
 

Leiden University. The university to discover. 

Ana Balevic, Bart Kienhuis 
University of Leiden 

The Netherlands 
 

TStream: Scaling Data-Intensive 

Applications on Heterogeneous Platforms 

with Accelerators 
 

 

Accelerators and Hybrid Exascale Systems, IPDPS’12 

25th May 2012,  Shanghai, China. 

 



Leiden University. The university to discover. 

- Tremendous compute power delivered by graphics cards 
 
 
 

 

 
 
 
 

 
 Applications, e.g. bioinformatics: Big data 
 
 Architectures: multiple devices, heterogeneity 
 
- Heterogeneous X*CPUs + Y*GPUs Platforms   
  - Embedded: TI’s OMAP (ARM+special coproc), NVIDIA Tegra 
  - HPC: Lomonosov@1.3petaflops (1554x GPU+4-core CPUs) 
 
 
 
 

 
 

Motivation: Acceleration of Data-Intensive Applications 

on Heterogeneous Platforms with GPUs 



Leiden University. The university to discover. 

Parallelization Approaches 

Automatic  

Parallelization 

Explicit  Parallel 

Programming 

POSIX 

Threads 

CUDA 

OpenMP 

OpenCL 

OpenACC 

Semi-Automatic (Languages, 

Directive-Based Parallelization) 

task  + pipeline parallelism 

Compaan/PNgen 

data parallelism  

(LooPo, Pluto, PoCC,  

ROSE, SUIF, CHiLL) 

Intel’s 

TBB 

Transformation frameworks 

Classical Compiler Analysis:  

Polyhedral Model:  

DM 

data parallelism – CETUS, PGI 

CAPS/HMPP memory 

model 

SM 

our research 

Obtaining a Parallel Program: 

V V 

mem mem 

CPU GPU +run-time environments 

OpenMP, TBB, StarSS, 

StarPU 



Leiden University. The university to discover. 

Polyhedral Model: Introduction 

- Static Affine Nested Loop Programs (SANLPs) 

- Loop bounds, control predicates, array references – affine functions in 

loop indices and global parameters 

- Host spots - streaming multimedia and signal processing applications 
 

- Polyhedral model of a SANLP can be automatically derived based on 
Featurier’s fundamental work on array dataflow analysis (see: PoCC, PN, 
Compaan)  
 
 
 
 
 
 
 
 
 

- Parallelizing/optimizing transforms on the polyhedral model, then target-
specific code generation (C, SystemC, VHDL, Phtreads, CUDA/OpenCL) 
 
 
 



Leiden University. The university to discover. 

Polyhedral State of The Art 
- State of the art polyhedral frameworks (HPC): 

- PLuTo, CHiLL:  
• Polyhedral Model -> Coarse Grain Parallelism  

• Bondhugula et al.,“PLuTo:a practical and fully automatic polyhedral 
program optimization system,” (PLDI’08) 

• Baskaran et al, “Automatic C-to-CUDA code generation for affine 
programs”, (CC’09) 

 
- Single device (CPU or GPU) , shared memory model 

 
 

- Assumptions - working data set: 

- (1) resides in device memory 

- (2) always fits in device memory  

 

» Offloading?  

» Big data? 

» Efficient Communication? 
 

 
 
 

 



Leiden University. The university to discover. 

Solution Approach 

- Extension of polyhedral parallelization – compiler 
techniques for data partitioning into I/O tiles 
 

- Staging I/O tiles for transfers by asynchronous entities, 
e.g. helper threads  
 

- Buffered communication and streaming to GPU 
 



Leiden University. The university to discover. 

Tiling + Streaming = TStream  

- Stage I: Compiler transforms for data partitioning   

- Tiling in polyhedral model 

- I/O tile bounds + footprint computation 
- Stage II: Support for tile streaming 

- Communication/execution mapping + tile staging  

- Efficient stream buffer design 
 
 
 



Leiden University. The university to discover. 

I/O Tiling 1/2 
- Tiling / multi-dimensional strip-mining 

- Decompose outer loop nest(s) into two loops 
• Tile-loop 

• Point-loop 

- Interchange 
 
 
 
 
 
 
 
 

- Coarse-grain parallelism, e.g. outter loop -> omp parallel for 
 

- I/O Tiling – 1st top-level tiling: Partitioning of the computation 
domain & Splitting working data set into smaller blocks 
 
 
 

Multi-dimensional iteration domain (here: 

2-dim index vector w. supernode 

iterators) 

Tile domain – extension of Ds with 

additional conditions: 

 



Leiden University. The university to discover. 

I/O Tiling 2/2 
- Conditions for GPU 

Execution 
- All data elements must 

fit into the memory of 
the accelerator 

- Host-accelerator 
transfer management 

 
- Working data set 

computation 
 

- I/O Tiling repeated until 
tile footprint is small 
enough to fit into GPU 
memory 



Leiden University. The university to discover. 

Tile Footprint Example 

 
 
 
 
 
 
 
 
 

- R 

for ( i = 0; i<N; i++ ) 

 for ( j = 0; j<N; j++ ) 



Leiden University. The university to discover. 

TStream:  

- Stage I: Transforms for data splitting  

- Tiling in polyhedral model 

- I/O tile bounds + footprint computation 
- Stage II: Support for tile streaming 

- Mapping for execution, tile staging  

- Efficient stream buffer design 
 
 
 
 

  



Leiden University. The university to discover. 

Platform Mapping 
- Asynchronous producer-transformer- consumer processes, 

implemented by helper threads executing on CPU and GPU 
 

- Transformer process (GPU) executes (automatically) parallelized 
version of computation domain, e.g. CUDA/OpenCL on GPU 
 
 
 
 
 
 

- Producer (CPU) and consumer (CPU) processes  
     stage I/O tile DMA transfers: tile “lifting” + placement onto bus/buff 

 



Leiden University. The university to discover. 

Efficient Stream Buffer Design for 

Heterogeneous Producer/Consumer Pairs 

e) AsyncQHandler 
 
  waitAsyncWriteToComplete(…); 
  signal(buff->fullSlots); 

for (fid = 0; fid <N; fid++) { 
 
       

   //pop token from QA  
   wait(buffQA->fullSlots); 
   wait(buffQC->emptySlots); 
 
   inTokenQA  = buffQA->getRdPtr(); 
   outTokenQC = buffQC->getWrPtr();  
       
   transformerKernel<<<NB, NT, NM, 
   computeStream>>> 
      (inTokenQA, outTokenQC); 
 
   buffQA->incRdPtr(); 
   buffQC->incWrPtr();  
   signal(buffQA->emptySlots); 
 
   //init token push in QC 
   buffQC->put(token[fid]); 
} 

b) CPU Producer Thread 

for (fid=0; fid<N; fid++){ 
  //push token in QA 
  wait(buffQA-
>emptySlots); 
 
  //produce/load   
token[fid] 
  token[fid]= … 
   
  buffQA->put(token[fid]); 
} 

memcpyH2D 

c) GPU Transformer Thread 

h_data d_data 

async mem transf. 

d) Stream Buffer (FIFO) 

host mem  

(pinned) 

stream[QA] 

device mem  

(GPU GM) 

wrptr 

buffQA 

rdptr 

CPU-P CPU-C 

GPU-T 

CPU 

GPU 

DFM/PACT’11 

• Circular buffer w. double buffering 

• Pinned host + device memory 

• CUDA Streams + events combined with CPU-

side sync. mechanisms 

Stream Buffer 



Leiden University. The university to discover. 

Preliminary Results 

- Proof of concept: POSIX Threads + CUDA 4.0 (streams) 
- Experimental Setup 

- AMD Phenom II X49653.4GHz CPU  

- ASUS M4A785TD- VEVO MB, PCIExpress 2.0 x16  

- Tesla C2050GPU (2-way DMA overlap) 

- Microbenchmarks 

 



Leiden University. The university to discover. 

Preliminary Results – Data Patterns 

 

Vop (1:1, aligned) 

Sobel (1*:1, non-aligned)  

Vadd ( 2:1, aligned) 

NVVP 



Leiden University. The university to discover. 

Conclusions 
- TStream – a two phase approach for scaling data intensive applications 

- Compile-time transforms  
• I/O Tiling - Stand-alone or additional level of tiling in existing polyhedral frameworks 

• Mapping of tile access and communication code 

- Run-time support:  
• Tile streaming model - Asynchronous execution and efficient stream buffer design 

 
- Large data processing on accelerators feasible from polyhedral model 

 
- Enables overlapping of host-accelerator communication and computation 

 
- First results promising, future work: integration with polyhedral process 

network model and the Compaan compiler framework, application studies, 
multi-GPU support 
 

- Thanks to Compaan Design and NVIDIA for their support! 

 


