
Orchestrating caGrid services in Taverna 
Wei Tan1, Ravi Madduri1, 2, Kiran Keshav3, Baris E. Suzek4, and Scott Oster5, Ian Foster1 

1Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA 2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA 
3Center for Computational Biology, Columbia University 4Georgetown University Medical Center, Department of Biochemistry and Molecular & Cellular Biology 5Department of Biomedical Informatics, Ohio State University 

•  We developed a plug-in called GT4-Processor, to let Taverna access 
the caGrid services. 

•  The figure on the left illustrates the interaction between the Taverna 
workbench and the GT4-Processor plug-in.  

•  First, in order to discover registered caGrid services with 
semantic metadata, we integrate caGrid discovery API in the GT4 
plug-in’s scavenger (a Taverna extension point). 

•  After the workbench retrieves a list of caGrid services and their 
operations, users can select among these operations and add 
them to workflows.  

•  At runtime when the workflow execution reaches a GT4 
processor,  the engine fetches the service’s metadata (from the 
workflow definition file), the input data (from the workbench), 
wraps the data into a SOAP request package, sends the package 
to the target EPR, and finally retrieves the output data. 

DESIGN IMPLEMENTATION 

OVERVIEW 

•  A primary goal of caBIG is to integrate a wide variety of distributed, 
cancer-related data and analytic resources. This goal is achieved by 
virtualizing these resources via grid services.  

•  Inevitably, users then want to interconnect multiple such services to 
perform more complex data collection and analysis tasks. The 
resulting analytical workflows typically involve the consumption of both 
analytic and data services. Data is transformed and piped between 
services, and logical decisions are made along the way. 

•  This type of workflow is data-flow oriented, as opposed to the control-
flow oriented business process in which a workflow refers to the steps 
that a business takes through processing. 

•  This need to support data-flow-oriented workflows was especially 
relevant when deciding on a solution for orchestrating workflows in 
caGrid.  

Features that align with the caGrid requirements are: 

• Explicit modeling of data flow: 
  In Scufl (the workflow language that Taverna adopts), data are passed 
between processors in a data-flow style. There is no process-level data 
definition, and data items are passed by default in a processor-to-
processor manner. Scufl’s compact representation makes it an ideal 
choice for modeling caGrid workflows that usually involve data pipelines 
among analytical and data services. 
• Implicit iteration: 
  In Scufl, implicit iteration occurs if a processor receives more inputs 
than it expects. This capability is useful when the cardinality of inputs 
cannot be estimated at build-time. 
• Input/Output metadata: 
  A processor’s input and output data types can be tagged with ontology 
terms from the myGrid ontology, with an arbitrary text description, and/or 
with MIME types. This semantic metadata mechanism provides a feasible 
integration point with caGrid metadata and discovery services. 
• Beanshell scripting and XML processing support: 
  Taverna allows for the definition of custom processors that execute 
beanshell scripts (a flavor of dynamic Java, see 
http://www.beanshell.org/) inside a Taverna workflow.  
• Easy to use functionality: 
  Taverna provides both build-time and run-time support for workflow 
modeling, debugging, tracing, and provenance. Furthermore, its intuitive 
user interface allows even non-IT specialists to use these functionalities. 
Thus, Taverna is well suited for caGrid users from biological or medical 
domains who may not have strong IT expertise.  

For the empowerment of users from biological or medical domains in creating 
and executing their workflows efficiently, the caGrid Workflow team, with the 
ICR working group, has selected the Taverna workbench and successfully 
created a prototype to orchestrate caGrid Data and Analytical services for ICR 
workflows. This prototype is the first step towards achieving our goal of 
providing an easy-to-use workflow authoring and submission tool that will be 
capable of orchestrating caGrid data and analytical services in executing 
workflows. Now, we commit ourselves to provide caGrid Workflow builder and 
Workflow Service as a tool which will eventually support caBIG users across 
workspaces in creating and executing their domain based workflows. 

Web Resources: 
Taverna: http://taverna.sourceforge.net/  

GT4 Plug-in download: http://www-unix.mcs.anl.gov/~madduri/taverna/  

caBIG: http://www.cagrid.org/mwiki/index.php?title=CaGrid  

Create CaGrid Workflow Using Taverna : 
http://www.cagrid.org/wiki/CaGrid:How-To:Create_CaGrid_Workflow_Using_Taverna  

WHY TAVERNA? 

The interaction between Taverna 
Workbench and GT4-Processor plug-in 

1. Semantic/metadata based service discovery. 

2.  Build a workflow using the services obtained by discovery.  

SAMPLE WORKFLOW AND EXECUTION 
•  To illustrate the application of the GT4-

Processor plug-in, we describe its use to 
construct a microarray data analysis workflow 
that invokes caGrid services hosted at multiple 
institutions. This workflow contains three major 
steps: 

1.  Querying and retrieving the microarray data 
(bioassays) of interest from a caArray data 
service hosted at Columbia University. 

2.  Preprocessing the microarray data using the 
GenePattern analytical service hosted at the 
Broad Institute at MIT. 

3.  Running hierarchical clustering on the 
preprocessed data using the geWorkbench 
analytical service hosted at Columbia 
University. 

•  The Taverna workflow (shown in leftmost figure) 
contains an input processor, an output 
processor, three GT4 processors representing 
three caGrid services, and other “shim” 
processors like xml splitters and beanshell 
scripts to deal with data transformation between 
services. 

•  Rightmost figure shows the execution trace and 
execution result, i.e., the clustered arrays.  

The sample caGrid workflow, its execution trace and result  

3. Execute the workflow and view the results. 

+ 
caGrid 

= ? 


