
HPC platforms 



Profiling Mixed Python-C code

Flat profile shows time spent in Python, C, and MPI simultaneously:



Profiling Mixed Python-C code

Measure heap memory on subroutine entry/exit:



Motivation for Parallel Dense Linear Algebra

KS-DFT calculations depend roughly on two parameters N_g 
(number of grid points) and N_e (number of electrons), where 
N_e << N_g.

Computation scales:
a*N_g + b*N_g*N_e + c*(N_g)^2*N_e + d*(N_e)^3
 
Memory scales:
a*N_g*N_e + b*(N_e)^2

As the systems size grows, N_e computation requires parallel 
dense linear algebra on subspace matrices

H_mn - Hamiltonian
S_mn - Overlap



Python Interface to BLACS and ScaLAPACK 

There is no parallel dense linear algebra in NumPy, there are 
some options:

PyACTS, based on Numeric
GAiN, Global Arrays based on NumPy (very new)
Write your own Python interface to ScaLAPACK. 



Python Interface to BLACS and ScaLAPACK 

Mostly non-Python related challenges:
Best way to understand ScaLAPACK is to read the source 
code.
DFT leads to complicated scenarios for ScaLAPACK. H_mn 
and O_mn exist on a small subset of MPI_COMM_WORLD. 
 ScaLAPACK does not distribute arrays object for you.

Local array must be created in a parallel by the 
application developer
ScaLAPACK allows you to manipulate them via 
descriptors
Array must be compatible with their native 2D-block 
cyclic layout
Distributed arrays assumed to be Fortran-ordered.



Python Interface to BLACS and ScaLAPACK

MPI_COMM_WORLD on a 512-node on 8x8x8 BG/P.

                                                                   2048 cores!

                                                                  



Python Interface to BLACS and ScaLAPACK 

Physical 1D layout (left) of H_mn, S_mn requires redistribute to 
2D block-cyclic layout (right) for use with ScaLAPACK.



Python Interface in BLACS and ScaLAPACK

Source blacs grid (blue) and destination blacs grid (red). 
Intermediate BLACS grid needed for SCALAPACK redistribute:

Must encompass both source and destination
For multiple concurrent redist operations, intermediate 
cannot overlap.



Python Interface to BLACS and ScaLAPACK

Less than 1000 lines of Python and C code.



Python Interface in BLACS and ScaLAPACK

More information at:
https://trac.fysik.dtu.dk/projects/gpaw/browser/trunk/c/blacs.c
https://trac.fysik.dtu.
dk/projects/gpaw/browser/trunk/gpaw/blacs.py



Summary

The Good:
GPAW has an extraordinary amount 
of functionality and scalibity.  A lot of 
features make coding complex 
algorithms easy:

OOP
weakly-typed data structures
Interface with many things other 
languages: C, C++, Fortran, etc.  

 

The Bad & Ugly:
NumPy cross-compile. 
C Python extensions require 
learning NumPy & C API.
Debugging C extensions can be 
difficult. 
Performance analysis will 
always be needed.
OpenMP-like threading not 
available due to GIL.
Python will need to support 
GPU acceleration in the future.
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Python for plotting and visualization

Overview of matplotlib
Example of MC analysis tool written in Python
Looking at data sharing on the web



From a Scientific Library
To a Scientific Application

Massimo Di Pierro



Numerical Algorithms

From Lib to App
(overview)



Numerical AlgorithmsStorage

Store and retrieve information in a relational database

From Lib to App
(overview)



Numerical AlgorithmsStorage Interface

Plotting

Store and retrieve information in a relational database
Provide a user interface
input forms with input validation
represent data (html, xml, csv, json, xls, pdf, rss) 
represent data graphically

From Lib to App
(overview)



Numerical AlgorithmsStorage Interface

user

user

user
Plotting

internet

Store and retrieve information in a relational database
Provide a user interface
input forms with input validation
represent data (html, xml, csv, json, xls, pdf, rss) 
represent data graphically
Communicate with users over the internet
provide user authentication/authorization/access control
provide persistence (cookies, sessions, cache)
log activity and errors
protect security of data

From Lib to App
(overview)



Ruby on Rails

Django

TurboGears

Pylons

 ...

web2py

gnuplot.py

r.py

Chaco

Dislin

...

matplotlib

How? Use a framework!



web2py is really easy to use

web2py is really powerful and does a lot 
for you

web2py is really fast and scalable for 
production jobs

I made web2py so I know it best

matplotlib is the best library for plotting I 
have ever seen (not just in Python)

Why?



matplotlib gallery



web2py and MVC

code project



code project
application1

application
2

application
3

web2py and MVC



code project
application

1

application=”
dna”

application
3

Models Controllers Views

Data 
representation

Data 
presentationLogic/Workflow

web2py and MVC



code project
application

1

application=”
dna”

application
3

Models Controllers Views

db.define_table(
‘dna’,
Field(‘sequence’))

def upload_dna():
return dict(form=
crud.create(db.dna))

<h1>
Upload DNA Seq.
</h1>

{{=form}}

Data 
representation

Data 
presentationLogic/Workflow

Minimal
Complete

Application

web2py and MVC



<h1>
Upload DNA Seq.
</h1>

{{=form}}

web2py and Dispatching



hostnam
e

web2py and Dispatching



app name

web2py and Dispatching



controller

web2py and Dispatching



action 
name

web2py and Dispatching



<h1>
Upload DNA Seq.
</h1>

{{=form}}

web2py and Views



{{=form}}

<h1>
Upload DNA Seq.
</h1>

{{=form}}

web2py and Views



authenticatio
n

web2py and Authentication



database interface

web2py and AppAdmin



web based IDE

web2py web based IDE 



build a web based application

store DNA sequences

allow upload of DNA sequences

allow analysis of DNA sequences 
(reverse, count, align, etc.)

allow plotting of results

Goal



download web2py from web2py.com

unzip web2py and click on the executable

when it asks for a password choose one

visit http://127.0.0.1:8000/admin and login

create a new “dna” application by:
type “dna” in the apposite box and press [submit]

Before we start

http://127.0.0.1:8000/admin


import math, random, uuid, re

db.define_table('dna',
    Field('name'),
    Field('sequence','text'))

def random_gene(n):
    return ''.join(['ATGC'[int(n+10*math.sin(n*k)) % 4] \
           for k in range(10+n)])+'UAA'

def random_dna():
    return ''.join([random_gene(random.randint(0,10)) \
    for k in range(50)])

    if not db(db.dna.id>0).count():
        for k in range(100):
            db.dna.insert(name=uuid.uuid4(),sequence=random_dna())

Define model
in models/db_dna.py



def find_gene_size(a):
    r=re.compile('(UAA|UAG|UGA)(?P<gene>.*?)(UAA|UAG|UGA)')
    return [(g.start(),len(g.group('gene'))) \
            for g in r.finditer(a)]

def needleman_wunsch(a,b,p=0.97):
    """Needleman-Wunsch and Smith-Waterman"""
    z=[]
    for i,r in enumerate(a):
        z.append([])
    for j,c in enumerate(b):
        if r==c: 
            z[-1].append(z[i-1][j-1]+1 if i*j>0 else 1)
        else:
            z[-1].append(p*max(z[i-1][j] if i>0 else 0,
            z[i][j-1] if j>0 else 0))
    return z

Define some algorithms



import random, cStringIO
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

def plot(title='title',xlab='x',ylab='y',data={}):
    fig=Figure()
    fig.set_facecolor('white')
    ax=fig.add_subplot(111)
    if title: ax.set_title(title)
    if xlab: ax.set_xlabel(xlab)
    if ylab: ax.set_ylabel(ylab)
    legend=[]
    keys=sorted(data)
    for key in keys:
        stream = data[key]
        (x,y)=([],[])
    for point in stream:
        x.append(point[0])
        y.append(point[1])
    ell=ax.hist(y,20)
    canvas=FigureCanvas(fig)
    response.headers['Content-Type']='image/png'
    stream=cStringIO.StringIO()
    canvas.print_png(stream)
    return stream.getvalue()

in models/matplotlib_helpers.py



def index():
    rows=db(db.dna.id).select(db.dna.id,db.dna.name)
    return dict(rows=rows)
@auth.requires_login()
def gene_size():
    dna = db.dna[request.args(0)] or \
        redirect(URL(r=request,f='index'))
    lengths = find_gene_size(dna.sequence)
    return hist(data={'Lengths':lengths})

Define actions
in controllers/default.py



{{extend 'layout.html'}}

<a href="{{=URL(r=request,f='compare')}}">compare</a>

<ul>
{{for row in rows:}}
<li>{{=row.name}}
[<a href="{{=URL(r=request,f='gene_size',args=row.id)}}">gene sizes</a>]
</li>
{{pass}}
</ul>

Define Views
in views/default/index.html



Try it



def pcolor2d(title='title',xlab='x',ylab='y',
z=[[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]]):
    fig=Figure()
    fig.set_facecolor('white')
    ax=fig.add_subplot(111)
    if title: ax.set_title(title)
    if xlab: ax.set_xlabel(xlab)
    if ylab: ax.set_ylabel(ylab)
    image=ax.imshow(z)
    image.set_interpolation('bilinear')
    canvas=FigureCanvas(fig)
    response.headers['Content-Type']='image/png'
    stream=cStringIO.StringIO()
    canvas.print_png(stream)
    return stream.getvalue()

in models/matplotlib_helpers.py



def needleman_wunsch_plot():
dna1 = db.dna[request.vars.sequence1]
dna2 = db.dna[request.vars.sequence2]
z = needleman_wunsch(dna1.sequence,dna2.sequence)
return pcolor2d(z=z)

def compare():
    form = SQLFORM.factory(
           Field('sequence1',db.dna,
               requires=IS_IN_DB(db,'dna.id','%(name)s')),
           Field('sequence2',db.dna,
               requires=IS_IN_DB(db,'dna.id','%(name)s')))
    if form.accepts(request.vars):
        image=URL(r=request,f='needleman_wunsch_plot',
              vars=form.vars)
    else:
        image=None
    return dict(form=form, image=image)

Define Actions
in controllers/default.py



{{extend 'layout.html'}}

{{=form}}

{{if image:}}
Sequence1 = {{=db.dna[request.vars.sequence1].name}}<br/>
Sequence2 = {{=db.dna[request.vars.sequence2].name}}<br/>

<img src="{{=image}}" alt="loading..."/>
{{pass}}

Define Views
in views/default/compare.html



Try it



Resources

Python
http://www.python.org/

all the current documentation, software, tutorials, news, and pointers to advice 
you'll ever need

GPAW
https://wiki.fysik.dtu.dk/gpaw/

GPAW documentation and code
SciPy and NumPy

http://numpy.scipy.org/
The official NumPy website

http://conference.scipy.org/
The annual SciPy conference

http://www.enthought.com/
Enthought, Inc. the commercial sponsors of SciPy, NumPy, Chaco, EPD and 
more

Matplotlib
 http://matplotlib.sourceforge.net/

best 2D package on the planet
mpi4py

http://mpi4py.scipy.org/



Yet More Resources

Tau
http://www.cs.uoregon.edu/research/tau/home.php

official open source site 
http://www.paratools.com/index.php 

commercial tools and support for Tau
web2py

http://www.web2py.com/
web framework used in this tutorial 



Hey! There's a Python BOF
Python for High Performance and Scientific Computing
Primary Session Leader: 
Andreas Schreiber  (German Aerospace Center) 

Secondary Session Leaders: 
William R. Scullin  (Argonne National Laboratory) Steven 
Brandt  (Louisiana State University) James B. Snyder  (Northwestern 
University) Nichols A. Romero  (Argonne National Laboratory) 
Birds-of-a-Feather Session 
Wednesday,  05:30PM - 07:00PM Room A103-104 
Abstract: 
The Python for High Performance and Scientific Computing BOF is intended to 
provide current and potential Python users and tool providers in the high 
performance and scientific computing communities a forum to talk about their 
current projects; ask questions of experts; explore methodologies; delve into 
issues with the language, modules, tools, and libraries; build community; and 
discuss the path forward. 



Let's review!



Questions?
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