Prediction of Power System Balancing Requirements and Tail Events

PNNL: Shuai Lu, Yuri Makarov, Alan Brothers, Craig McKinstry, Shuangshuang Jin

BPA: John Pease

INFORMS Annual Meeting 2012 Phoenix, AZ Oct 14-17, 2012

Objectives

- Background: system balancing reserve requirements become more variable with increasing wind and PV penetration.
- Tail event is defined as the cases when balancing reserve is less than potential system imbalance (mismatch between generation and load).
- ► The project is to answer two questions:
 - How many MW of balancing reserves will be needed, in long term (planning) and real time (operation)?
 - How likely and severe do tail events happen, in long term and real time?

Methodology

- Statistical analysis on future scenarios for long-term strategy
 - Part 1: Distributions showing occurrence frequency versus MW size of system imbalance
 - Part 2: Distributions showing MW balancing requirement and size of tail events, for each hour of a day
- Decision support model for real-time operation
 - Part 3: A model to predict the balancing requirement in real-time, and to provide suggestions on dispatch actions

Methodology Part 1: Distribution of Tail Events (deficiency in balancing reserves)

Remaining Imbalance after the Depletion of Regulating Reserves [MW]

Strategies to Deal with Tail Events

Actual width of each block will be determined by the BA, considering both **reliability** and **economics**. **Pacific Northwest**

Methodology Part 2: Temporal Distribution of Tail Events

Without wind,

deficiency of downward balancing reserve is 120 MW for 07:00 hour

With wind, deficiency of downward balancing reserve is 300 MW for 07:00 hour

Proudly Operated by Battelle Since 1965

Pacific Northwest

Methodology Part 3: Real-time Decision Support Model

- Build an operational tool that can
 - Predict system imbalance, based on current system information and historical experience
 - Determine the chance and size of tail events
 - Provide real-time decision support to operators

Factors Contributing to System Imbalance

- 1. Load forecast error
- 2. Wind forecast error
- 3. Unexpected loss and unavailability of conventional generation

Source: ERCOT Operations Report on the EECP Event on February 26 2008

Proudly Operated by Battelle Since 1965

Bayesian Network Model Predicting System Imbalance

Characteristics of Bayesian Network Model

- Makes good use of prior knowledge (historical data) of the system
- Use current system state as input (conditions) to predict the (conditional) probability of future states
- Convenient to incorporate existing load and wind forecast models
- Easy to include additional independent deterministic factors

System Imbalance Prediction Validation

Mean Absolute Error (MAE) of prediction results from BPA data:

BN Model: Bayesian Net work Model NP Model: Naïve Persistence Model

Average improvments:16%, 26% and 31% for 1-, 2- and 3-hour forecasts

Tail Event Probability Prediction Validation

Predicted probability of tail events vs. chance of tail events actually occurred

Vertical axis: percentage of cases when tail events actually occurred Horizontal axis: the probability of tail events predicted by the model (for 1 hour prediction)

Conclusion

- Statistical analysis on future scenarios provides:
 - Understanding of the issue: degree of imbalance to be seen, duration, occurring hours
 - Estimate of severity of tail events corresponding to a certain reserve level
 - Establish (long term) reserve requirement for future wind and load scenarios
- Model for real-time balancing requirements provides:
 - Estimate of needed balancing reserve
 - Chances of tail events in the following hours
- Similar analysis and model can also be applied to determining ramp requirements.

Future Work

- Include generation and transmission outage on system imbalance model
- Make the model adaptive to changing system composition, i.e. increasing wind capacity, load and generation, through linear projections or statistical simulations on future scenarios
- Incorporate system operation guidelines and rules to extend the model for decision-making support
- Online calibration of the model

Thank you!

Questions? Please contact:

► Shuai Lu

► Email: shuai.lu@pnnl.gov

Phone: 509-375-2235

