
Intensity model with blur effect on GPUs

applied to large-scale star simulators

Chao Li
Institute of Software, Chinese

Academy of Sciences

� Background and Motivation
� Model description
� Our simulators
� Evaluation
� Conclusion
� Future work

Outline

Background

� What is star simulator: an important
aerospace application, providing star image.

� Star image simulation
a) position determination
b) satellite attitude calculation
c) Navigation feedback
d) satellite tracker

� Intensity model
� Blur effect: Point Spread Function

(PSF)
� Problem:

far from real-time(30 frame/s)
a) massive algebraic computation
b). proportional to the number of

stars
c). Computation intensive.

� Pascal
� C
� Prolog
� Sequential system implementation
� Parallelism

Liebe. C.C (2002), Hye-Young KIM 2002,
Yang Yan-de(2009), Shaodi Zhang(2010)

GPU Parallel platform

0

20

40

60

80

100

120

2003 2004 2005 2006 2007

M
e
m

o
ry

 b
an

d
w

id
th

 (G
B

/s
)

GPU

CPU
G80 Ultra

G80

G71

NV40

NV30 Hapertown

WoodcrestPrescott EE
Northwood

0

20

40

60

80

100

120

2003 2004 2005 2006 2007

M
e
m

o
ry

 b
an

d
w

id
th

 (G
B

/s
)

GPU

CPU
G80 Ultra

G80

G71

NV40

NV30 Hapertown

WoodcrestPrescott EE
Northwood

•High Float Computation ability

•High Memory Bandwidth

Little memory latency

Massive thread running(~10K threads)
Little context switching

GPU computing

Our work

� Parallelization of intensity simulation on GPUs and a
parallel star simulator

� Implement a adaptive simulator by adapting parallel
simulator to defined problem characteristic with on-
chip memory redesign;

� Strategies in achieving high performance of our
simulators

� A performance balance analysis to direct the choice
of two GPU simulators

What is the model

I

� illustrate the intensity distribution of each star projecting on the space imaging
device

� The brightness of a star can be denoted by its magnitude.
� The brightness of a star and its magnitude can be concluded:

� Gauss point spread function (Gauss blur effect):

() 2.512 mg m A −= ×

2 2

2 2

1 () ()
(,) exp[]

2 2

x X y Y
x yµ

πδ δ
− + −= −

Star’s
ROI

Image

Star

Image

Circum-
square

� Region of Interest (ROI) : a pixel circle centered by star point
� The intensity distribution of a star on a pixel:

(, ,) () (,)m x y g m x yϕ µ= ×

Fig. 2 shows a segment of simulated star image (1024*1024) with 2252 stars projected.

What we have done

� Sequential simulator
� Parallel simulator
� Adaptive simulator

Sequential simulator

� Star generation
1) stars in the FOV of image plane are retrieved from star catalogue
2) each star contains a magnitude within the range of 0~15 and the

coordinate in image plane

� Star brightness computation,
1) calculates the star’s brightness following the formula previously

explained

� Pixel computation,
1) the computation of gray value of each pixel at the image sequentially

� Output
1) sends out the gray value to form a picture

Simulator Input[1] & output

[1]Parallel Accelerating for Star Catalogue Retrieval Algorithm by means of GPUs

Parallel simulator

1) Parallel strategy
� The intensity model computes the gray value of each pixel by accumulating intensity

contributions from stars within the ROI

� two alternative approaches to organize parallel execution of the model:

pixel centric VS star centric

pixel centric: Generate Thread Divergence
star centric: Eliminate thread divergence;

Need atomic operation

2) Star-centric parallel model

� Different Star distributes in a independent behavior

� The calculation of star’s distribution on different pixels is also independent

� Two levels of data parallelism: a) parallelism among stars b) parallelism among pixels inside the

ROI of a star

3) GPU implementation

� Star brightness computation; Pixel computation: two computation stages are off-loaded to
the GPU to be processed in parallel

� Thread Dimension Determination

� Blocks: 2-dimensional ->support enough stars for simulation
� Threads: 2-dimensional -> simulate the two-loop in star intensity distribution

� Model data : The data containers for stars and pixels

� Indicator elements in the interface of our kernel to prevent the wrong address access of
parallel threads

� Data organization on GPU memory:

� For star array: all threads in a warp access the same address.

� For pixel array: spatial locality.

� Shared memory in blocks: each star
advantage: one shared memory call costs 1~4 clock cycles while a global memory access

need 400~600 clock cycles of latency.
� Registers for threads: each pixel

advantage: relieve the bank collision of share memory generated by different threads
accessing it simultaneously

� ROI of different stars within a short distance is likely to overlap

� Atomic add operation

� the stars in simulation are distributed relatively scatter

Adaptive simulator
� Fixed star magnitude range: fixed array
� Fixed size of ROI: fixed distribution matrix
� Lookup table: fixed array + fixed distribution matrix
� Build lookup table ahead of kernel, Bound to on-chip texture memory: 1). capitalize 2D

spatial locality 2). Cache.
� Shift: computation of distribution to access of lookup table
� Balance between computation and access overhead.

The process of building lookup table.

Evaluation of our simulators

� Benchmark 1
� Benchmark 2
� Selection table
� Discussion

Benchmark 1

� Increasing the numbers of stars simulated on the image (and so the number of
thread blocks in grid increases)

� CPU ：Intel Core i7 930 2.80GHz，GPU： GeForce GTX480（FERMI）

Application performance for sequential, parallel, adaptive simulators: test1

Speedup of parallel simulator, adaptive simulator to sequential simulator: test1

Kernel time in parallel & adaptive simulator: test1Non-kernel time in parallel & adaptive simulator: test1

The breakdown of non-kernel part for adaptive simulator: test1

The execution GFlops : test1

Benchmark 2

� Increasing the side length of ROI (and so number of threads per
thread blocks increases)

Breakdown of parallel simulator,
adaptive simulator: test2

Percentage of non-kernel overhead for
parallel simulator,

adaptive simulator: test2

Selection table

Balance :
the execution of star
distribution with fixed star
magnitude range from
kernel VS
texture memory access by
creating a lookup table in
texture memory

Discussion

� Thread Per Block Restriction on ROI
� Texture Storage Memory Restriction
� Advice on simulators:

when the star image is in a very small-scale (num of stars : 0~27) , the sequential
simulator is good.

conclusion

� Three simulators: sequential, parallel, adaptive simulator

� Parallel VS sequential: 270X; Adaptive VS parallel: 1.8X

� results: 1) GPU are good platforms to simulate star image due to the highly
data parallelism

2) parallel simulation behaviors are redesigned by using on-chip
textured memory , the performance can be improved

� a balance between the non-kernel overhead and kernel execution; we observe
the reflection point and a choice table is given to direct the selection of two
simulators.

Future work

� 1. Integrated our work into CSTK
� 2. Scaling our simulator to multi-GPUs.

Thanks!

Any Questions?

