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Background

e What Is star simulator: an important
aerospace application, providing star image.

e Star Image simulation
a) position determination
b) satellite attitude calculation
c) Navigation feedback
d) satellite tracker



Intensity model

Blur effect: Point Spread Function
(PSF)

Problem:
far from real-time(30 frame/s)
a) massive algebraic computation

b). proportional to the number of
stars

c). Computation intensive.
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e Seqguential system implementation
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GPU Parallel platform
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Our work

Parallelization of intensity simulation on GPUs and a
parallel star simulator

Implement a adaptive simulator by adapting parallel
simulator to defined problem characteristic with on-
chip memory redesign;

Strategies in achieving high performance of our
simulators

A performance balance analysis to direct the choice
of two GPU simulators



What is the model
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illustrate the intensity distribution of each star projecting on the space imaging
device

The brightness of a star can be denoted by its magnitude.
The brightness of a star and its magnitude can be concluded:

g(m) = Ax2.512"
Gauss point spread function (Gauss blur effect):
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e Region of Interest (ROI) : a pixel circle centered by star point
e The intensity distribution of a star on a pixel:

g(m,X,y)=g(m)x u(x,y)

Fig. 2 shows a segment of simulated star imaged(ll@24) with 2252 stars projected.



What we have done

e Sequential simulator
e Parallel simulator
e Adaptive simulator




Sequential simulator

Star generation
1) stars in the FOV of image plane are retrieved from star catalogue

2) each star contains a magnitude within the range of 0~15 and the
coordinate in image plane

Star brightness computation,

1) calculates the star’s brightness following the formula previously
explained

Pixel computation,
1) the computation of gray value of each pixel at the image sequentially

Output
1) sends out the gray value to form a picture

Simulator Input[1] & output

[1]Parallel Accelerating for Star Catalogue Retrieval Algorithm by means of GPUs



Parallel simulator

1)

Parallel strategy

The intensity model computes the gray value of gaodl by accumulating intensity
contributions from stars within the ROI

two alternative approaches to organize paralletetxen of the model:
pixel centric VS star centric
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pixel centric: Generate Thread Divergence
star centric: Eliminate thread divergence;
Need atomic operation




2) Star-centric parallel model

e Different Star distributes in a independent behavio

e The calculation of star’s distribution on differgmnkels is also independent

e Two levels of data parallelism: a) parallelism agpatars b) parallelism among pixels inside the

ROI of a star
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3) GPU implementation

e Star brightness computation; Pixel computation: two computation stages are off-loaded to
the GPU to be processed in parallel

e Thread Dimension Determination
e Blocks: 2-dimensional ->support enough stars for simulation
e Threads: 2-dimensional -> simulate the two-loop in star intensity distribution

for (preel Y from starPosY-LARGIN to starPosVHVARGIN) J* deterrume preel y-coordmate®!
for {preld from starPos MARGIN to starPos{HWARGIN) /¥ determme pueel x-coordmate®fs
if (preeld & preelt locate m the range of the mage)+
statBat +—caleulate star brightness +
iageP1xelbrmay[poel Vg widthtpoe ]+
+e caleulate poel gray ¢



Model data : The data containers for stars and pixels

Indicator elements in the interface of our kernel to prevent the wrong address access of
parallel threads

Data organization on GPU memory:

For star array: all threads in a warp access the same address.

For pixel array: spatial locality.



Star behavior
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Shared memory in blocks: each star

advantage: one shared memory call costs 1~4 clock cycles while a global memory access

need 400~600 clock cycles of latency.

Registers for threads: each pixel

advantage: relieve the bank collision of share memory generated by different threads

accessing it simultaneously



The kernel Pseudo-code of parallel simmulator

Input: Integer: image width image height. starCount; star®star Array;

QOutput: float™ imagePixel

1. _ shared__ float sharehMem[3]:
2.  threadX «— threadldx x. threadY «— threadldx v, /* 1dentify thread index in a thread block™®/
blockId <« blockldx x + blockldx ¥v* gridDim.x /* 1dentify block index in thread grid */
3. if { blockld = = starCount) return;
4. magnitude «— starArray[blockId] mag:
5. iff threadX ==0 && thread¥Y==0) /® compute and store star’s brightness */
{ sharehlem [0] « calculate the brightness of starArray[blockId]:

shareMem[l] « starArmrav[blockld] posX:

shareMem|[2] « starAmav[blockId] posY: }
6. _ syncthreads(): /* synchronize all threads in this point®/

starPos «— shareMem[1]:

starPosY <« shareMem|[2]:

pixelY « starPox¥ — MARGIN +threadY /* MARGIN is the length of ROI */
8. if { pixelX & pixelY in the range of image)
{ grayDistribution < compute the star’s contribution on this pixel: /* using PSF method */
atomic Add({& imagePixel[pixelY *image width+pixel®]. grayDistribution); }
9. retumn imagePixel;

10. end kernel

pixelX «— starPosX — MARGIN +thread™® Feompute each pixel position in each star’s ROI =/

e ROl of different stars within a short distanceikely to overlap
e Atomic add operation
e the stars in simulation are distributed relativatatter



Adaptive simulator

Fixed star magnitude range: fixed array
Fixed size of ROI: fixed distribution matrix
Lookup table: fixed array + fixed distribution matrix

Build lookup table ahead of kernel, Bound to on-chip texture memory: 1). capitalize 2D
spatial locality 2). Cache.

Shift: computation of distribution to access of lookup table
Balance between computation and access overhead.



(1,0)

(L.1)

Input Star Array: : 2 3 "
Star distribution Array: ©00) 0.1 (L0)| (L) 0.0) | (0.1)
Texture Lookup Table:

The process of building lookup table.



Evaluation of our simulators

e Benchmark 1
e Benchmark 2
e Selection table
e Discussion




Benchmark 1

e Increasingthe numbersof stars simulated on the image (and so the number ¢
thread blocksin grid increases)

e CPU:

10000

Intel Core i7 930 2.80GHz,

GPU: GeForce GTX480
Application performance for sequential, parallelaptive simulators: testl
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Application Speedup of Parallel & Adaptrre Simulator
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Non-kemnel Overhead of Parallel & Adaptve Siulator Kerneltime of Parallel & Adaptive Sirmiator
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The breakdown of non-kernel part for adaptive satart testl :'
T Stars 35 | 98 | 9T | 9% | 98 | 910 | gl | 912 | g3 | g4 | 915 | 916 | U7
Time(ms)
CPUGEU 1 43 245 | 252|251 | 250 251 [ 250 | 251 | 261 | 267 | 271 | 280 | 301
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The execution GFlops : testl
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Benchmark 2
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Increasing the side length of ROI (and so numberreftis per

thread blocks increases)
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1000

| @ Adaptive Sivmilator

0O Sequential Simlator
B Paralle] Smmalator

Zb0)
200

Ivhillizeconds

10

Speedup

o

T

o 0

2 4 f 3 10 12
oide of ROT

14

150

Application Speedup of Parallel & Adaptive Smulator

—— Parallel]

~ sitrlator

—0— Adaptive

Simulator

otde of ROL



Ereakdown Time of Parallel & Adaptive Simulator
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Selection table
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Discussion

e Thread Per Block Restriction on ROI
e Texture Storage Memory Restriction
e Advice on simulators:

when the star image is in a very small-scale (num of stars : 0~27) , the sequential
simulator is good.



conclusion

e Three simulators: sequential, parallel, adaptive simulator

e Parallel VS sequential: 270X; Adaptive VS parallel: 1.8X

e results: 1) GPU are good platforms to simulate star image due to the highly
data parallelism

2) parallel simulation behaviors are redesigned by using on-chip
textured memory , the performance can be improved

e a balance between the non-kernel overhead and kernel execution; we observe
the reflection point and a choice table is given to direct the selection of two
simulators.



Future work

e 1. Integrated our work into CSTK
e 2. Scaling our simulator to multi-GPUs.




Thanks!

Any Questions?




