Intensity model with blur effect on GPUs

applied to large-scale star simulators

Chao LI

Institute of Software, Chinese
Academy of Sciences

Outline

e Background and Motivation
e Model description

e Our simulators

e Evaluation

e Conclusion

e [uture work

Background

e What Is star simulator: an important
aerospace application, providing star image.

e Star Image simulation
a) position determination
b) satellite attitude calculation
c) Navigation feedback
d) satellite tracker

Intensity model

Blur effect: Point Spread Function
(PSF)

Problem:
far from real-time(30 frame/s)
a) massive algebraic computation

b). proportional to the number of
stars

c). Computation intensive.

Liebe. C.C (2002), Hye-Young KIM 2002,
Yang Yan-de(2009), Shaodi Zhang(2010)

e Pascal

o C

e Prolog

e Seqguential system implementation
e Parallelism

GPU Parallel platform

1000
GT200
GT200 = GeForce GTX 280]
750 H G92 = GeForce 9800 GTX
G80 = GeForce 8800 GTX a9
G71 = GeForce 7900 GTX G8o
G70 = GeForce 7800 GTX Uttra
NV40 = GeForce 6800 Ultra
g NV35 = GeForce FX 5950 Ultra G8o
3 500 1 NV30 = GeForce FX 5800
™
o
——Intel CPU
G71 -= NVIDIA GPU
G70

250
32GHz
3.0 GHz Harpertown
NV40
NV30 NVee _**,C‘)ffm/c’/""

0
Oct-02

Mar-04 Jul-05 Nov-06 Apr-08

*High Float Computation ability

Massive thread running(~10K threads)

Little context switching

120

100 -

—|— GPU

G80 Ultra
| CPU P
G80
NV40
N\fo//./ Hapertown
Woodcrest
Y A
.~ Northwood . Presgott EE -
- - =
2003 2004 2005 2006 2007

*High Memory Bandwidth

Little memory latency

GPU computing

Computational
Geosclence

Computational
Medicine

Computational

- Computational

Chemistry

Computational
Modeling

Our work

Parallelization of intensity simulation on GPUs and a
parallel star simulator

Implement a adaptive simulator by adapting parallel
simulator to defined problem characteristic with on-
chip memory redesign;

Strategies in achieving high performance of our
simulators

A performance balance analysis to direct the choice
of two GPU simulators

What is the model

\ [t

Circum-
square

<> Star

S

Stars

/N

////

IIIII

illustrate the intensity distribution of each star projecting on the space imaging
device

The brightness of a star can be denoted by its magnitude.
The brightness of a star and its magnitude can be concluded:

g(m) = Ax2.512"
Gauss point spread function (Gauss blur effect):

_(x=X)+(y-Y)?
2 Pl 257]

H(X,Y) =

e Region of Interest (ROI) : a pixel circle centered by star point
e The intensity distribution of a star on a pixel:

g(m,X,y)=g(m)x u(x,y)

Fig. 2 shows a segment of simulated star imaged(ll@24) with 2252 stars projected.

What we have done

e Sequential simulator
e Parallel simulator
e Adaptive simulator

Sequential simulator

Star generation
1) stars in the FOV of image plane are retrieved from star catalogue

2) each star contains a magnitude within the range of 0~15 and the
coordinate in image plane

Star brightness computation,

1) calculates the star’s brightness following the formula previously
explained

Pixel computation,
1) the computation of gray value of each pixel at the image sequentially

Output
1) sends out the gray value to form a picture

Simulator Input[1] & output

[1]Parallel Accelerating for Star Catalogue Retrieval Algorithm by means of GPUs

Parallel simulator

1)

Parallel strategy

The intensity model computes the gray value of gaodl by accumulating intensity
contributions from stars within the ROI

two alternative approaches to organize paralletetxen of the model:
pixel centric VS star centric

i /Q) &—— star

3 | - | over.lapped
| : R | pixel

©

star

A
v

v a pixel
| inROI

(a) (b)

pixel centric: Generate Thread Divergence
star centric: Eliminate thread divergence;
Need atomic operation

2) Star-centric parallel model

e Different Star distributes in a independent behavio

e The calculation of star’s distribution on differgmnkels is also independent

e Two levels of data parallelism: a) parallelism agpatars b) parallelism among pixels inside the

ROI of a star

Star’
ROI

First parallelism

& & 1T .-~ EH
Star 1 Star 6 B(0,0) B(1,0) B(5.0)
Ol (O] +++ [O] /= H - B
Star 7 Star 12 B(0,1) B(1,1) B(5,1)
o 6l - (O] H B - B
I\ Star 36 , { B(1,5) B(5,5)
/ \ Image plane / Blocks on grid
/ Pixelin \ /;
hreads per
/ ROL '\ block)
4 (0,0)(1,0)(2,0)
< > O, D (1,1) (2,1
v (0,2)[(1,2)(2,2)
A —

3) GPU implementation

e Star brightness computation; Pixel computation: two computation stages are off-loaded to
the GPU to be processed in parallel

e Thread Dimension Determination
e Blocks: 2-dimensional ->support enough stars for simulation
e Threads: 2-dimensional -> simulate the two-loop in star intensity distribution

for (preel Y from starPosY-LARGIN to starPosVHVARGIN) J* deterrume preel y-coordmate®!
for {preld from starPos MARGIN to starPos{HWARGIN) /¥ determme pueel x-coordmate®fs
if (preeld & preelt locate m the range of the mage)+
statBat +—caleulate star brightness +
iageP1xelbrmay[poel Vg widthtpoe]+
+e caleulate poel gray ¢

Model data : The data containers for stars and pixels

Indicator elements in the interface of our kernel to prevent the wrong address access of
parallel threads

Data organization on GPU memory:

For star array: all threads in a warp access the same address.

For pixel array: spatial locality.

Star behavior

star

v

A

Brightness

On-chip memory use

To Ti Tis
Register
v
To-T1s hihared
emory

Shared memory in blocks: each star

advantage: one shared memory call costs 1~4 clock cycles while a global memory access

need 400~600 clock cycles of latency.

Registers for threads: each pixel

advantage: relieve the bank collision of share memory generated by different threads

accessing it simultaneously

The kernel Pseudo-code of parallel simmulator

Input: Integer: image width image height. starCount; star®star Array;

QOutput: float™ imagePixel

1. _ shared__ float sharehMem[3]:
2. threadX «— threadldx x. threadY «— threadldx v, /* 1dentify thread index in a thread block™®/
blockId <« blockldx x + blockldx ¥v* gridDim.x /* 1dentify block index in thread grid */
3. if { blockld = = starCount) return;
4. magnitude «— starArray[blockId] mag:
5. iff threadX ==0 && thread¥Y==0) /® compute and store star’s brightness */
{ sharehlem [0] « calculate the brightness of starArray[blockId]:

shareMem[l] « starArmrav[blockld] posX:

shareMem|[2] « starAmav[blockId] posY: }
6. _ syncthreads(): /* synchronize all threads in this point®/

starPos «— shareMem[1]:

starPosY <« shareMem|[2]:

pixelY « starPox¥ — MARGIN +threadY /* MARGIN is the length of ROI */
8. if { pixelX & pixelY in the range of image)
{ grayDistribution < compute the star’s contribution on this pixel: /* using PSF method */
atomic Add({& imagePixel[pixelY *image width+pixel®]. grayDistribution); }
9. retumn imagePixel;

10. end kernel

pixelX «— starPosX — MARGIN +thread™® Feompute each pixel position in each star’s ROI =/

e ROl of different stars within a short distanceikely to overlap
e Atomic add operation
e the stars in simulation are distributed relativatatter

Adaptive simulator

Fixed star magnitude range: fixed array
Fixed size of ROI: fixed distribution matrix
Lookup table: fixed array + fixed distribution matrix

Build lookup table ahead of kernel, Bound to on-chip texture memory: 1). capitalize 2D
spatial locality 2). Cache.

Shift: computation of distribution to access of lookup table
Balance between computation and access overhead.

(1,0)

(L.1)

Input Star Array: : 2 3 "
Star distribution Array: ©00) 0.1 (L0)| (L) 0.0) | (0.1)
Texture Lookup Table:

The process of building lookup table.

Evaluation of our simulators

e Benchmark 1
e Benchmark 2
e Selection table
e Discussion

Benchmark 1

e Increasingthe numbersof stars simulated on the image (and so the number ¢
thread blocksin grid increases)

e CPU:

10000

Intel Core i7 930 2.80GHz,

GPU: GeForce GTX480
Application performance for sequential, parallelaptive simulators: testl

of

(FERMD

1000

100

B Sequential Sunulator
Paralle] Sunulator
Adaptive Sualator

Iillizecond

10

1 @m%@

o
o

Fa o

#a

2052 2N

279 200 271 2M2 205 2714 2715 2016 27T

Mumber of Star

Application Speedup of Parallel & Adaptrre Simulator

—— Parallel Sumulator

500
—o— Adaptive Sirulator D/j
400

S

25 2t M2t 2 20 201 2012 273 24 205 201G 20T

Mumber of Star

Speedup of parallel simulator, adaptive simulator to sequential simulator: testl

Non-kemnel Overhead of Parallel & Adaptve Siulator Kerneltime of Parallel & Adaptive Sirmiator

—t— Parallel Soulator 357 el S
—0— Adatptve Strlator L el o f
i 25 —0— Adaptive Smmilator /
g——0—0—0—0—0—0 M /
20

I
[
[
[
[~
IT
Ivlillizecond

IGllizeconc
-

. [/
| | A7
0 | Y Y Y S S L Dnululﬂ'ﬂ'M'

Nutnber of Star Mutriber of Star

Non-kernel time in parallel & adaptive simulatastl ~ Kernel time in parallel & adaptive simulator: testl

XY
T
T
000
The breakdown of non-kernel part for adaptive satart testl :'
T Stars 35 | 98 | 9T | 9% | 98 | 910 | gl | 912 | g3 | g4 | 915 | 916 | U7
Time(ms)
CPUGEU 1 43 245 | 252|251 | 250 251 [250 | 251 | 261 | 267 | 271 | 280 | 301
Transmission
Lockup 7 7 7 77 071! 07 7 7 72 | 0.7 72 | 0.7 7
Table Build L W O T ¥ O O A I A VI R IV
Testure Memory | 51 1 020 | 021 | 021 | 020|021 [021 | 020 | 021] 020|021 | 022|022
Binding
The execution GFlops : testl
Number of Parallel Simmlator Adaptive Simmlator
Star (GFLOPS) (GFLOPS)
21T 95.07 038

Benchmark 2

10000

Increasing the side length of ROI (and so numberreftis per

thread blocks increases)

Application Tune of Three Simulators

1000

| @ Adaptive Sivmilator

0O Sequential Simlator
B Paralle] Smmalator

Zb0)
200

Ivhillizeconds

10

Speedup

o

T

o 0

2 4 f 3 10 12
oide of ROT

14

150

Application Speedup of Parallel & Adaptive Smulator

—— Parallel]

~ sitrlator

—0— Adaptive

Simulator

otde of ROL

Ereakdown Time of Parallel & Adaptive Simulator

——Farallel Kernel
- —0— hdaptive Kernel

| —k—TFarallel Honkernel

—B— fdaptive Hon-kernel

.

el
n——'—“nfl—’n

g
g
L
: _Pﬂw___,afﬁ“”:}f
=4
f
0

2 4 B g 10 12 14
side of ROI

Breakdown of parallel simulator,
adaptive simulator: test2

Percentage of Non—kernel Owerhead in

Ipplication Time

100

an%

e —
Bl \&\t\

T

40 | —a—Parallel =

Percentage (00

20 T o Adaptive

I:I]]]]]]

2 | i & 1 12 14
s1de of ROI
Percentage of non-kernel overhead for

parallel simulator,
adaptive simulator: test2

Selection table

o . @
ﬁpp]ic:atic:n Speedup of Paralle] & .L":'Ldapti‘ifﬁ Cimilator Application Bpeedup of Parallel & Adaptive Swrulator

@00

250 —— Paralle] Sinulator

—— Patalle] 500

200 F Simolator : —o— Adaptive Sirmilator D/]
400

150 | —0— Adaptive /?_,4—{—& /

oy
3 oy
mtmulator i
oy
Z ! M

=

2 4 E’ 8 1[] 12]-4 205 2% 2 2 M9 270 2L 2M2 M5 29 25 2Me 2T
Side of ROT Mumber of Star

Balance : —_
the execution of star
distribution with fixed star
magnitude range from
kernel VS Paralle]l Simulator 4 =
texture memory access by
creating a lookup table in
texture memory Adaptive Stmulator > =

~———_Turning Point

Simulator Choice e

Paralle] Simulator =

Number of Star(27) | Size of ROI (10)

Adaptive Stmulator =

Discussion

e Thread Per Block Restriction on ROI
e Texture Storage Memory Restriction
e Advice on simulators:

when the star image is in a very small-scale (num of stars : 0~27) , the sequential
simulator is good.

conclusion

e Three simulators: sequential, parallel, adaptive simulator

e Parallel VS sequential: 270X; Adaptive VS parallel: 1.8X

e results: 1) GPU are good platforms to simulate star image due to the highly
data parallelism

2) parallel simulation behaviors are redesigned by using on-chip
textured memory , the performance can be improved

e a balance between the non-kernel overhead and kernel execution; we observe
the reflection point and a choice table is given to direct the selection of two
simulators.

Future work

e 1. Integrated our work into CSTK
e 2. Scaling our simulator to multi-GPUs.

Thanks!

Any Questions?

