Parallelizing the Hamiltonian Computation in DQMC Simulations: Checkerboard Method for Sparse Matrix Exponentials on Multicore and GPU

Che-Rung Lee

National Tsing Hua University

joint work with Zhi-Hung Chen and Quey-Liang Kao

Second International Workshop on Accelerators and Hybrid Exascale Systems (AsHES)
May 25th, 2012
Outline

1. Determinant quantum Monte Carlo simulations
2. Matrix multiplication of sparse matrix exponentials
3. Parallel block checkerboard methods on multicore and GPU
4. Experiments and results
5. Concluding remarks
To study the properties of solid-state materials: magnetism, metal-insulator transition, high temperature superconductivity, ...
To study the properties of solid-state materials: magnetism, metal-insulator transition, high temperature superconductivity, ...

The Hubbard model:

- Energy operator H is associated with a lattice of particles.
- Boltzmann weight is expressed as a path integral

$$e^{-\beta H} \approx e^{-\tau H(h_1)} e^{-\tau H(h_2)} \ldots e^{-\tau H(h_L)}.$$

- $\beta = 1/T$ is the “imaginary time”.
- $\tau = \beta/L$ is the discretized time step.
- $\{h_i\}$ is the “Hubbard-Stratonovich field”.
DQMC algorithm
1. Given a random $h = (h_{\ell,i}) = (\pm 1)$.
2. Until there are enough measurements
 For $\ell = 1, \ldots, L$ and $i = 1, \ldots, N$
 1. Propose a new HS config h'.
 2. Compute the ratio γ of the determinants of new/old configs.
 3. Generate a random number $\rho \in [0, 1]$.
 4. If $\gamma > \rho$, accept $h = h'$.
 5. If the system is thermalized, sample the interested physical measurements.
3. Aggregate the sampled measurements.
Parallel Monte Carlo method can speedup DQMC simulations by parallelizing the sampling stage.
Parallel Monte Carlo method can speedup DQMC simulations by parallelizing the sampling stage.

Coarse-grained parallelization. (Communication only happens before sampling and in aggregation.)
Parallel Monte Carlo method can speedup DQMC simulations by parallelizing the sampling stage.

Coarse-grained parallelization. (Communication only happens before sampling and in aggregation.)

Strong scalability if the number of desired samplings is much larger than the number of processors.
By Amdahl’s law, the speedup of parallel Monte Carlo method is limited by the warmup stage (non-parallelizable).

\[
\text{Speedup} = \frac{T_{\text{warmup}} + T_{\text{sampling}}}{T_{\text{warmup}} + T_{\text{sampling}}/p}
\]

→ \[
\frac{T_{\text{warmup}} + T_{\text{sampling}}}{T_{\text{warmup}}}
\]

Parallel Monte Carlo method does not scale with problem size, i.e. number of particles and discretized time length. Coarse grained parallelization does not fit well on multicore and GPU. The computation of each DQMC step is complicated. Slower execution because of resource contention. Memory per core is reduced with the number of cores.
By Amdahl’s law, the speedup of parallel Monte Carlo method is limited by the warmup stage (non-parallelizable).

\[
\text{Speedup} = \frac{T_{\text{warmup}} + T_{\text{sampling}}}{T_{\text{warmup}} + T_{\text{sampling}}/p}
\]

\[
\rightarrow \frac{T_{\text{warmup}} + T_{\text{sampling}}}{T_{\text{warmup}}}
\]

Parallel Monte Carlo method does not scale with problem size, i.e. number of particles and discretized time length.
Computational Challenges

By Amdahl’s law, the speedup of parallel Monte Carlo method is limited by the warmup stage (non-parallelizable).

\[
\text{Speedup} = \frac{T_{\text{warmup}} + T_{\text{sampling}}}{T_{\text{warmup}} + T_{\text{sampling}}/p} \rightarrow \frac{T_{\text{warmup}} + T_{\text{sampling}}}{T_{\text{warmup}}}
\]

Parallel Monte Carlo method does not scale with problem size, i.e. number of particles and discretized time length.

Coarse grained parallelization does not fit well on multicore and GPU.

- The computation of each DQMC step is complicated.
- Slower execution because of resource contention.
- Memory per core is reduced with the number of cores.
Inside Each DQMC Step

A DQMC step

1. Propose a local change: \(h \rightarrow h' \).
2. Throw a random number \(0 < r < 1 \).
3. Accept the change if \(r < \frac{\det(e^{-\beta H(h')})}{\det(e^{-\beta H(h)})} \).
Inside Each DQMC Step

A DQMC step

1. Propose a local change: \(h \rightarrow h' \).
2. Throw a random number \(0 < r < 1 \).
3. Accept the change if \(r < \frac{\det(e^{-\beta H(h')})}{\det(e^{-\beta H(h)})} \).

Computational Kernel: Green’s function calculation

\[
G = (I + B_L \cdots B_2 B_1)^{-1}.
\]

for computation of \(\det(e^{-\beta H(h')}) \) and physical measurements.
Green’s Function Calculation

\[G = (I + B_L \cdots B_2 B_1)^{-1}. \]

- \(N \): the number of particles; \(L \): the number of time slices.

Time complexity of computing \(G \) is \(O(N^3 L) \).

For 10^3 warmup steps and 10^4 sampling steps, it takes 15 hours.

For large simulations, \(N = O(10^4) \), \(L = O(10^2) \), the projected execution time could take several days to months.

Profile of a DQMC simulation (\(N = 256 \), \(L = 96 \))

- Matrix kernel: 72.39%
- Pivoted QR decomposition: 17.83%
- Matrix inversion: 3.02%
- Others: 6.76%
Green’s Function Calculation

\[G = (I + B_L \cdots B_2 B_1)^{-1} \]

- \(N \): the number of particles; \(L \): the number of time slices.
- Time complexity of computing \(G \) is \(O(N^3L) \).
Green’s Function Calculation

\[G = (I + B_L \cdots B_2 B_1)^{-1}. \]

- \(N \): the number of particles; \(L \): the number of time slices.
- Time complexity of computing \(G \) is \(O(N^3 L) \).
- For \(10^3 \) warmup steps and \(10^4 \) sampling steps, it takes 15 hours.
 - For large simulations, \(N = O(10^4) \), \(L = O(10^2) \), the projected execution time could take several days to months.
Green’s Function Calculation

\[G = (I + B_L \cdots B_2 B_1)^{-1}. \]

- \(N \): the number of particles; \(L \): the number of time slices.
- Time complexity of computing \(G \) is \(O(N^3 L) \).
- For \(10^3 \) warmup steps and \(10^4 \) sampling steps, it takes 15 hours.
 - For large simulations, \(N = O(10^4) \), \(L = O(10^2) \), the projected execution time could take several days to months.

- Profile of a DQMC simulation (\(N = 256, L = 96 \))

<table>
<thead>
<tr>
<th>Matrix kernel</th>
<th>Execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-matrix multiplication</td>
<td>72.39%</td>
</tr>
<tr>
<td>Pivoted QR decomposition</td>
<td>17.83%</td>
</tr>
<tr>
<td>Matrix inversion</td>
<td>3.02%</td>
</tr>
<tr>
<td>Others</td>
<td>6.76%</td>
</tr>
</tbody>
</table>
Green’s Function Calculation

\[G = (I + B_L \cdots B_2 B_1)^{-1}. \]

- \(N \): the number of particles; \(L \): the number of time slices.
- Time complexity of computing \(G \) is \(O(N^3L) \).
- For \(10^3 \) warmup steps and \(10^4 \) sampling steps, it takes 15 hours.
 - For large simulations, \(N = O(10^4) \), \(L = O(10^2) \), the projected execution time could take several days to months.
- Profile of a DQMC simulation \((N = 256, L = 96) \)

<table>
<thead>
<tr>
<th>Matrix kernel</th>
<th>Execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-matrix multiplication</td>
<td>72.39%</td>
</tr>
<tr>
<td>Pivoted QR decomposition</td>
<td>17.83%</td>
</tr>
<tr>
<td>Matrix inversion</td>
<td>3.02%</td>
</tr>
<tr>
<td>Others</td>
<td>6.76%</td>
</tr>
</tbody>
</table>
Outline

1. Determinant quantum Monte Carlo simulations

2. Matrix multiplication of sparse matrix exponentials

3. Parallel block checkerboard methods on multicore and GPU

4. Experiments and results

5. Concluding remarks
Some tuned result on multicore and on GPU (Fermi)

- DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s. (my laptop.)
- SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245, 2010]
- DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]
Matrix-matrix Multiplication

- Some tuned result on multicore and on GPU (Fermi)
 - DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s. (my laptop.)
 - SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245, 2010]
 - DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]
- It is great, but the running time grows cubically with problem size N.

Sparse-dense matrix multiplication takes only $O(N^2)$ time.

In the Green's function calculation, $G = (I + B_3 B_2 B_1 - 1 \cdots B_2 B_1)$, each $B_i = e^A$ is a matrix exponential.

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

Matrix A is highly sparse, but e^A is dense.
Some tuned result on multicore and on GPU (Fermi)

- DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s. (my laptop.)
- SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245, 2010]
- DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

It is great, but the running time grows cubically with problem size N.

Sparse-dense matrix multiplication takes only $O(N^2)$ time.
Matrix-matrix Multiplication

- Some tuned result on multicore and on GPU (Fermi)
 - DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s. (my laptop.)
 - SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245, 2010]
 - DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]
- It is great, but the running time grows cubically with problem size N.
- Sparse-dense matrix multiplication takes only $O(N^2)$ time.
- In the Green’s function calculation, $G = (I + B_L B_{L-1} \cdots B_2 B_1)^{-1}$, each $B_i = e^A$ is a matrix exponential.

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$
Matrix-matrix Multiplication

- Some tuned result on multicore and on GPU (Fermi)
 - DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s. (my laptop.)
 - SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245, 2010]
 - DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

- It is great, but the running time grows cubically with problem size N.
- Sparse-dense matrix multiplication takes only $O(N^2)$ time.
- In the Green’s function calculation, $G = (I + B_L B_{L-1} \cdots B_2 B_1)^{-1}$, each $B_i = e^A$ is a matrix exponential.

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

- Matrix A is highly sparse, but e^A is dense.
Checkerboard Method

Checkerboard method can approximate e^A by $e^A \approx e^{A_1} e^{A_2} \cdots e^{A_k}$, in which each e^{A_j} is sparse.
Checkerboard Method

Checkerboard method can approximate e^A by $e^A \approx e^{A_1} e^{A_2} \ldots e^{A_k}$, in which each e^{A_j} is sparse.

Theorem

If A_i is strictly sparse with zero diagonal, e^{A_i} has the same sparse pattern as A_i with diagonal fill in.

If A_i is strictly sparse with zero diagonal, e^{A_i} has the same sparse pattern as A_i with diagonal fill in.
Checkerboard Method

Checkerboard method can approximate e^A by $e^A \approx e^{A_1} e^{A_2} \ldots e^{A_k}$, in which each e^{A_j} is sparse.

Theorem

If A_i is strictly sparse with zero diagonal, e^{A_i} has the same sparse pattern as A_i with diagonal fill in.

Definition (strictly sparse)

A matrix is strictly sparse if it contains at most one nonzero per row and per column.
Checkerboard Method

Checkerboard method can approximate e^A by $e^A \approx e^{A_1} e^{A_2} \ldots e^{A_k}$, in which each e^{A_j} is sparse.

Theorem

If A_i is strictly sparse with zero diagonal, e^{A_i} has the same sparse pattern as A_i with diagonal fill in.

Definition (strictly sparse)

A matrix is strictly sparse if it contains at most one nonzero per row and per column.

Checkerboard method for computing e^A

1. Split $A = A_1 + A_2 + \cdots + A_k$ such that each A_i is strictly sparse.
2. Exponentiate each A_i.
3. Return $e^{A_1} e^{A_2} \ldots e^{A_k}$ as an approximation to e^A.
Example: One Dimensional Ring

\[A = \begin{bmatrix}
0 & h & h \\
 h & 0 & \\
 & & \\
 h & h & 0
\end{bmatrix} \]

\[A \approx \begin{bmatrix}
D & \\
 & D
\end{bmatrix} \begin{bmatrix}
cosh(h) & sinh(h) \\
sinh(h) & cosh(h)
\end{bmatrix} \]

where \(D = \begin{bmatrix}
cosh(h) & sinh(h) \\
sinh(h) & cosh(h)
\end{bmatrix} \).
Example: One Dimensional Ring

\[
A = \begin{bmatrix}
0 & h & h \\
h & 0 & \\
& \ddots & \ddots \\
h & h & 0
\end{bmatrix}
\]

\[
e^A \approx \begin{bmatrix}
D \\
& \ddots \\
& & D
\end{bmatrix}
\begin{bmatrix}
\cosh(h) & \sinh(h) \\
\sinh(h) & \cosh(h)
\end{bmatrix}
\]

where \(D = \begin{bmatrix}
\cosh(h) & \sinh(h) \\
\sinh(h) & \cosh(h)
\end{bmatrix}.\)
Exploring block structure of sparse matrices can obtain better performance and accuracy.
Exploring block structure of sparse matrices can obtain better performance and accuracy.

The algorithm is similar, but the basic element is a block submatrix.
Exploring block structure of sparse matrices can obtain better performance and accuracy.

The algorithm is similar, but the basic element is a block submatrix.

We will focus on the parallelization of block checkerboard method.
Outline

1. Determinant quantum Monte Carlo simulations
2. Matrix multiplication of sparse matrix exponentials
3. Parallel block checkerboard methods on multicore and GPU
4. Experiments and results
5. Concluding remarks
Computational Difficulties

- Combination of sparse matrix and dense matrix computation. (generalized SPMV)
Computational Difficulties

- Combination of sparse matrix and dense matrix computation. (generalized SPMV)

Dense matrix-matrix multiplication
Computational bound

Multiplication of a sequence of sparse matrices of different characteristics.
Matrix size is not large enough to reach good performance.
Computational Difficulties

- Combination of sparse matrix and dense matrix computation. (generalized SPMV)

- Dense matrix-matrix multiplication
 Computational bound

- Sparse matrix-vector multiplication
 Memory bound

- Multiplication of a sequence of sparse matrices of different characteristics.
 Matrix size is not large enough to reach good performance.
Computational Difficulties

- Combination of sparse matrix and dense matrix computation. (generalized SPMV)

- Dense matrix-matrix multiplication: Computational bound
- Sparse matrix-vector multiplication: Memory bound
- Sparse matrix-matrix multiplication: ?

Multiplication of a sequence of sparse matrices of different characteristics. Matrix size is not large enough to reach good performance.
Computational Difficulties

- Combination of sparse matrix and dense matrix computation. (generalized SPMV)

- Multiplication of a sequence of sparse matrices of different characteristics.

Dense matrix-matrix multiplication
Computational bound

Sparse matrix-vector multiplication
Memory bound

Sparse matrix-matrix multiplication
?
Computational Difficulties

- Combination of sparse matrix and dense matrix computation. (generalized SPMV)
 - Dense matrix-matrix multiplication
 Computational bound
 - Sparse matrix-vector multiplication
 Memory bound
 - Sparse matrix-matrix multiplication
 ?

- Multiplication of a sequence of sparse matrices of different characteristics.
- Matrix size is not large enough to reach good performance.
The kinetic matrices in our study are 2D and 3D torus lattices.

The kinetic matrix of 2D lattices can be split into 3 block strictly sparse matrices, K_1, K_2, and K_3. Checkerboard method approximates the matrix exponential by

$$e^{K_3/2} e^{K_2/2} e^{K_1} e^{K_2/2} e^{K_3/2}.$$

The figure shows the sparse pattern of the matrix of a 4×4 2D lattice is shown, and the matrix exponentials, e^{K_1}, e^{K_2}, and e^{K_3}.
The kinetic matrix of 3D lattices can be split into 5 block strictly sparse matrices, $K_1, K_2, K_3, K_4,$ and K_5.

Checkerboard method approximates the matrix exponential by

$$e^{K_5/2}e^{K_4/2}e^{K_3/2}e^{K_2/2}e^{K_1}e^{K_5/2}e^{K_3/2}e^{K_4/2}e^{K_5/2}.$$

The figure shows the sparse pattern of the matrix of a 4×4 2D lattice is shown, and the matrix exponentials, $e^{K_1}, e^{K_2}, e^{K_3}, e^{K_4},$ and e^{K_5}.
e^{K_1}: Block Diagonal Matrix

In 2D and 3D problems, $e^{K_1} = \begin{pmatrix} A_1 & & \\ & A_2 & \\ & & \ddots \end{pmatrix}$, block diagonal.
In 2D and 3D problems, $e^{K_1} = \begin{pmatrix} A_1 & \cdots & A_k \\ \vdots & \ddots & \vdots \\ A_k & \cdots & A_k \end{pmatrix}$, block diagonal.

For $B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1k} \\ B_{21} & B_{22} & \cdots & B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kk} \end{pmatrix}$, the product of $e^{K_1}B$ is $e^{K_1}B = \begin{pmatrix} A_1B_{11} & A_1B_{12} & \cdots & A_1B_{1k} \\ A_2B_{21} & A_2B_{22} & \cdots & A_2B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ AkB_{k1} & AkB_{k2} & \cdots & AkB_{kk} \end{pmatrix}$.
$e^{K_i}, i \neq 1$: Bidiagonal Matrices

$e^{K_i} = \begin{pmatrix}
\cdot & & \\
& D_i & C_{ij} \\
& & \\
C_{ji} & & D_j \\
& & \\
& &
\end{pmatrix}$

where $C_{i,j}$ and D_j are diagonal for $e^{K_i}, i \neq 1$.

Che-Rung Lee (cherung@cs.nthu.edu.tw)
Parallel Checkerboard Method
AsHES 2012 20 / 31
$e^{K_i}, i \neq 1$: Bidiagonal Matrices

$$e^{K_i} = \begin{pmatrix}
\cdots & D_i & C_{ij} & \cdots \\
D_i & \cdots & C_{ji} & \cdots \\
C_{ji} & D_j & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix}.$$

where $C_{i,j}$ and D_j are diagonal for $e^{K_i}, i \neq 1$.

There are only two non-zeros per row/column.
$e^{K_i}, i \neq 1$: Bidiagonal Matrices

$e^{K_i} = \begin{pmatrix} \cdots & & & & \ & D_i & C_{ij} & \ & \ & \cdots & \ & \ & \ & \ & \ & \cdots & \ & \ & \ & \ & \ & \ & \end{pmatrix}.$

where $C_{i,j}$ and D_j are diagonal for $e^{K_i}, i \neq 1$.

There are only two non-zeros per row/column.

Let $B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1k} \\ B_{21} & B_{22} & \cdots & B_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ B_{k1} & B_{k2} & \cdots & B_{kk} \end{pmatrix}$.

The (i,j) block and the (j,i) block of $F = e^{K_i}B$ are

$$F_{ij} = D_i B_{ii} + C_{ij} B_{ij}$$
$$F_{ji} = D_j B_{jj} + C_{ji} B_{ji}.$$
Parallelize Algorithms for $e^{K_1 B}$

Different algorithms need be designed from different types of matrices.

\[
\text{For each } B_{ij} \text{ do} \\
\quad \text{Parallel compute } C_{i,j} = A_i B_{ij}. \\
\text{End for each} \\
\text{For cache effect, finer grained parallelization is needed.} \\
\text{Finer-grained parallelization of } e^{K_1 B} \\
\text{For each } B_{ij} \text{ do} \\
\quad \text{For each sub-block of } C_{ij} : (k, \ell) \text{ do} \\
\qquad \text{Parallel compute } C_{i,j}(k, \ell). \\
\text{End for each} \\
\text{End for each}
\]
Parallelize Algorithms for $e^{K_1 B}$

Different algorithms need be designed from different types of matrices. Block based algorithm for $e^{K_1 B}$.

Parallelization of $e^{K_1 B}$

For each B_{ij} do

Parallel compute $C_{i,j} = A_i B_{ij}$.

End for each

For cache effect, finer grained parallelization is needed.

Finer-grained parallelization of $e^{K_1 B}$

For each B_{ij} do

For each sub-block of C_{ij}:

Parallel compute $C_{i,j}(k,\ell)$.

End for each

End for each
Parallelize Algorithms for e^{K_1B}

Different algorithms need be designed from different types of matrices. Block based algorithm for e^{K_1B}.

Parallelization of e^{K_1B}

For each B_{ij} do

Parallel compute $C_{i,j} = A_i B_{ij}$.

End for each

For cache effect, finer grained parallelization is needed.

Finer-grained parallelization of e^{K_1B}

For each B_{ij} do

For each sub-block of C_{ij}: $C_{ij}(k, \ell)$ do

Parallel compute $C_{i,j}(k, \ell)$.

End for each

End for each
Parallelize Algorithms for $e^{K_i B}, i \neq 1$

Column based parallelization
For better performance, aggregate the computation of $e^{K_i B}$.

Parallelization of $e^{K_i B}, i \neq 1$

For each column b_i in B do
Parallel compute $e^{K_2/2}e^{K_3/2}b_i$ or $e^{K_2/2} \ldots e^{K_5/2}b_i$.
End for each
Parallelize Algorithms for $e^{K_i}B$, $i \neq 1$

Column based parallelization
For better performance, aggregate the computation of $e^{K_i}B$.

Parallelization of $e^{K_i}B$, $i \neq 1$

For each column b_i in B do

Parallel compute $e^{K_2/2}e^{K_3/2}b_i$ or $e^{K_2/2} \ldots e^{K_5/2}b_i$.

End for each

Divide b_i to fit cache

Parallelization of $e^{K_i}B$, $i \neq 1$

For each column b_i in B do

For each segment of $b_i(:)$ do

Parallel compute $e^{K_2/2}e^{K_3/2}b_i(:)$ or $e^{K_2/2} \ldots e^{K_5/2}b_i(:)$.

End for each

End for each
Outline

1. Determinant quantum Monte Carlo simulations
2. Matrix multiplication of sparse matrix exponentials
3. Parallel block checkerboard methods on multicore and GPU
4. Experiments and results
5. Concluding remarks
Experimental Setting

Experiment setting
- We experimented the parallel algorithms on multicore and GPU.
- Matrices are from 2D and 3D toruses.

Multicore CPU
- Intel Core i7 950, 8G RAM, whose peak performance is 48.48Gflop/s.
- Using DGEMM in MKL 11 for block matrix multiplication and for comparison.

GPU
- GeForce GTX 480, whose peak performance is 1344GFlop/s.
- Using CUDA 4 and DGEMM and SGEMM CUDA SDK for comparison.
Lattice size: 32×32, 64×64, and 128×128.

Larger problem has more stable performance result.

The results of 32×32 are less stable than those of other cases.

Hyperthreading is almost no effect.
Results of 3D Problems on Multicore

- Lattice size: $4 \times 4 \times 4$, $8 \times 8 \times 8$, $12 \times 12 \times 12$, $16 \times 16 \times 16$, $20 \times 20 \times 20$, and $24 \times 24 \times 24$.

- The speedup is about 3 using 4 cores.

- The Gflop/s of e^{K_1} is much better than that of the overall performance.

- Hyperthreading is working, but its effect is decreasing.
Lattice size: 8×8, 16×16, 32×32, and 64×64.

The speedup is up to 67 for single precision.

DGEMM of CUDA SDK cannot finish the 64×64 case.
Results of 3D Problems on GPU

- Lattice size: $4 \times 4 \times 4$, $8 \times 8 \times 8$, $12 \times 12 \times 12$, and $16 \times 16 \times 16$.
- The speedup is up to 147 for single precision.
- DGEMM of CUDA SDK cannot finish the $16 \times 16 \times 16$ case.
Outline

1. Determinant quantum Monte Carlo simulations
2. Matrix multiplication of sparse matrix exponentials
3. Parallel block checkerboard methods on multicore and GPU
4. Experiments and results
5. Concluding remarks
Concluding Remarks

- Scientific applications request more and more computational power to enable larger and larger simulations. But to extract performance from modern HPC machines, which hybrid coarse-grained and fine-grained parallel architectures, application developers need to redesign the program.

 For DQMC simulations, checkerboard method can make the algorithm more scalable with problem size. This paper presents the preliminary study of the parallelization of checkerboard method on multicore and GPU. Further performance tunings are required.

 Parallelization of general lattice geometry of checkerboard method need be studied. The integration of the parallel checkerboard method to package needs be done.

Che-Rung Lee (cherung@cs.nthu.edu.tw)
Concluding Remarks

- Scientific applications request more and more computational power to enable larger and larger simulations. But to extract performance from modern HPC machines, which hybrid coarse-grained and fine-grained parallel architectures, application developers need to redesign the program.

- For DQMC simulations, checkerboard method can make the algorithm more scalable with problem size. This paper presents the preliminary study of the parallelization of checkerboard method on multicore and GPU. Further performance tunings are required.
Concluding Remarks

- Scientific applications request more and more computational power to enable larger and larger simulations. But to extract performance from modern HPC machines, which hybrid coarse-grained and fine-grained parallel architectures, application developers need to redesign the program.

- For DQMC simulations, checkerboard method can make the algorithm more scalable with problem size. This paper presents the preliminary study of the parallelization of checkerboard method on multicore and GPU. Further performance tunings are required.

- Parallelization of general lattice geometry of checkerboard method need be studied. The integration of the parallel checkerboard method to package needs be done.