Automatic Discretization of ODE and PDE Systems Using Pyomo

Bethany Nicholson ~ Carnegie Mellon University
Victor Zavala ~ Argonne National Laboratory
August 4, 2014
Automatic Discretization

- Popular Algebraic Modeling Languages e.g., GAMS, AMPL, MOSEL
 - Can’t represent differential equations
 - Syntax isn’t easily extended
 - Limited scripting capability
Coopr: a Common Optimization Python Repository

Decomposition Strategies
- Progressive Hedging
- Generalized Benders
- DIP Interface (coming soon)

Language extensions
- Disjunctive Programming
- Stochastic Programming
- Differential Equations

Core Optimization Infrastructure

Pluggable Solver Interfaces

AMPL Solver Library
- CPLEX
- Gurobi
- Xpress
- GLPK
- CBC
- PICO
- OpenOpt
- Ipopt
- KNITRO
- Coliny
- BONMIN
Pyomo Overview

- Formulating optimization models natively within Python
 - Provide a natural syntax to describe mathematical models
 - Formulate large models with a concise syntax

- Highlights:
 - Python scripts provide a flexible context for exploring the structure of Pyomo models
 - Leverage high-quality third-party Python libraries, e.g., SciPy, NumPy, MatPlotLib

```python
from coopr.pyomo import *
m = ConcreteModel()
m.x1 = Var()
m.x2 = Var(bounds=(-1,1))
m.x3 = Var(bounds=(1,2))
m.obj = Objective(
    sense = minimize,
    expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3 + m.x2 + m.x2*sin(m.x1+m.x3)
)
```
New Coopr Package: coopr.dae

- Extend Pyomo object model
 - ContinuousSet
 - StateVar
 - DerivativeVar

- General model transformations
 - Standardized framework for transforming dynamic system to (N)LP
 - Finite Difference Methods
 - Backward, Forward, and Central
 - Orthogonal Collocation
 - Radau and Legendre roots
PDE Example

- Matlab example problem
 - PDE
 \[\pi^2 \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} (\frac{\partial u}{\partial x}) \]
 - Initial Condition
 \[u(x,0) = \sin(\pi x) \]
 - Boundary Conditions
 \[u(0,t) = 0 \]
 \[\pi e^{-t} + \frac{\partial u}{\partial x}(1,t) = 0 \]
PDE Example

\[\pi^2 \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \]

\[u(x,0) = \sin(\pi x) \]

\[u(0,t) = 0 \]

\[\pi e^{\pi t} - t + \frac{\partial u}{\partial x}(1,t) = 0 \]
Discretize using Finite Difference Method

disc = discretize.apply(m, nfe=25, wrt=m.x, scheme='BACKWARD')
disc = discretize.apply(disc, nfe=20, wrt=m.t, scheme='BACKWARD', clonemodel=False)

Discretize using Orthogonal Collocation

disc = discretize2.apply(disc, nfe=10, ncp=3, wrt=m.x)
disc = discretize2.apply(disc, nfe=20, ncp=3, wrt=m.t, clonemodel=False)

solver='ipopt'
opt = SolverFactory(solver)

results = opt.solve(disc, tee=True)
disc.load(results)
Other Work

- Additional Examples
 - Optimal Control
 - Parameter Estimation
 - Heat transfer in a building
 - Gas network
 - Distillation Column
- Integrals
Summary

- Created a flexible and concise way of representing arbitrary ordinary and partial differential equations
- Implemented several discretization schemes and developed a framework that is extensible to include others
- Future work
 - Finish implementing Integrals
 - Additional discretization schemes
 - Link coopr/pyomo to an integrator for doing model simulation or initialization
 - Develop frameworks for multigrid (multiscale) methods
Questions?

- Additional information:
 https://software.sandia.gov/trac/coopr
Automatic Discretization of ODE and PDE Systems Using Pyomo

Bethany Nicholson ~ Carnegie Mellon University
Victor Zavala ~ Argonne National Laboratory
August 4, 2014
Automatic Discretization

- Popular Algebraic Modeling Languages e.g., GAMS, AMPL, MOSEL
 - Can’t represent differential equations
 - Syntax isn’t easily extended
 - Limited scripting capability
Coopr: a COmmon Optimization Python Repository

Decomposition Strategies
- Progressive Hedging
- Generalized Benders
- DIP Interface (coming soon)

Language extensions
- Disjunctive Programming
- Stochastic Programming
- Differential Equations

Core Optimization Infrastructure

Pluggable Solver Interfaces

CPLEX
Gurobi
Xpress
GLPK
CBC
PICO
OpenOpt

AMPL Solver Library

Ipopt
KNITRO
Coliny
BONMIN
Pyomo Overview

- Formulating optimization models natively within Python
 - Provide a natural syntax to describe mathematical models
 - Formulate large models with a concise syntax

- Highlights:
 - Python scripts provide a flexible context for exploring the structure of Pyomo models
 - Leverage high-quality third-party Python libraries, e.g., SciPy, NumPy, MatPlotLib

```python
from coopr.pyomo import *
m = ConcreteModel()
m.x1 = Var()
m.x2 = Var(bounds=(-1,1))
m.x3 = Var(bounds=(1,2))
m.obj = Objective(
    sense = minimize,
    expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3 + m.x2 + m.x2*sin(m.x1+m.x3) )
```
New Coopr Package: coopr.dae

- Extend Pyomo object model
 - ContinuousSet
 - StateVar
 - DerivativeVar

- General model transformations
 - Standardized framework for transforming dynamic system to (N)LP
 - Finite Difference Methods
 - Backward, Forward, and Central
 - Orthogonal Collocation
 - Radau and Legendre roots
PDE Example

- Matlab example problem
 - PDE
 \[\pi^2 \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \]
 - Initial Condition
 \[u(x, 0) = \sin(\pi x) \]
 - Boundary Conditions
 \[u(0, t) = 0 \]
 \[\pi e^{-t} + \frac{\partial u}{\partial x}(1, t) = 0 \]
PDE Example

\[\pi^2 \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \]

\[u(x, 0) = \sin(\pi x) \]

\[u(0, t) = 0 \]

\[\pi e^{-t} + \frac{\partial u}{\partial x} (1, t) = 0 \]

```python
def _pde(m, i, j):
    if i == 0 or i == 1 or j == 0:
        return Constraint.Skip
    return math.pi**2*m.dudt[i, j] == m.dudx2[i, j]
m.pde = Constraint(m.x,m.t,rule=_pde)

def _initcon(m, i):
    if i == 0 or i == 1:
        return Constraint.Skip
    return m.u[0, i] == sin(math.pi*i)
m.initcon = Constraint(m.x,rule=_initcon)

def _lowerbound(m, j):
    return m.u[0, j] == 0
m.lowerbound = Constraint(m.t,rule=_lowerbound)

def _upperbound(m, j):
    return math.pi*exp(-j)+m.dudx[1, j] == 0
m.upperbound = Constraint(m.t,rule=_upperbound)
m.obj = Objective(expr=1)
```
PDE Example

```python
# Discretize using Finite Difference Method
discretize = Finite_Difference_Transformation()
disc = discretize.apply(m,nfe=25,wrt=m.x,scheme='BACKWARD')
disc = discretize.apply(disc,nfe=20,wrt=m.t,scheme='BACKWARD',clonemodel=False)

# Discretize using Orthogonal Collocation
#discretize2 = Collocation_Discretization_Transformation()
#disc = discretize2.apply(disc,nfe=10,ncp=3,wrt=m.x)
#disc = discretize2.apply(disc,nfe=20,ncp=3,wrt=m.t,clonemodel=False)

solver='ipopt'
opt=SolverFactory(solver)

results = opt.solve(disc,tee=True)
disc.load(results)
```

Numerical Solution Using Backward Difference Method
Other Work

- Additional Examples
 - Optimal Control
 - Parameter Estimation
 - Heat transfer in a building
 - Gas network
 - Distillation Column
- Integrals
Summary

- Created a flexible and concise way of representing arbitrary ordinary and partial differential equations
- Implemented several discretization schemes and developed a framework that is extensible to include others
- Future work
 - Finish implementing Integrals
 - Additional discretization schemes
 - Link coopr/pyomo to an integrator for doing model simulation or initialization
 - Develop frameworks for multigrid (multiscale) methods
Questions?

- Additional information:
 https://software.sandia.gov/trac/coopr