Tutorial: Automatic differentiation with OpenAD & combinatorial problems

Jean Utke

- things to consider when choosing AD tools & methods
- OpenAD basic use
- reversal schemes
- computational graphs
- nonsmooth behavior
- writing models with AD in mind...
contributions to the OpenAD source code

Naumann
Norris
Tallent
Fagan
Strout
Gottschling
Lyons
summer students,...

numerous non-code contributions by Hovland, Hascoët, ...
what to pick...

i.e. matching application requirements with AD tools and techniques

the major advantages of AD are ... no need to repeat again

- knowing AD tool “internal” algorithms is of interest to the user
 (compare to compiler vector optimization)

- except for simple models and low computational complexity
 → can get away with “something”

- complicated models → worry about tool applicability

- high computational complexity → worry about efficiency of derivative computations

- tool availability (e.g. source transformation for C++ ?)
Source Transformation vs. Operator Overloading

- complicated implementation of tools
- especially for reverse mode
- full front end, back end, analysis
- efficiency gains from
 - compile time optimizations
 - activity analysis
 - explicit control flow reversal for reverse mode
- source transformation based type change & overloaded operators appropriate for higher-order derivatives.
- benefits from external information
- efficiency depends on analysis accuracy
- simple tool implementation
- reverse mode (generating and reinterpreting an execution trace → inefficient)
- implemented as some library
- impact on efficiency:
 - library implementation (narrow scope)
 - compiler inlining capabilities (for low order)
 - use external information (sparsity etc.)
 - can do only runtime optimizations
- manual type change for operator overloading
 - complicated for formatted I/O, allocation
 - need matching signatures in Fortran
 - helped by use of templates

For higher-order derivatives combining source transformation based type change with overloaded operators is appropriate.
Forward vs. Reverse

- simplest rule: given $y = f(x) : \mathbb{R}^n \rightarrow \mathbb{R}^m$ use reverse if $n \gg m$ (gradient)

- what if $n \approx m$ and large
 - want only projections, e.g. $J \dot{x}$
 - sparsity (e.g. of the Jacobian)
 - partial separability (e.g. $f(x) = \sum(f_i(x_i)), x_i \in \mathcal{D}_i \subseteq \mathcal{D} \ni x$)
 - intermediate interfaces of different size

- the above may make forward mode feasible (projection $\bar{y}^T J$ requires reverse)

- higher order tensors (practically feasible for small n) → forward mode (reverse mode saves factor n in effort only once)

- this determines overall propagation direction, not necessarily the local preaccumulation (combinatorial problem)
OpenAD overview

- www.mcs.anl.gov/OpenAD
- forward and reverse
- source transformation
- modular design
- large problems
- language independent transformation
- researching combinatorial problems
- current Fortran front-end Open64 (Open64/SL branch at Rice U)
- migration to Rose (already used for C/C++ with EDG)
- Rapsodia for higher-order derivatives via type change transformation
- uses association by address as opposed to association by name
toy example

```
subroutine head(x,y)
  double precision,intent(in) :: x
double precision,intent(out) :: y
!$openad INDEPENDENT(x)
y=sin(x*x)
!$openad DEPENDENT(y)
end subroutine
```

result of pushing it through the pipeline →

```
program driver
  use OAD_active
  implicit none
  external head
type(active):: x, y
  x%v=.5D0
  x%d=1.0
call head(x,y)
  print *, "F(1,1)=",y%d
end program driver
```

```c
SUBROUTINE head(X, Y)
use w2f__types
use OAD_active
IMPLICIT NONE
REAL(w2f__8) OpenAD_Symbol_0...
...
REAL(w2f__8) OpenAD_Symbol_5
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y
OpenAD_Symbol_0 = (X%v*X%v)
Y%v = SIN(OpenAD_Symbol_0)
OpenAD_Symbol_2 = X%v
OpenAD_Symbol_3 = X%v
OpenAD_Symbol_1 = COS(OpenAD_Symbol_0)
OpenAD_Symbol_5 = ((OpenAD_Symbol_3 +
  OpenAD_Symbol_2) * OpenAD_Symbol_1)
CALL sax(OpenAD_Symbol_5,X,Y)
RETURN
END SUBROUTINE
```
openad is Python script to invoke pipeline components for simple(!) settings

Usage:

```
~> openad -h
Usage: openad [options] <fortran-file>

Options:
-h, --help show this help message and exit
-m MODE, --mode=MODE basic transformation mode with MODE being one of: rs = reverse split; t = tracing; rj = reverse joint; f = forward;
-d DEBUG, --debug=DEBUG the debugging level
-i, --interactive requires to confirm each command
-k, --keepGoing keep going despite errors
-c, --copy copy run time support files instead of linking them
-n, --noAction display the pipeline commands, do not run them
```

progress messages:

```
~> openad -c -m f head.prepped.f90
parsing head.prepped.f90
analyzing source code and translating to xaif
  tangent linear transformation
  getting runtime support file OAD_active.f90
  getting runtime support file w2f__types.f90
  getting runtime support file iaddr.c
  translating transformed xaif to whirl
  unparsing transformed whirl to fortran
  postprocessing transformed fortran
⇒ run the example on the laptop and look at the transformation stages...
```
```bash
# parsing head.prepped.f90
${OPENADROOT}/Open64/osprey1.0/targ_ia32_ia64_linux/crayf90/sgi/mfef90 -z -F -N132 head.prepped.f90

# analyzing source code and translating to xaif
${OPENADROOT}/OpenADFortTk/OpenADFortTk-x86-Linux/bin/whirl2xaif -n -o head.prepped.xaif head.prepped.B

# tangent linear transformation
${OPENADROOT}/xaifBooster/../xaifBooster/algorithms/BasicBlockPreaccumulation/driver/oadDriver \n  -c ${OPENADROOT}/xaif/schema/examples/inlinable_intrinsics.xaif \n  -s ${OPENADROOT}/xaif/schema -i head.prepped.xaif -o head.prepped.xb.xaif

# getting runtime support file OAD_active.f90
cp -f ${OPENADROOT}/runTimeSupport/scalar/OAD_active.f90 ./

# getting runtime support file w2f__types.f90
cp -f ${OPENADROOT}/runTimeSupport/all/w2f__types.f90 ./

# getting runtime support file iaddr.c
cp -f ${OPENADROOT}/runTimeSupport/all/iaddr.c ./

# translating transformed xaif to whirl
${OPENADROOT}/OpenADFortTk/OpenADFortTk-x86-Linux/bin/xaif2whirl --structured head.prepped.B head.prepped.xb.xaif

# unparsing transformed whirl to fortran
${OPENADROOT}/Open64/osprey1.0/targ_ia32_ia64_linux/whirl2f/whirl2f -openad head.prepped.xb.x2w.B

# postprocessing transformed fortran
perl ${OPENADROOT}/OpenADFortTk/OpenADFortTk-x86-Linux/bin/multi-pp.pl -f head.prepped.xb.x2w.w2f.f
```
the same example in mode example

script invoked with a different flag

~> openad -c -m rj head.prepped.f90

```
program driver
  use OAD_active
  use OAD_rev
  implicit none
  external head
  type(active) :: x, y
  x%v=.5D0
  y%d=1.0D0
  our_rev_mode%tape=.TRUE.
  call head(x,y)
  print *, 'driver running for x =',x%v
  print *, '  yields y =',y%v, ' dy/dx =',x%d
  print *, '  1+tan(x)^2-dy/dx =',1.0D0+tan(x%v)**2-x%d
end program driver
```

"> openad -c -m rj head.prepped.f90

parsing head.prepped.f90
analyzing source code and translating to xaif adjoint transformation
getting runtime support file OAD_active.f90
getting runtime support file w2f__types.f90
getting runtime support file iaddr.c
getting runtime support file ad_inline.f
getting runtime support file OAD_cp.f90
getting runtime support file OAD_rev.f90
getting runtime support file OAD_tape.f90
getting template file
translating transformed xaif to whirl
unparsing transformed whirl to fortran
postprocessing transformed fortran

note: -m rj means reverse joint mode; needs extra run time support files OAD_cp/rev/tape; modified driver makes reference to the reversal scheme (checkpointing)
... need to talk about taping and checkpointing.
Reversal / Checkpointing Schemes

- why it is needed
- major modes
- OpenAD implementation
- alternatives
recap - why we need a tape...

\[f : y = \sin(a \ast b) \ast c \]
yields a graph representing the order of computation:

- intrinsics \(\phi(\ldots, w, \ldots) \) have local partial derivatives \(\frac{\partial \phi}{\partial w} \)
- e.g. \(\sin(t_1) \) yields \(\cos(t_1) \)
- \textit{code list} \rightarrow intermediate values \(t_1 \) and \(t_2 \)
- all others already stored in variables

\[
\begin{align*}
t_1 &= a \ast b \\
p_1 &= \cos(t_1) \\
t_2 &= \sin(t_1) \\
y &= t_2 \ast c
\end{align*}
\]

What can we do with this?
reverse with adjoints

Assume variable and adjoints associated in pairs \((v, g_v)\):

append computations of adjoints

\[
\begin{align*}
t1 &= a * b \\
p1 &= \cos(t1) \\
t2 &= \sin(t1) \\
y &= t2 * c \\
g_c &= g_y * t2 \\
g_t2 &= g_y * c \\
g_t1 &= g_t2 * p1 \\
g_b &= g_t1 * a \\
g_a &= g_t1 * b
\end{align*}
\]

require \(p1\) in the adjoint sweep ⇒ recompute (time) or store (taping space)
may also need control flow trace and addresses...

original CFG \Rightarrow record a path through the CFG \Rightarrow adjoint CFG

often cheap with structured control flow and simple address computations (e.g. index from loop variables)

unstructured control flow and pointers are expensive
trace all at once = global split mode

- have memory limits - need to create tapes for short sections in reverse order
- subroutine is “natural” checkpoint granularity, different mode...

\[S^n \] n-th invocation of subroutine S

- subroutine call
- order of execution
- run forward

- run forward and tape
- run adjoint
- store checkpoint
- restore checkpoint

- subroutine 1
 - call 2; ...
 - call 4; ...
 - call 2;
 - end subroutine 1
- subroutine 2
 - call 3
 - end subroutine 2
- subroutine 4
 - call 5
 - end subroutine 4
trace one SR at a time = global joint mode

taping-adjoint pairs
checkpoint-recompute pairs
the deeper the call stack - the more recomputations (unimplemented solution - result checkpointing)
familiar tradeoff between storing and recomputation at a higher level but in theory can be all unified.
• mix joint and split mode
• nested loop checkpointing in outer and inner loop body wrapper
• inner loop body in split mode
• \texttt{calc_zonal_transport} is used in both contexts
OpenAD reversal modes with checkpointing

subroutine level granularity

plain mode

split mode

Utke

Argonne
in OpenAD orchestrated with templates

- OpenAnalysis provides *side-effect analysis*
- provides checkpoint sets as (formal) arguments & references to global variables
- we ask for four sets: $\text{ModLocal} \subseteq \text{Mod}$, $\text{ReadLocal} \subseteq \text{Read}$

```
subroutine template()
  use OAD_tape ! tape storage
  use OAD_rev ! state structure

$\text{TEMPLATE\_PRAGMA\_DECLARATIONS}$
  if (rev_modetape) then
    ! the state component
    ! 'taping' is true

$\text{PLACEHOLDER\_PRAGMA}\; \text{id}=2$
  end if

    if (rev_modeadjoint) then
      ! the state component
      ! 'adjoint' run is true

$\text{PLACEHOLDER\_PRAGMA}\; \text{id}=3$
      end if

end subroutine template
```

\Rightarrow run the simple example on the laptop with `-m rs` and `-m rj` and look at the output;
\Rightarrow look at the ShallowWater example.
replacing hard wired logic with revolve

- loop extracted into subroutine...
- use revolve to control the behavior
- mercurial repository of a F9X implementation at
 http://mercurial.mcs.anl.gov/ad/RevolveF9X
User view on checkpointing

have model with high computational complexity and need adjoints

- have model with high computational complexity and need adjoints
- spatial requirements (NP complete DAG/call tree reversal)
- in theory: no distinction between checkpoints and trace
- limited automatic support
- in practice: well defined location for argument checkpoints
 - fix checkpoint location and spacing (trace fits into memory)
 - tool determines checkpoint elements
 - use hierarchical checkpointing (to limit number of checkpoints)
- optimize scheme e.g. with revolve (uniform steps)

but I want to try something else with this..., for instance
• we have 4 tape units
• 2^2 and 2^3 behave like split, 2^1 behaves like joint
• How do we control the behavior?
• runtime estimates for checkpoint/tape size and recomputation effort → derive reversal scheme according to memory/runtime limits as dynamic call tree
runtime profiles...

- data “visibility” and upon forced inclusion in the scope name clashes...?
- experimenting with different checkpoint sets
 (OpenAnalysis supplies: REF vs. LREF vs. MOD vs. LMOD etc. and these \ {local vars})
- experimenting with result checkpoints...
checkpoint sets...

- always $\text{Read}_{\text{callee}} \subseteq \text{Read}_{\text{caller}}$
- multiple writes of $x \notin \text{Read}_{\text{Local}}$
- can store only $x \in \text{Read}_{\text{Local}}$ (except in callers whose callees don’t store anything)

- loose stack format; same storage requirements;
- same number of (‘big’) reads; fewer ’big’ writes.
- to experiment with this use different versions of store/restores in the template...
experimenting with result checkpoints

reevaluation count is reduced 😊
no stack storage 😊
... one more call layer

- a more suitable storage format is the *dynamic call tree*

- sample DCT generator can be found in the OpenAD run time support

and now for something completely different...
computational graphs in OpenAD
sidebar: preaccumulation & propagation I

- propagation = overall mode forward or reverse
- preaccumulation = local application of chain rule (view as graph operation)
- example: source code \Rightarrow ssa form \Rightarrow computational graph (DAG)

\[
\begin{align*}
t_1 &= x(1) + x(2) \\
t_2 &= t_1 + \sin(x(2)) \\
y(1) &= \cos(t_1 \times t_2) \\
y(2) &= -\sqrt{t_2}
\end{align*}
\Rightarrow
\begin{align*}
v_1 &= v_1 - v_0 + v_2 \\
v_2 &= \sin(v_0) \\
v_3 &= v_1 + v_2 \\
v_4 &= v_1 \times v_3 \\
v_5 &= \sqrt{v_3} \\
v_6 &= \cos(v_4) \\
v_7 &= -v_5
\end{align*}
\Rightarrow
\]

- chain rule application: multiplication of edge labels along paths & absorption of parallel edges by addition
- in the graph: elimination of (intermediate) vertices, edges, faces
• efficiency measure is operations count (at runtime)
• combinatorial problem (heuristics for optimization)
• problem: granularity ⇒ face elimination
• granularity is single \textit{fused multiply add}
• also requires heuristics
• elimination sequence terminates with tripartite dual graph, i.e. Jacobian
have preaccumulated local Jacobians;

given the $J_i, i = 1, \ldots, k$ we want to do:

- forward: $(J_k \circ \ldots \circ (J_1 \circ \dot{x}) \ldots)$, or
- reverse: $(\ldots (\bar{y}^T \circ J_k) \circ \ldots \circ J_1)$

the total cost:

- function evaluation + local partials (fixed)
- preaccumulation (NP-hard, varying with heuristic)
- propagation (fixed for a given preaccumulation)
 - for simplicity: one saxpy per non-unit J_i element
 - potential for n-ary saxpys (generated)

What – other than the preaccumulation heuristic - can vary?
observation: Jacobian accumulation can obscure sparse / low rank dependencies

example: consider $f(x) = (D + ax^T)x$ with an intermediate variable $z = x^T x$
that has $\partial z/\partial x_i = 2x_i$

\[\begin{array}{c}
\Large{\textbf{scarcity}} \\
\end{array}\]

now we have n^2 variable edge labels vs. n variable and $2n$ constant ones

- want: “minimal” representation
- scarcity: discrepancy of nm vs dimension of the manifold of all $J(x), x \in \mathcal{D}$
- required ops: edge eliminations, reroutings, normalization
- avoid refill, backtrack, randomized heuristics, propagate through remainder graph
- reachability of a minimal representation. e.g. w/o algebraic dependencies?
- cheap propagation through remainder dual graph?
DAG with unit/constant edges
scarcity heuristics - example behavior

non-unit edge count over edge elimination step; variation via avoiding refill:

at minimum 26 reroutings performed; further post-elimination reduction via 8 normalizations
Note: relies heavily on precise data dependency analysis ⇐ coding style (!)
similar concerns as with sparsity: (local) automatic improvement observed up to factor 2 but application-level exploitation is desired.
experimenting with computational graphs...

... in *angel* (Automatic differentiation Nested Graph Elimination Library)

- build graphs within *xaifBooster*
- communicate via *CrossCountryInterface* to *angel*
- graph structure + extras for nodes/edges
- elimination etc happens within *angel*
- code generation within *xaifBooster*
- graph visualized with *graphviz*

⇒ look at an example
lion example

in Examples/Lion
do
make; make show; make showScarce
to get output like this:

⇒ look at some code in angel/src/heuristics.cpp:1125 and the interface Elimination.hpp.
is the model \(f \) smooth?

examples:

- \(y = \text{abs}(x) \); gives a kink
- \(y = (x > 0) ? 3 \times x : 2 \times x + 2 \); gives a discontinuity
- \(y = \text{floor}(x) \); same
- \(Y = \text{REAL}(Z) \); what about \(\text{IMAG}(Z) \)
- if (a == 1.0)
 \[\begin{aligned}
 &\quad y = a; \\
 &\quad \text{else if (a == 0.0) then}
 \end{aligned} \]
 \(y = 0; \)
 else
 \(y = a \times b; \)
 intended: \(\dot{y} = a \dot{b} + b \dot{a} \)
- \(y = \sqrt{a^4 + b^4}; \)

AD does not perform algebraic simplification, i.e. for \(a, b \to 0 \) it does \(\left(\frac{d \sqrt{t}}{dt} \right) \xrightarrow{t \to +0} +\infty \).

AD computes derivatives of programs(!)

know your application e.g. fix point iteration, self adjoint, step size computation, convergence criteria
non-smooth models

observed:

- INF, NaN
- oscillating derivatives (may be glossed over by FD) or derivatives growing out of bounds
non-smooth models II

- blame AD tool - verification problem
 - forward vs reverse (dot produce check)
 - compare to FD
 - compare to other AD tool

- blame code, model’s built-in numerical approximations, external optimization scheme or inherent in the physics?

- higher order models in mech. engineering, beam physics, AtomFT explicit g-stop facility for ODEs, DAEs

- what to do about first order
 - Adifor: optionally catches intrinsic problems via exception handling
 - Adol-C: tape verification and intrinsic handling
 - OpenAD (comparative tracing)
Differentiability

piecewise differentiable function:
\[|x^2 - \sin(|y|)| \]
is (locally) Lipschitz continuous; almost everywhere differentiable (except on the 6 critical paths)

- Gâteaux: if \(\exists \quad df(x, \dot{x}) = \lim_{\tau \to 0} \frac{f(x+\tau \dot{x})-f(x)}{\tau} \) for all directions \(\dot{x} \)

- Bouligand: Lipschitz continuous and Gâteaux

- Fréchet: \(df(., \dot{x}) \) continuous for every fixed \(\dot{x} \) ... not generally

- in practice: often benign behavior, directional derivative exists and is an element of the generalized gradient.
case distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (\texttt{min,max,abs,...}) or discontinuity (\texttt{ceil,...}) [for source transformation: also different control flow]

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) → potentially discontinuous (can only be determined for some special cases)

[-1 (operator overloading specific) arithmetic comparison yields a different value than before (tape invalid → sparsity pattern may be changed,...)]
Should AD make educated guesses?

consider \(y = \max(a(x), b(x)) \)

at the tie

\[y = \sqrt{x} \text{ and } \dot{y}|_{x=+0} = \begin{cases}
0 & \text{if } \dot{x} = 0 \\
+\infty & \text{if } \dot{x} > 0 \\
\text{NaN} & \text{if } \dot{x} < 0
\end{cases} \]

consider \texttt{maxloc}: tie-breaking argument \texttt{maxval} may differ from argument identified by \texttt{maxloc}
classifying non-smooth events

```cpp
adouble foo(adouble x) {
    adouble y;
    if (x<=2.5)
        y=2*fmax(x,2.0);
    else
        y=3*floor(x);
    return y;
}
```

- tape at 2.2 and rerun at
 - 2.3 → 3
 - 2.0 → 1
 - 2.5 → 0
 - 2.6 → -1
- tape at 3.5 and rerun at
 - 3.6 → 3
 - 4.5 → 2
 - 2.5 → -1
- validates tape but is unspecific 😞

```cpp
#include "adolc.h"
adouble foo(adouble x);

int main() {
    adouble x,y;
    double xp,yp;
    std::cout << " tape at: " ;
    std::cin >> xp;
    trace_on(1);
    x <<= xp;
y=foo(x);
y >>= yp;
    trace_off();
    while (true) {
        std::cout << "rerun at: " ;
        std::cin >> xp;
        int rc=function(1,1,1,&xp,&yp);
        std::cout<<"return code: "<<rc<<std::endl;
    }
}
```
tracing facility - example

```fortran
subroutine head(x,y)
  double precision :: x
  double precision :: y
  !$openad INDEPENDENT(x)
  y=tan(x)
  !$openad DEPENDENT(y)
end subroutine
```

```fortran
program driver
  use OAD_active
  use OAD_rev
  use OAD_trace

  type(active) :: x, y
  x%=.5D0
  ! first trace
  call oad_trace_init()
  call oad_trace_open()
  call head(x,y)
  call oad_trace_close()
  x%=x%+3.0D0
  ! second trace
  call oad_trace_open()
  call head(x,y)
  call oad_trace_close()
end program driver
```

```xml
<Trace number="1">
  <Call name="tan_scal" line="5">
    </Call>
  <Tan sd="0"/>
</Trace>

<Trace number="2">
  <Call name="tan_scal" line="5">
    </Call>
  <Tan sd="1"/>
</Trace>
```

indicates subdomain of \(\tan(x) \) is \(\text{sd}=k \) with integer \(k = \left\lfloor \frac{x+\pi/2}{\pi} \right\rfloor \)
tracing facility - control flow

check active control flow decisions:

test routine:

```fortran
subroutine head(x1,x2,y)
    real,intent(in) :: x1,x2
    real,intent(out) :: y
    integer i
    !$openad INDEPENDENT(x1)
    !$openad INDEPENDENT(x2)
    y=x1
    do i=int(x1),int(x2)+2
        y=y*x2
        if (y>1.0) then
            y=y*2.0
        end if
    end do
    !$openad DEPENDENT(y)
end subroutine head
```

trace at x=[0.5, 0.75]

```xml
<Trace number="1">
    <Loop line="8">
        <Branch line="10">
            <Cfval val="0"/>
        </Branch>
        <Branch line="10">
            <Cfval val="0"/>
        </Branch>
        <Branch line="10">
            <Cfval val="0"/>
        </Branch>
        <Cfval val="3"/>
    </Loop>
</Trace>
```

trace at x=[0.5, 1.75]

```xml
<Trace number="2">
    <Loop line="8">
        <Branch line="10">
            <Cfval val="0"/>
        </Branch>
        <Branch line="10">
            <Cfval val="1"/>
        </Branch>
        <Branch line="10">
            <Cfval val="1"/>
        </Branch>
        <Branch line="10">
            <Cfval val="1"/>
        </Branch>
        <Cfval val="4"/>
    </Loop>
</Trace>
```

note: difference between active and varied program variables.
tracing facility - data

associating events with program data:

test routine:

```fortran
subroutine head(x,y)
  real :: x(2),y
  !$openad INDEPENDENT(x)
  y=0.0
  do i=1,2
    y=y+sin(x(i))+tan(x(i))
  end do
  !$openad DEPENDENT(y)
end subroutine
```

trace at $x=[0.5, 0.75]$:

```xml
<Trace number="1">
  <Call name="tan_scal" line="6">
    <Arg name="X">
      <Index val="1"/>
    </Arg>
  </Call>
  <Tan sd="0"/>
  <Call name="tan_scal" line="6">
    <Arg name="X">
      <Index val="2"/>
    </Arg>
  </Call>
</Trace>
```

trace at $x=[0.5, 3.75]$:

```xml
<Trace number="2">
  <Call name="tan_scal" line="6">
    <Arg name="X">
      <Index val="1"/>
    </Arg>
  </Call>
  <Tan sd="0"/>
  <Call name="tan_scal" line="6">
    <Arg name="X">
      <Index val="2"/>
    </Arg>
  </Call>
</Trace>
```

note: no arguments recorded w/o address computation...
tracing facility - call stack

need call stack context (shown by nesting):

```
!$openad INDEPENDENT(x)
!
!
$openad DEPENDENT(y)
```

```
subroutine foo(t)
   real :: t
   call bar(t)
end subroutine

subroutine bar(t)
   real :: t
   t = tan(t)
end subroutine

subroutine head(x,y)
   real :: x
   real :: y
   y = x
   !$openad DEPENDENT(y)
end subroutine
```

```
trace at x=0.5
<Trace number="1">
  <Call name="foo" line="13">
    <Call name="bar" line="3">
      <Call name="tan_scal" line="7"></Call>
      <Tan sd="0"/>
    </Call>
  </Call>
</Trace>
```

```
trace at x=1.0
<Trace number="2">
  <Call name="foo" line="13">
    <Call name="bar" line="3">
      <Call name="tan_scal" line="7"></Call>
      <Tan sd="0"/>
    </Call>
  </Call>
</Trace>
```

note: tracing difference only for the direct call from `head`, not from `foo`
obvious (by now) recommendations regarding smoothness:

- avoid introducing numerical special cases
- pathological cases at domain boundaries, initial conditions
- filter out computations outside of the actual domain (e.g. $\sqrt{0}$)
- consider explicit logic to smooth (e.g. C^1) kinks and discontinuities

alternative (unimplemented) approaches:

- slopes (interval based)
- Laurent series (w different rules regarding $\pm \text{INF}$ and NaN)

more details later
model coding standard & AD tool capabilities II

want: precise compile-time data flow analysis (activity, side effect, etc...)
have: conservative overestimate of aliasing, MOD sets, ...
reducing the overestimate:

- extract the numerical core (!)
 - encapsulate ancillary logic (monitoring, debugging, timing, I/O,...)
 - small classes, routines, source files (good coding practice anyway)
 - extraction via source file selection
 - filtered-out routines treated as “black box”, with optimistic(!) assumptions
 - provide stubs when optimistic assumptions are inappropriate
 - transformation shielded from dealing with non-numeric language features
 - note: the top level model driver needs to be manually adjusted
- avoid semantic ambiguities (void*, union, equivalence)
- avoid unstructured control flow (analysis, control flow reversal)
- beware of non-contiguous data, e.g. linked lists (checkpointing, reverse access)
- beware of indirection, e.g. a[h[i]] vs. a[i] (data dependence)
- implicit F77 style reshaping (overwrite detection)
model coding standard & AD tool capabilities III

want: to use *nice* feature \mathcal{N}

have: a tool that has no clue how to deal with \mathcal{N}

- dynamic resource handling in reverse mode, some examples:
 - dynamic memory (when locally released)
 - file handles (same)
 - MPI communicators (same)
 - garbage collectors ...

 no generic tool support, requires extensive bookkeeping

- concerns when dealing with third party libraries
 - availability of the source code
 - numerical core extraction
 - smoothness
 - analysis overhead (e.g. MPI ?)

 research underway for blas, lapack, MPI, openMP

- beware of out-of-core data dependencies (data transfer via files)
further info

• http://www.mcs.anl.gov/openad
 – instructions to download & build
 – documentation
 – revision history
 – bibliography
 – wiki
 – bug tracker

• community website http://www.autodiff.org