Challenge

- We have Recursive Multiplying:
 - 2x 3-way exchanges
 - 3x pairwise exchanges
 - This is the schedule (a3, a2)
 - Superset of Recursive Doubling
 - Each process has a value to reduce
 - Communication is done with multiway exchanges
 - Yields reduced value on all processes
 - Possible due to message pipelining

Can we trade off costs?

- Active Process
- Inactive Process
- N = 10, latency values are based on theoretical model.
- No inactive processes
- Latency: 3.0 µs, 100%
- Most number of messages: 50, 100%
- Recursion Multiplying
- Recursive Doubling
- Merged Recursive Multiplying
- Inactive processes are not contributing
- Latency: 6.0 µs, 200%
- Least number of messages: 28, 56%
- No inactive processes
- Latency: 3.2 µs, 107%
- Reduced number of messages: 36, 72%

Yes, we can use different schedules to trade off between latency and message count.

Recursive Multiplying
More Flexible Than Expected

- Martin Ruefenacht
- Mark Bull
- Stephen Booth

How far can we push the size?

- 8 Processes
 - No clearly superior schedule to use for message size.
 - Dense schedules perform well up to 4 KB.

- 64 Processes
 - Divergence between schedules is opposite of expected.
 - Recursive Doubling should outperform other schedules due to low bandwidth.

- Suprisingly, as far as Recursive Doubling which is not used above 4KB with better results.

All results shown are from ARCHER, Cray XC30, with the default environment.

Does schedule order matter?

- Same color = same schedule set

- Degenerate schedules, any order is equivalent.

- Best schedule does not seem to be influenced by ordering.

- Some schedules perform opposite to expected.

- Best schedule 75th quartile improved by 12.7% with specific ordering.

- Yes, the best schedules are descendingly ordered.