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ABSTRACT

We present a new algorithm for solving banded diagonal matrix problems efficientlyswibdied—
memory parallel computers, designed originally for use in dynamic alternatimgtidim implicit
(ADI) partial differential equation solvers. The algorithm optimizescedficy with respect to the
number of numerical operations, and with respect to the amount of interprocessounmation.
We refer to our approach as the “delayed coupling method” because the communicdederisd
until needed. We focus here on tridiagonal and periodic tridiagonal systems.

1. INTRODUCTION

We discuss a new approach to parallel solution of banded linear systems, thgetbetzupling
method.” The method is analogous to the solution of an inhomogeneous linear differentidmqua
where the solution is a “particular” solution added to an arbitrary linearbooation of “homoge-
neous” solutions. The coefficients of the homogeneous solutions are later determined by youndar
conditions. In our parallel method, each processor is given a contiguous subsectioiiaigmmhal
system. With no information about the neighboring subsystems, each processor dlga@okition

up to two constants. Then the global solution can be found by matching endpoints.

Our earlier paper[1] has a more detailed description of the method and itsajgplito tridiagonal
systems. The algorithm is designed with the following objectives, listextder of priority. The first
objective is to minimize the number of interprocessor communications opened, lEgethe most
time consuming process. Second, the algorithm allows flexibility of the speoifitien method
of the tridiagonal submatrices. Here, we employ a variant of LU decompositirihis is easily
replaced with cyclic reduction or other. Third, we wish to minimize storaegds.

2. BASIC ALGORITHM

We consider théV x N tridiagonal linear system
AX =R, 1)
with
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on a parallel computer witk® processors. For simplicity, we assuime= P M, with M an integer.

Our algorithm is as follows. First, we divide the linear system of ordento P subsystems of order
M. Thus, theN x N matrix A is divided intoP submatriced.,,, each of dimension/ x M,
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wheree, is thep column of theM x M identity matrix. Similarly, we divide theV dimensional
vectorsX andR into P sub—vectors andr, each of dimension/
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For each subsystepwe define three vectors’, x/'”, andx/* as the solutions to the equations

prfz Iy, (2)
Lx/"= (-df 0 0 0)", (3)
Lyx= (0 0 0 —&)" (4)

The superscripts on the stand for “particular,” “upper homogeneous,” and “lower homogeneous”
solution respectively, from the inhomogeneous differential equation analogy. ddei® the m'
subdiagonal element of th&" submatrix etc.

The general solution of subsystenis x/* plus an arbitrary linear combination &f “ andx ",

x, =x, +& "+ G, (5)
wherec!" and ¢! are yet undetermined coefficients that depend on coupling to the neighboring
solutions. To finds}” and&™*, substitute Eq. (5) into Eq. (1). Straightforward calculation shows
thatcVH = ¢4 = 0, and the remaining P — 2 coefficients are determined by the solution to the
following tridiagonal linear system, or “reduced” system:
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wherez, ,, refers to then'" element of the appropriate solution from th& submatrix.



3. COMPUTING THE PARTICULAR AND HOMOGENEOUS SOLUTIONS

We find the three solutions)’, x/'”, andx/ by solving Egs. (2)-(4). Exploiting overlapping cal-
culations and elements with valGegives the following algorithm, witH3A binary floating point

operations:

Forward elimination:
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w; = — wp = ————— 1=2,3,...M
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! Iy — Qi%i-1 .
71:[)— Yi b 1=2,3,...M
1 i — QWi
Back substitution:
R R .
Ty = M o =y —wimly 1=M—-1,M—-2,...1
o= —wy g = —wirll i=M—-1,M-2,...1
UH _  ay UH  _ a; -
wy = M Wy = i=M-1M-2...1
M bm 7 bz . Ciwgf{ ) )
Forward substitution:
?VH = _WUH gVH = VU i=2,3,...M,

where the processor indexis implicitly present on all variables, and end elementandc,, are
written in the appropriate positions in theandc arrays. The sample code in ref. [1] implements this
with no temporary storage arrays.

4. CONSTRUCTION AND SOLUTION OF THE REDUCED MATRIX

Once each processor has determirgdx”, andx/”, we construct and solve the reduced system
of Eq. (6). We assume that the following functions are available for interpsgocesmmunication:

e Send (ToPid, data,n): When invoked by process@rromPid, the arraydata of length
n is sent to processaropid. Send () is nonblocking

e Receive (FromPid,data,n): To complete data transmission, processoprid invokes
Receive (). Upon execution, the array sent by processoomPid is stored in the array
data array of lengthn. Receive () is blocking(the processor waits for the data to be re-
ceived before continuing).

Opening interprocessor communications is generally the most time—consumingtsteentire tridi-
agonal solution process, so it is important to minimize this. The following algorconsumes a time
of T' = (log, P)t. in opening communication channels (wherés the time to open one channel).

1. Each processor writes whatever data it has that is relevant to Eq.tf@) amrayoutData.

2. TheoutData arrays from each processor are concatenated as follows (Fig. 1):

(a) Each processgrsends itOutData array to processgs — 1 (mod P), and re-
ceives a corresponding array from procegsen  (mod P), as depicted in Fig. 1a.
The incoming array is concatenated to the endwfData.

(b) Atthei'™ step, repeat the first step, except sending to procgssat—*  (mod P),
and receiving from processpr+ 2! (mod P) (Fig. 1b,c), fori = 1,2, .. .. After
log, P iterations (or the next higher integer), each processor has the contents of the
reduced matrix in theutData array.

3. Each processor rearranges the contents ofutsData array into a local copy of the reduced
tridiagonal system, and then solves. At this point, each processor has alluks waEq. (5)
stored locally.
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Figure 1:lllustration of the method to pass reduced matrix data between processors, shadwe-for

5. PERFORMANCE

The time consumption for this routine is as follows:

1. To calculate the three roas?, xV#, andx™* requires13M binary floating point operations
by each processor, done in parallel.

2. To assemble the reduced matrix in each processor requgel steps where interprocessor
communications are opened, and tfteopening passesx 2:! real numbers.

3. Solution of the reduced system through LU decomposition reggiire8 — 2) binary floating
point operations by each processor, done in parallel.

4. Calculation of the final solution requirés/ binary floating point operations by each processor,
done in parallel.

If ¢, is the time of one binary floating point operationis the time required to open a communication
channel (latency), ang is the time to pass one real number once communication is opened, then the
time to execute this parallel routine is given by (optimally)

~ (17M + 16P)t, + (log, P)t. + 8Pty, (7)

for P > 1. For cases of present intere$}; is dominated bylog, P)t. and17Mt,. Theparallel
efficiencyis defined byep = Pra whereTs is the execution time of a serial code which solves by
LU decomposition. Serial LU decomposition solvesMrx N system in atimd’s = 8 Nt,, SO

8

= . 8
" = 17+ 16P?/N + (log, P) Pt./Nt, + 8P*,/Nt, ®

To test these claims empirically, we measured the execution tinvesrking serial and parallel codes,
and calculated, both through its definition and through Eq. (8). Fig. 2 shewss a function of
P for two cases)N = 200 and N = 50, 000. We conclude from Fig. 2 that Eq. (8) (smooth lines)
Is reasonably accurate, both for the theoretical maximum efficiency (47%vachior smallP and
large N) and for the scaling with larg®.
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Figure 2: Results of scaling runs, comparing the parallel time with serial LU decompositiza t
Here, ep is the parallel efficiency and is the number of processors. The smooth lines represent
Eqg. (8), and the points are empirical results.

We made these timings on the BBN TC2000 machine at Lawrence Livermore Ndtanadatory,
using 64-bit floating point arithmetic. This machine had 128 M88100 RISC processors, iszhbgc
a butterfly—switch network. To calculate the predictions of Eq. (7) we chose750usec, based on
the average time of a send/receive pair measured in our code; based on othwmemeats, we chose
the passage time of a single 64-bit real numbef,as 9usec; we chose, = 1.4usec, based on our
measured timing of 0.00218 sec for the serial algorithm on\the 200 case.

6. PERIODIC TRIDIAGONAL SYSTEM

We have generalized our algorithm to a “periodic tridiagonal system.” Thisngliagonal system
with additional nonzero elements in the far upper and lower corners of the ntaaixs, Eq. (1) with
A now of the form
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Solution proceeds almost precisely as before. First divide Equation (9) idiagonal subsystems,
and solve for the particular, upper, and lower homogeneous solutions. The subsystagesraes!
tridiagonal, so no additional consideration need be given to this part. Then usestiiasons to
construct a reduced system analogous to Eq. (6). Here, however, the firsttasublstems acquire
drives for the upper and lower homogeneous solutions, respectively, so the cofiditienc¥ = 0



no longer pertains. This leads to a reduced matrix with nonzero elementsfar tteeners
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This system necessitates a new solution algorithm. The most efficient we kidveHown here)
usesLU decomposition, and requird$ P binary operations. The interesting consequence is that
the parallel efficiency nearly doubles over the nonperiodic case, since theiopearatint in the
corresponding serial solver also rises—fr8mi to 15N. Thus, Eqg. (8) for the predicted efficiency

becomes
15

~ 17+ 16P?/N + (log, P) Pt./Nt, + 15P2%,/Nt,’
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7. DISCUSSION AND CONCLUSIONS

Stability of the parallel tridiagonal algorithm is similar to that of skkid decomposition of a tridi-
agonal matrix. If thel; are unstable to LU decomposition, then pivoting could be used. Ifilzee
singular, then LU decomposition fails and some alternative should be deviskd ldfge matrix\ is
diagonally dominant, then so too are thge If the reduced system is unstable to LU decomposition,
this can be replaced by a different solution scheme, with little loss abthapeed (ifP < M).

This routine is generalizable from tridiagonal to higher systems. For examjpl®&-diagonal system,

there would be four homogeneous solutions, each with an undetermined coefficient. ficeeote

of the homogeneous solutions would be determined by a reduced system analogous to Eq. (6), except
with O(4P) equations, noRP — 2.

In our applications of the parallel tridiagonal solver we solve a tridiagonal syateng each line of
grid points parallel to a given direction. In two or higher dimensions, each poces/ns a segment
of each of many systems, giving us a strong advantage in interprocessor comimuaragat solving
only a single system: each processor sobiésf its triplets of independent subsystems, then packs
together all of the data it needs to send to other processors—there is only one senfovablving

all of the systems. Furthermore, that number of processors each processor coatesumith is the
number of processors collinear in the one direction, which will generally be anthin the total
number of processors in a multidimensional domain decomposition; this improvelgpaifaliency

by reducing the value aP below the total number of processors.

This work was performed for the U.S. Department of Energyaatience Livermore National Laboratory under
contract W-7405-ENG—-48 and Los Alamos National Laboratoiger contract W—7405-ENG—36.

REFERENCES

[1] N. Mattor, T. J. Williams, D. W. HewettAlgorithm for solving tridiagonal matrix problems in
parallel, Parallel Computing 25, p. 1769 (1995).

[2] R. W. Hockney and J. W. Eastwoo@pmputer Simulation Using Particlesdam Hilger, Bristol,
p. 185 (1988).



