
Parallelizing the Hamiltonian Computation in DQMC
Simulations: Checkerboard Method for Sparse Matrix

Exponentials on Multicore and GPU

Che-Rung Lee

National Tsing Hua University

joint work with Zhi-Hung Chen and Quey-Liang Kao

Second International Workshop on
Accelerators and Hybrid Exascale Systems (AsHES)

May 25th, 2012

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 1 / 31



Outline

1 Determinant quantum Monte Carlo simulations

2 Matrix multiplication of sparse matrix exponentials

3 Parallel block checkerboard methods on multicore and GPU

4 Experiments and results

5 Concluding remarks

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 2 / 31



Computational Material Science

To study the properties of solid-state materials:
magnetism, metal-insulator transition, high
temperature superconductivity, ...

The Hubbard model:

Energy operator H is associated with a
lattice of particles.

Boltzmann weight is expressed as a path
integral

e−βH ≈ e−τH(h1)e−τH(h2) · · · e−τH(hL).

β = 1/T is the “imaginary time”.
τ = β/L is the discretized time step.
{hi} is the “Hubbard-Stratonovich field”.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 3 / 31



Computational Material Science

To study the properties of solid-state materials:
magnetism, metal-insulator transition, high
temperature superconductivity, ...

The Hubbard model:

Energy operator H is associated with a
lattice of particles.

Boltzmann weight is expressed as a path
integral

e−βH ≈ e−τH(h1)e−τH(h2) · · · e−τH(hL).

β = 1/T is the “imaginary time”.
τ = β/L is the discretized time step.
{hi} is the “Hubbard-Stratonovich field”.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 3 / 31



Determinant Quantum Monte Carlo (DQMC) Simulations

DQMC algorithm

1 Given a random h = (h`,i) = (±1).
2 Until there are enough measurements

For ` = 1, . . . , L and i = 1, . . . , N
1 Propose a new HS config h′.
2 Compute the ratio γ of the

determinants of new/old configs.
3 Generate a random number ρ ∈ [0, 1].
4 If γ > ρ, accept h = h′.
5 If the system is thermalized, sample

the interested physical measurements.

3 Aggregate the sampled measurements.

DQMC step

Random HS field

thermalized

DQMC step

Measurements

yes

no

enough
samples

no

Aggregation

yes

w
arm

up
sam

pling

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 4 / 31



DQMC Parallelization

Parallel Monte Carlo method can
speedup DQMC simulations by
parallelizing the sampling stage.

Coarse-grained parallelization.
(Communication only happens before
sampling and in aggregation.)

Strong scalability if the number of
desired samplings is much larger than
the number of processors.

DQMC step

Random HS field

thermalized
D

Q
M

C
 step

M
easurem

ents

yes

no

Aggregation

w
arm

up
sam

pling

D
Q

M
C

 step
M

easurem
ents

D
Q

M
C

 step
M

easurem
ents

...

...

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 5 / 31



DQMC Parallelization

Parallel Monte Carlo method can
speedup DQMC simulations by
parallelizing the sampling stage.

Coarse-grained parallelization.
(Communication only happens before
sampling and in aggregation.)

Strong scalability if the number of
desired samplings is much larger than
the number of processors.

DQMC step

Random HS field

thermalized
D

Q
M

C
 step

M
easurem

ents

yes

no

Aggregation

w
arm

up
sam

pling

D
Q

M
C

 step
M

easurem
ents

D
Q

M
C

 step
M

easurem
ents

...

...

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 5 / 31



DQMC Parallelization

Parallel Monte Carlo method can
speedup DQMC simulations by
parallelizing the sampling stage.

Coarse-grained parallelization.
(Communication only happens before
sampling and in aggregation.)

Strong scalability if the number of
desired samplings is much larger than
the number of processors.

DQMC step

Random HS field

thermalized
D

Q
M

C
 step

M
easurem

ents

yes

no

Aggregation

w
arm

up
sam

pling

D
Q

M
C

 step
M

easurem
ents

D
Q

M
C

 step
M

easurem
ents

...

...

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 5 / 31



Computational Challenges

By Amdahl’s law, the speedup of parallel Monte Carlo method is
limited by the warmup stage (non-parallelizable).

Speedup =
Twarmup + Tsampling
Twarmup + Tsampling/p

→
Twarmup + Tsampling

Twarmup

Parallel Monte Carlo method does not scale with problem size, i.e.
number of particles and discretized time length.

Coarse grained parallelization does not fit well on multicore and GPU.

The computation of each DQMC step is complicated.
Slower execution because of resource contention.
Memory per core is reduced with the number of cores.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 6 / 31



Computational Challenges

By Amdahl’s law, the speedup of parallel Monte Carlo method is
limited by the warmup stage (non-parallelizable).

Speedup =
Twarmup + Tsampling
Twarmup + Tsampling/p

→
Twarmup + Tsampling

Twarmup

Parallel Monte Carlo method does not scale with problem size, i.e.
number of particles and discretized time length.

Coarse grained parallelization does not fit well on multicore and GPU.

The computation of each DQMC step is complicated.
Slower execution because of resource contention.
Memory per core is reduced with the number of cores.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 6 / 31



Computational Challenges

By Amdahl’s law, the speedup of parallel Monte Carlo method is
limited by the warmup stage (non-parallelizable).

Speedup =
Twarmup + Tsampling
Twarmup + Tsampling/p

→
Twarmup + Tsampling

Twarmup

Parallel Monte Carlo method does not scale with problem size, i.e.
number of particles and discretized time length.

Coarse grained parallelization does not fit well on multicore and GPU.

The computation of each DQMC step is complicated.
Slower execution because of resource contention.
Memory per core is reduced with the number of cores.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 6 / 31



Inside Each DQMC Step

DQMC step

Random HS field

thermalized

DQMC step

Measurements

yes

no

enough
samples

no

Aggregation

yes

w
arm

up
sam

pling

A DQMC step

1 Propose a local change: h→ h′.

2 Throw a random number 0 < r < 1.

3 Accept the change if r < det(e−βH(h′))
det(e−βH(h))

.

Computational Kernel: Green’s function cal-
culation

G = (I +BL · · ·B2B1)
−1.

for computation of det(e−βH(h′)) and phys-
ical measurements.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 7 / 31



Inside Each DQMC Step

DQMC step

Random HS field

thermalized

DQMC step

Measurements

yes

no

enough
samples

no

Aggregation

yes

w
arm

up
sam

pling

A DQMC step

1 Propose a local change: h→ h′.

2 Throw a random number 0 < r < 1.

3 Accept the change if r < det(e−βH(h′))
det(e−βH(h))

.

Computational Kernel: Green’s function cal-
culation

G = (I +BL · · ·B2B1)
−1.

for computation of det(e−βH(h′)) and phys-
ical measurements.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 7 / 31



Green’s Function Calculation

G = (I +BL · · ·B2B1)
−1.

N : the number of particles; L: the number of time slices.

Time complexity of computing G is O(N3L).

For 103 warmup steps and 104 sampling steps, it takes 15 hours.

For large simulations, N = O(104), L = O(102), the projected
execution time could take several days to months.

Profile of a DQMC simulation (N = 256, L = 96)

Matrix kernel Execution time

Matrix-matrix multiplication 72.39%
Pivoted QR decomposition 17.83%
Matrix inversion 3.02%
Others 6.76%

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 8 / 31



Green’s Function Calculation

G = (I +BL · · ·B2B1)
−1.

N : the number of particles; L: the number of time slices.

Time complexity of computing G is O(N3L).

For 103 warmup steps and 104 sampling steps, it takes 15 hours.

For large simulations, N = O(104), L = O(102), the projected
execution time could take several days to months.

Profile of a DQMC simulation (N = 256, L = 96)

Matrix kernel Execution time

Matrix-matrix multiplication 72.39%
Pivoted QR decomposition 17.83%
Matrix inversion 3.02%
Others 6.76%

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 8 / 31



Green’s Function Calculation

G = (I +BL · · ·B2B1)
−1.

N : the number of particles; L: the number of time slices.

Time complexity of computing G is O(N3L).

For 103 warmup steps and 104 sampling steps, it takes 15 hours.

For large simulations, N = O(104), L = O(102), the projected
execution time could take several days to months.

Profile of a DQMC simulation (N = 256, L = 96)

Matrix kernel Execution time

Matrix-matrix multiplication 72.39%
Pivoted QR decomposition 17.83%
Matrix inversion 3.02%
Others 6.76%

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 8 / 31



Green’s Function Calculation

G = (I +BL · · ·B2B1)
−1.

N : the number of particles; L: the number of time slices.

Time complexity of computing G is O(N3L).

For 103 warmup steps and 104 sampling steps, it takes 15 hours.

For large simulations, N = O(104), L = O(102), the projected
execution time could take several days to months.

Profile of a DQMC simulation (N = 256, L = 96)

Matrix kernel Execution time

Matrix-matrix multiplication 72.39%
Pivoted QR decomposition 17.83%
Matrix inversion 3.02%
Others 6.76%

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 8 / 31



Green’s Function Calculation

G = (I +BL · · ·B2B1)
−1.

N : the number of particles; L: the number of time slices.

Time complexity of computing G is O(N3L).

For 103 warmup steps and 104 sampling steps, it takes 15 hours.

For large simulations, N = O(104), L = O(102), the projected
execution time could take several days to months.

Profile of a DQMC simulation (N = 256, L = 96)

Matrix kernel Execution time

Matrix-matrix multiplication 72.39%
Pivoted QR decomposition 17.83%
Matrix inversion 3.02%
Others 6.76%

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 8 / 31



Outline

1 Determinant quantum Monte Carlo simulations

2 Matrix multiplication of sparse matrix exponentials

3 Parallel block checkerboard methods on multicore and GPU

4 Experiments and results

5 Concluding remarks

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 9 / 31



Matrix-matrix Multiplication

Some tuned result on multicore and on GPU (Fermi)

DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s.
(my laptop.)
SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245,
2010]
DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

It is great, but the running time grows cubically with problem size N .

Sparse-dense matrix multiplication takes only O(N2) time.

In the Green’s function calculation, G = (I +BLBL−1 · · ·B2B1)
−1,

each Bi = eA is a matrix exponential.

eA = I +A+
A2

2!
+
A3

3!
+ · · · =

∞∑
k=0

Ak

k!
.

Matrix A is highly sparse, but eA is dense.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 10 / 31



Matrix-matrix Multiplication

Some tuned result on multicore and on GPU (Fermi)

DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s.
(my laptop.)
SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245,
2010]
DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

It is great, but the running time grows cubically with problem size N .

Sparse-dense matrix multiplication takes only O(N2) time.

In the Green’s function calculation, G = (I +BLBL−1 · · ·B2B1)
−1,

each Bi = eA is a matrix exponential.

eA = I +A+
A2

2!
+
A3

3!
+ · · · =

∞∑
k=0

Ak

k!
.

Matrix A is highly sparse, but eA is dense.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 10 / 31



Matrix-matrix Multiplication

Some tuned result on multicore and on GPU (Fermi)

DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s.
(my laptop.)
SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245,
2010]
DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

It is great, but the running time grows cubically with problem size N .

Sparse-dense matrix multiplication takes only O(N2) time.

In the Green’s function calculation, G = (I +BLBL−1 · · ·B2B1)
−1,

each Bi = eA is a matrix exponential.

eA = I +A+
A2

2!
+
A3

3!
+ · · · =

∞∑
k=0

Ak

k!
.

Matrix A is highly sparse, but eA is dense.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 10 / 31



Matrix-matrix Multiplication

Some tuned result on multicore and on GPU (Fermi)

DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s.
(my laptop.)
SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245,
2010]
DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

It is great, but the running time grows cubically with problem size N .

Sparse-dense matrix multiplication takes only O(N2) time.

In the Green’s function calculation, G = (I +BLBL−1 · · ·B2B1)
−1,

each Bi = eA is a matrix exponential.

eA = I +A+
A2

2!
+
A3

3!
+ · · · =

∞∑
k=0

Ak

k!
.

Matrix A is highly sparse, but eA is dense.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 10 / 31



Matrix-matrix Multiplication

Some tuned result on multicore and on GPU (Fermi)

DGEMM on Intel Core i7-920 4 core with MKL is about 40 Gflop/s.
(my laptop.)
SGEMM can reach 662 Gflop/s on Fermi. [Jakub Kurzak LAWN 245,
2010]
DGEMM (362Gflop/s on Fermi) [Guangming Tan et. al. SC11]

It is great, but the running time grows cubically with problem size N .

Sparse-dense matrix multiplication takes only O(N2) time.

In the Green’s function calculation, G = (I +BLBL−1 · · ·B2B1)
−1,

each Bi = eA is a matrix exponential.

eA = I +A+
A2

2!
+
A3

3!
+ · · · =

∞∑
k=0

Ak

k!
.

Matrix A is highly sparse, but eA is dense.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 10 / 31



Checkerboard Method

Checkerboard method can approximate eA by eA ≈ eA1eA2 · · · eAk , in
which each eAj is sparse.

Theorem

If Ai is strictly sparse with zero diagonal, eAi has the same sparse pattern
as Ai with diagonal fill in.

Definition (strictly sparse)

A matrix is strictly sparse if it contains at most one nonzero per row and
per column.

Checkerboard method for computing eA

1 Split A = A1 +A2 + · · ·+Ak such that each Ai is strictly sparse.

2 Exponentiate each Ai.

3 Return eA1eA2 · · · eAk as an approximation to eA.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 11 / 31



Checkerboard Method

Checkerboard method can approximate eA by eA ≈ eA1eA2 · · · eAk , in
which each eAj is sparse.

Theorem

If Ai is strictly sparse with zero diagonal, eAi has the same sparse pattern
as Ai with diagonal fill in.

Definition (strictly sparse)

A matrix is strictly sparse if it contains at most one nonzero per row and
per column.

Checkerboard method for computing eA

1 Split A = A1 +A2 + · · ·+Ak such that each Ai is strictly sparse.

2 Exponentiate each Ai.

3 Return eA1eA2 · · · eAk as an approximation to eA.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 11 / 31



Checkerboard Method

Checkerboard method can approximate eA by eA ≈ eA1eA2 · · · eAk , in
which each eAj is sparse.

Theorem

If Ai is strictly sparse with zero diagonal, eAi has the same sparse pattern
as Ai with diagonal fill in.

Definition (strictly sparse)

A matrix is strictly sparse if it contains at most one nonzero per row and
per column.

Checkerboard method for computing eA

1 Split A = A1 +A2 + · · ·+Ak such that each Ai is strictly sparse.

2 Exponentiate each Ai.

3 Return eA1eA2 · · · eAk as an approximation to eA.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 11 / 31



Checkerboard Method

Checkerboard method can approximate eA by eA ≈ eA1eA2 · · · eAk , in
which each eAj is sparse.

Theorem

If Ai is strictly sparse with zero diagonal, eAi has the same sparse pattern
as Ai with diagonal fill in.

Definition (strictly sparse)

A matrix is strictly sparse if it contains at most one nonzero per row and
per column.

Checkerboard method for computing eA

1 Split A = A1 +A2 + · · ·+Ak such that each Ai is strictly sparse.

2 Exponentiate each Ai.

3 Return eA1eA2 · · · eAk as an approximation to eA.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 11 / 31



Example: One Dimensional Ring

A =


0 h h
h 0

. . .
. . .

0 h
h h 0



	
  

x	
  2	
   3	
  

5	
  

1	
  

6	
  7	
  
8	
  

4	
  

Odd	
  link	
  
Even	
  link	
  

eA ≈

 D
. . .

D




cosh(h) sinh(h)
D

. . .

sinh(h) cosh(h)


where D =

[
cosh(h) sinh(h)
sinh(h) cosh(h)

]
.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 12 / 31



Example: One Dimensional Ring

A =


0 h h
h 0

. . .
. . .

0 h
h h 0



	
  

x	
  2	
   3	
  

5	
  

1	
  

6	
  7	
  
8	
  

4	
  

Odd	
  link	
  
Even	
  link	
  

eA ≈

 D
. . .

D




cosh(h) sinh(h)
D

. . .

sinh(h) cosh(h)


where D =

[
cosh(h) sinh(h)
sinh(h) cosh(h)

]
.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 12 / 31



Block Checkerboard Method

Exploring block structure of sparse matrices can obtain better
performance and accuracy.

12x12x12 16x16x16 18x18x18 20x20x20
0

20

40

60

80

100

120

Matrix size

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

)

 

 

Exact
Checkerboard
Block Checkerboard

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

Discretize parameter ∆ τ
R

e
la

ti
v
e

 e
rr

o
r

 

 

Checkerboard
Block Checkerboard

The algorithm is similar, but the basic element is a block submatrix.

We will focus on the parallelization of block checkerboard method.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 13 / 31



Block Checkerboard Method

Exploring block structure of sparse matrices can obtain better
performance and accuracy.

12x12x12 16x16x16 18x18x18 20x20x20
0

20

40

60

80

100

120

Matrix size

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

)

 

 

Exact
Checkerboard
Block Checkerboard

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

Discretize parameter ∆ τ
R

e
la

ti
v
e

 e
rr

o
r

 

 

Checkerboard
Block Checkerboard

The algorithm is similar, but the basic element is a block submatrix.

We will focus on the parallelization of block checkerboard method.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 13 / 31



Block Checkerboard Method

Exploring block structure of sparse matrices can obtain better
performance and accuracy.

12x12x12 16x16x16 18x18x18 20x20x20
0

20

40

60

80

100

120

Matrix size

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

)

 

 

Exact
Checkerboard
Block Checkerboard

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

Discretize parameter ∆ τ
R

e
la

ti
v
e

 e
rr

o
r

 

 

Checkerboard
Block Checkerboard

The algorithm is similar, but the basic element is a block submatrix.

We will focus on the parallelization of block checkerboard method.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 13 / 31



Outline

1 Determinant quantum Monte Carlo simulations

2 Matrix multiplication of sparse matrix exponentials

3 Parallel block checkerboard methods on multicore and GPU

4 Experiments and results

5 Concluding remarks

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 14 / 31



Computational Difficulties

Combination of sparse matrix and dense matrix computation.
(generalized SPMV)

Dense matrix-matrix 
multiplication


Computational bound


Sparse matrix-vector 
multiplication


Memory bound


Sparse matrix-matrix 
multiplication


?


Multiplication of a sequence of sparse matrices of different
characteristics.

Matrix size is not large enough to reach good performance.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 15 / 31



Computational Difficulties

Combination of sparse matrix and dense matrix computation.
(generalized SPMV)

Dense matrix-matrix 
multiplication


Computational bound


Sparse matrix-vector 
multiplication


Memory bound


Sparse matrix-matrix 
multiplication


?


Multiplication of a sequence of sparse matrices of different
characteristics.

Matrix size is not large enough to reach good performance.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 15 / 31



Computational Difficulties

Combination of sparse matrix and dense matrix computation.
(generalized SPMV)

Dense matrix-matrix 
multiplication


Computational bound


Sparse matrix-vector 
multiplication


Memory bound


Sparse matrix-matrix 
multiplication


?


Multiplication of a sequence of sparse matrices of different
characteristics.

Matrix size is not large enough to reach good performance.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 15 / 31



Computational Difficulties

Combination of sparse matrix and dense matrix computation.
(generalized SPMV)

Dense matrix-matrix 
multiplication


Computational bound


Sparse matrix-vector 
multiplication


Memory bound


Sparse matrix-matrix 
multiplication


?


Multiplication of a sequence of sparse matrices of different
characteristics.

Matrix size is not large enough to reach good performance.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 15 / 31



Computational Difficulties

Combination of sparse matrix and dense matrix computation.
(generalized SPMV)

Dense matrix-matrix 
multiplication


Computational bound


Sparse matrix-vector 
multiplication


Memory bound


Sparse matrix-matrix 
multiplication


?


Multiplication of a sequence of sparse matrices of different
characteristics.

Matrix size is not large enough to reach good performance.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 15 / 31



Computational Difficulties

Combination of sparse matrix and dense matrix computation.
(generalized SPMV)

Dense matrix-matrix 
multiplication


Computational bound


Sparse matrix-vector 
multiplication


Memory bound


Sparse matrix-matrix 
multiplication


?


Multiplication of a sequence of sparse matrices of different
characteristics.

Matrix size is not large enough to reach good performance.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 15 / 31



2D and 3D Torus Lattices

The kinetic matrices in our study are 2D and 3D torus lattices.

Images are from http://www.trampelwurm.ch/schmidt/wilhelmtux/swissremix/html/Linuxfibel/netstruct.htm and

http://www.fujitsu.com/global/news/pr/archives/month/2009/20090717-01.html

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 16 / 31

http://www.trampelwurm.ch/schmidt/wilhelmtux/swissremix/html/Linuxfibel/netstruct.htm
http://www.fujitsu.com/global/news/pr/archives/month/2009/20090717-01.html


2D Lattice and Kinetic Matrix

The kinetic matrix of 2D lattices
can be split into 3 block strictly
sparse matrices, K1,K2, and K3.

Checkerboard method
approximates the matrix
exponential by

eK3/2eK2/2eK1eK2/2eK3/2.

The figure shows the sparse
pattern of the matrix of a 4× 4 2D
lattice is shown, and the matrix
exponentials, eK1 , eK2 , and eK3 .

0 10

0

5

10

15

(a) kinetic matrix K
0 10

0

5

10

15

(b) expm(K
1
)

0 10

0

5

10

15

(c) expm(K
2
)

0 10

0

5

10

15

(d) expm(K
3
)

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 17 / 31



3D Lattice and Kinetic Matrix

The kinetic matrix of 3D lattices
can be split into 5 block strictly
sparse matrices, K1,K2,K3,K4,
and K5.

Checkerboard method
approximates the matrix
exponential by

e
K5
2 e

K4
2 e

K3
2 e

K2
2 eK1e

K5
2 e

K3
2 e

K4
2 e

K5
2 .

The figure shows the sparse
pattern of the matrix of a 4× 4
2D lattice is shown, and the
matrix exponentials,
eK1 , eK2 , eK3 , eK4 , and eK5 .

0 50

0

20

40

60

(a) kinetic matrix K
0 50

0

20

40

60

(b) expm(K
1
)

0 50

0

20

40

60

(c) expm(K
2
)

0 50

0

20

40

60

(d) expm(K
3
)

0 50

0

20

40

60

(e) expm(K
4
)

0 50

0

20

40

60

(f) expm(K
5
)

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 18 / 31



eK1: Block Diagonal Matrix

In 2D and 3D problems, eK1 =


A1

A2

. . .

Ak

, block diagonal.

For B =


B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
. . .

...
Bk1 Bk2 . . . Bkk

, the product of eK1B is

eK1B =


A1B11 A1B12 . . . A1B1k

A2B21 A2B22 . . . A2B2k
...

...
. . .

...
AkBk1 AkBk2 . . . AkBkk

 .

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 19 / 31



eK1: Block Diagonal Matrix

In 2D and 3D problems, eK1 =


A1

A2

. . .

Ak

, block diagonal.

For B =


B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
. . .

...
Bk1 Bk2 . . . Bkk

, the product of eK1B is

eK1B =


A1B11 A1B12 . . . A1B1k

A2B21 A2B22 . . . A2B2k
...

...
. . .

...
AkBk1 AkBk2 . . . AkBkk

 .

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 19 / 31



eKi, i 6= 1: Bidiagonal Matrices

eKi =



. . .

Di Cij
. . .

Cji Dj

. . .


.

where Ci,j and Dj are diagonal
for eKi , i 6= 1.

There are only two non-zeros per row/column.

Let B =


B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
. . .

...
Bk1 Bk2 . . . Bkk

.

The (i, j) block and the (j, i)
block of F = eKiB are

Fij = DiBii + CijBij
Fji = DjBjj + CjiBji

.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 20 / 31



eKi, i 6= 1: Bidiagonal Matrices

eKi =



. . .

Di Cij
. . .

Cji Dj

. . .


.

where Ci,j and Dj are diagonal
for eKi , i 6= 1.

There are only two non-zeros per row/column.

Let B =


B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
. . .

...
Bk1 Bk2 . . . Bkk

.

The (i, j) block and the (j, i)
block of F = eKiB are

Fij = DiBii + CijBij
Fji = DjBjj + CjiBji

.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 20 / 31



eKi, i 6= 1: Bidiagonal Matrices

eKi =



. . .

Di Cij
. . .

Cji Dj

. . .


.

where Ci,j and Dj are diagonal
for eKi , i 6= 1.

There are only two non-zeros per row/column.

Let B =


B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
. . .

...
Bk1 Bk2 . . . Bkk

.

The (i, j) block and the (j, i)
block of F = eKiB are

Fij = DiBii + CijBij
Fji = DjBjj + CjiBji

.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 20 / 31



Parallelize Algorithms for eK1B

Different algorithms need be designed from different types of matrices.

Block based algorithm for eK1B.

Parallelization of eK1B

For each Bij do

Parallel compute Ci,j = AiBij .

End for each

For cache effect, finer grained parallelization is needed.

Finer-grained parallelization of eK1B

For each Bij do
For each sub-block of Cij : Cij(k, `) do

Parallel compute Ci,j(k, `).

End for each

End for each

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 21 / 31



Parallelize Algorithms for eK1B

Different algorithms need be designed from different types of matrices.
Block based algorithm for eK1B.

Parallelization of eK1B

For each Bij do

Parallel compute Ci,j = AiBij .

End for each

For cache effect, finer grained parallelization is needed.

Finer-grained parallelization of eK1B

For each Bij do
For each sub-block of Cij : Cij(k, `) do

Parallel compute Ci,j(k, `).

End for each

End for each

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 21 / 31



Parallelize Algorithms for eK1B

Different algorithms need be designed from different types of matrices.
Block based algorithm for eK1B.

Parallelization of eK1B

For each Bij do

Parallel compute Ci,j = AiBij .

End for each

For cache effect, finer grained parallelization is needed.

Finer-grained parallelization of eK1B

For each Bij do
For each sub-block of Cij : Cij(k, `) do

Parallel compute Ci,j(k, `).

End for each

End for each

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 21 / 31



Parallelize Algorithms for eKiB, i 6= 1

Column based parallelization
For better performance, aggregate the computation of eKiB.

Parallelization of eKiB, i 6= 1

For each column bi in B do

Parallel compute eK2/2eK3/2bi or eK2/2 · · · eK5/2bi.

End for each

Divide bi to fit cache

Parallelization of eKiB, i 6= 1

For each column bi in B do
For each segment of bi(:) do

Parallel compute eK2/2eK3/2bi(:) or e
K2/2 · · · eK5/2bi(:).

End for each

End for each

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 22 / 31



Parallelize Algorithms for eKiB, i 6= 1

Column based parallelization
For better performance, aggregate the computation of eKiB.

Parallelization of eKiB, i 6= 1

For each column bi in B do

Parallel compute eK2/2eK3/2bi or eK2/2 · · · eK5/2bi.

End for each

Divide bi to fit cache

Parallelization of eKiB, i 6= 1

For each column bi in B do
For each segment of bi(:) do

Parallel compute eK2/2eK3/2bi(:) or e
K2/2 · · · eK5/2bi(:).

End for each

End for each

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 22 / 31



Outline

1 Determinant quantum Monte Carlo simulations

2 Matrix multiplication of sparse matrix exponentials

3 Parallel block checkerboard methods on multicore and GPU

4 Experiments and results

5 Concluding remarks

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 23 / 31



Experimental Setting

Experiment setting

We experimented the parallel algorithms on multicore and GPU.

Matrices are from 2D and 3D toruses.

Multicore CPU

Intel Core i7 950, 8G RAM, whose peak performance is 48.48Gflop/s.

Using DGEMM in MKL 11 for block matrix multiplication and for
comparison.

GPU

GeForce GTX 480, whose peak performance is 1344GFlop/s.

Using CUDA 4 and DGEMM and SGEMM CUDA SDK for
comparison.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 24 / 31



Results of 2D Problems on Multicore

0.000	
  

5.000	
  

10.000	
  

15.000	
  

20.000	
  

25.000	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
  

G
flo

p/
s	
  

Number	
  of	
  threads	
  

1024/32	
  

4096/64	
  

16384/128	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
  

Pe
rf
or
m
an

ce
	
  (G

flo
p/
s)
	
  

Number	
  of	
  threads	
  

1024/32	
  

4096/64	
  

16384/128	
  

Lattice size: 32× 32,
64× 64, and 128× 128.

Larger problem has
more stable
performance result.

The results of 32× 32
are less stable than
those of other cases.

Hyperthreading is
almost no effect.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 25 / 31



Results of 3D Problems on Multicore

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

64/4	
   512/8	
   1728/12	
   4096/16	
   8000/20	
   13824/24	
  

G
flo

p/
s	
  

Problem	
  size/block	
  size	
  

1	
  

2	
  

3	
  

4	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

64/4	
   512/8	
   1728/12	
   4096/16	
   8000/20	
   13824/24	
  

G
flo

p/
s	
  

Problem	
  size/block	
  size	
  

1	
  

2	
  

3	
  

4	
  

6	
  

8	
  

Lattice size: 4× 4× 4,
8× 8× 8, 12× 12× 12,
16× 16× 16,
20× 20× 20, and
24× 24× 24.

The speedup is about 3
using 4 cores.

The Gflop/s of eK1 is
much better than that
of the overall
performance.

Hyperthreading is
working, but its effect
is decreasing.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 26 / 31



Results of 2D Problems on GPU

1.00E+00	
  

1.00E+01	
  

1.00E+02	
  

1.00E+03	
  

1.00E+04	
  

1.00E+05	
  

1.00E+06	
  

64	
   256	
   1024	
   4096	
  

Ex
ec
u&

on
	
  &
m
e	
  
(1
E-­‐
6	
  
s)
	
  

Problem	
  size	
  

SDK	
  float	
  

SDK	
  double	
  

Blkckb	
  float	
  

Blkckb	
  double	
  

0.00	
  

10.00	
  

20.00	
  

30.00	
  

40.00	
  

50.00	
  

60.00	
  

70.00	
  

64	
   256	
   1024	
   4096	
  

Sp
ee
du

p	
  

Problem	
  size	
  

single	
  

double	
  

Lattice size: 8× 8,
16× 16, 32× 32, and
64× 64.

The speedup is up to
67 for single precision.

DGEMM of CUDA
SDK cannot finish the
64× 64 case.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 27 / 31



Results of 3D Problems on GPU

1.00E+00	
  

1.00E+01	
  

1.00E+02	
  

1.00E+03	
  

1.00E+04	
  

1.00E+05	
  

1.00E+06	
  

64	
   512	
   4096	
  

Ex
ec
u&

on
	
  &
m
e	
  
(1
E-­‐
6	
  
s)
	
  

Problem	
  size	
  

SDK	
  float	
  

SDK	
  double	
  

Blkckb	
  float	
  

Blkckb	
  double	
  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

64	
   512	
   4096	
  

Sp
ee
du

p	
  

Problem	
  size	
  

single	
  

double	
  

Lattice size: 4× 4× 4,
8× 8× 8, 12× 12× 12,
and 16× 16× 16.

The speedup is up to
147 for single precision.

DGEMM of CUDA
SDK cannot finish the
16× 16× 16 case.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 28 / 31



Outline

1 Determinant quantum Monte Carlo simulations

2 Matrix multiplication of sparse matrix exponentials

3 Parallel block checkerboard methods on multicore and GPU

4 Experiments and results

5 Concluding remarks

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 29 / 31



Concluding Remarks

Scientific applications request more and more computational power to
enable larger and larger simulations. But to extract performance from
modern HPC machines, which hybrid coarse-grained and fine-grained
parallel architectures, application developers need to redesign the
program.

For DQMC simulations, checkerboard method can make the
algorithm more scalable with problem size. This paper presents the
preliminary study of the parallelization of checkerboard method on
multicore and GPU. Further performance tunings are required.

Parallelization of general lattice geometry of checkerboard method
need be studied. The integration of the parallel checkerboard method
to package needs be done.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 30 / 31



Concluding Remarks

Scientific applications request more and more computational power to
enable larger and larger simulations. But to extract performance from
modern HPC machines, which hybrid coarse-grained and fine-grained
parallel architectures, application developers need to redesign the
program.

For DQMC simulations, checkerboard method can make the
algorithm more scalable with problem size. This paper presents the
preliminary study of the parallelization of checkerboard method on
multicore and GPU. Further performance tunings are required.

Parallelization of general lattice geometry of checkerboard method
need be studied. The integration of the parallel checkerboard method
to package needs be done.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 30 / 31



Concluding Remarks

Scientific applications request more and more computational power to
enable larger and larger simulations. But to extract performance from
modern HPC machines, which hybrid coarse-grained and fine-grained
parallel architectures, application developers need to redesign the
program.

For DQMC simulations, checkerboard method can make the
algorithm more scalable with problem size. This paper presents the
preliminary study of the parallelization of checkerboard method on
multicore and GPU. Further performance tunings are required.

Parallelization of general lattice geometry of checkerboard method
need be studied. The integration of the parallel checkerboard method
to package needs be done.

Che-Rung Lee (cherung@cs.nthu.edu.tw) Parallel Checkerboard Method AsHES 2012 30 / 31


	Determinant quantum Monte Carlo simulations
	Matrix multiplication of sparse matrix exponentials
	Parallel block checkerboard methods on multicore and GPU
	Experiments and results
	Concluding remarks

