
> Towards High-Level Programming of Multi-GPU
Systems Using the SkelCL Library

Michel Steuwer, Philipp Kegel, and Sergei Gorlatch
University of Muenster, Germany

2Motivation

• Popular programming approaches for Graphics Processing Units (GPUs):

• Challenges when using OpenCL or CUDA:
• explicit coordination of thousands of threads
• explicit data transfers to and from GPUs
• explicit handling of complex memory hierarchies

• Additional challenges for multi-GPU systems:
• explicit work balancing to keep all GPUs busy
• explicit managing of data transfers between GPUs

⇒ low-level coding makes GPU programming complex and error-prone

Idea Provide high-level abstractions to simplify programming

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

3SkelCL – Overview

• SkelCL is a library introducing high-level abstractions on top of OpenCL

SkelCL
high-level

Memory Computations

OpenCL API low-level

• Built on top of OpenCL:
• hardware- and vendor-independent, portable
• access to arbitrary OpenCL devices, e. g. GPUs or multi-core CPUs

• Two high-level features:
• Computations: conveniently expressed using pre-implemented parallel patterns
• Memory: implicitly managed using abstract vector data type

• Goals:
• Simplify programming by providing high-level abstractions
• Eliminate explicit data transfers
• Especially address multi-GPU systems

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

4Algorithmic Skeletons

• User expresses computations using pre-implemented parallel patterns,
a. k. a. algorithmic skeletons

• Skeletons are customized by application-specific functions
• Four basic skeletons currently provided (f and ⊕ application-specific)

Map Zip Reduce Scan (Prefix Sum)

x0

x1

...

xn

y0

y1

...

yn

f

f

f

x0

x1

...

xn

y0

y1

...

yn

z0

z1

...

zn

⊕

⊕

⊕

x0

x1

...

xn z

⊕

...

⊕

x0

x1

...

xn

y0

y1

...

yn

⊕

⊕

...

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

5Abstract Data Type

• Abstract vector data type makes memory accessible by CPU and GPU
• For programmer’s convenience:

• Memory is allocated automatically on the GPU
• Implicit data transfers between the main memory and the GPU memory

• Vectors are used as input and output for skeletons
• SkelCL automatically ensure: input vectors’ data are available on GPU

• We use lazy copying to minimizes data transfers:
Data is not transfered right away, but only when needed

Example: Output vector is used as input to another skeleton
• The output vector’s data is not copied to host but resides in device memory

⇒ no data transfer needed, which leads to improved performance

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

6

SkelCL – First Example
Dot product

• Calculation of the vector dot product:
∑size−1

i=0 ai · bi
float dot_product(const std::vector <float >& a,

const std::vector <float >& b) {
SkelCL ::init(); // initialize SkelCL

// declare computation by customizing skeletons:
SkelCL ::Zip <float > mult(

"float func(float x, float y){ return x*y; }");
SkelCL ::Reduce <float > sum_up(

"float func(float x, float y){ return x+y; }");

// create data vectors:
SkelCL ::Vector <float > A(a.begin (), a.end()),

B(b.begin(), b.end());
// perform calculation:

SkelCL ::Vector <float > C = sum_up(mult(A, B));
return C.front(); // access result

}
• SkelCL: 7 lines of code
• OpenCL: 68 lines of code (NVIDIA programming example)

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

7Extension: Additional Arguments

• Traditionally, skeletons have fixed number of arguments
• SkelCL extends this:

• An arbitrary number of arguments can be passed to the skeleton
⇒ Enables more algorithms to be expressed using skeletons

Example: SAXPY calculation in BLAS (Y = a ∗ X + Y)
• Can be easily expressed using the zip skeleton
• Scalar a is required in the computation and passed as additional argument:

/* create skeleton with one additional argument */
Zip <float > saxpy (

"float func(float x, float y, float a) { return a*x+y; }");

/* create input vectors */
Vector <float > X(SIZE); fillVector(X);
Vector <float > Y(SIZE); fillVector(Y);
float a = fillScalar ();

/* execute skeleton , pass additional argument (a) */
Y = saxpy(X, Y, a);

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

8Programming Multi-GPU Systems

• Programming multi-GPU systems is especially complicated:
• explicit distribution of data among GPUs
• explicit data exchange between GPUs

• To address this, SkelCL supports three data distributions:

single block copy
CPU GPUs

0 1 2 3
CPU GPUs

0 1 2 3
CPU GPUs

0 1 2 3

• Distribution of input vector implies automatic parallelization:
• single ⇒ skeleton is executed on a single GPU

• block ⇒ all GPUs cooperate in skeleton execution

• copy ⇒ skeleton is executed on all GPUs separately

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

9Programming Multi-GPU Systems

single block copy
CPU GPUs

0 1 2 3
CPU GPUs

0 1 2 3
CPU GPUs

0 1 2 3

• Distribution is either set by programmer or by default

• Changing distribution at runtime ⇒ automatic data exchange. e.g.:
// set single as intitial distribution
vector.setDistribution(Distribution :: single);
...
// changing from single to block distribution
vector.setDistribution(Distribution :: block);

• All required data transfers are performed automatically by SkelCL!

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

10Application Study: Tomography

• Application study: List-Mode Ordered Subset
Expectation Maximization (list-mode OSEM)

• List-mode OSEM1is a time-intensive iterative image
reconstruction algorithm for computer tomography

• 3D-images are reconstructed from sets of events
recorded by a scanner; events are split into subsets
which are processed iteratively

• For every subset, two steps are performed:
• All events are used to process an error image (c)
• The error image is then used to update a

reconstruction image (f)

• Up to several hours on a common PC ⇒ not
practical

1T. Kösters et al. EMrecon: An expectation maximization based image reconstruction
framework for emission tomography data. NSS/MIC Conference Record, IEEE, 2011

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

11List-mode OSEM

• The two steps require different parallelization approaches:
• compute_error: divide events (e) across processing units, every processing

unit requires copy of error image (c) and reconstruction image (f)
• update: divide error image (c) and reconstruction image (f)

• Data partitioning and data transfers between CPU and two GPUs:
G
P
U

0
C
P
U

G
P
U

1

e f

e f

e f

c

c

⇒

⇒

c

c

c

f

f

f

f

f

⇒

⇒

f

compute error update

• In a multi-GPU system, multiple data exchanges are required every iteration

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

12List-mode OSEM in SkelCL

• We can easily express the identified distribution of data in SkelCL:

for (l = 0; l < num_subsets; l++) {
SkelCL ::Vector <Event > events = read_events(l);

events.setDistribution(Distribution :: block); // divide events
f.setDistribution(Distribution ::copy); // copy recon. image
c.setDistribution(Distribution ::copy); // copy error image

// map skeleton

compute_error_image(index , events , events.sizes (), f, out(c));

f.setDistribution(Distribution ::block); // change distribution
c.setDistribution(Distribution ::block , add);

// zip skeleton

update_reconstruction_image(f, c, f);

}

• All data movements are performed automatically by SkelCL

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

13Experimental Results

250

0

50

100

150

200

Device part

Host part

SkelCL OpenCL

P
ro

g
ra

m
 S

iz
e
 (

LO
C

)

4

0

1

2

3

s

SkelCL OpenCL

R
u

n
ti

m
e
 i
n

 S
e
co

n
d

s

1 Device
2 Devices
4 Devices

• LOC for the host part was drastically reduced: from 249 to only 32
• Runtime overhead of SkelCL is less than 5%

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

14Conclusion

• SkelCL: a high-level programming library for single- and multi-GPU systems

• Skeletons implicitly express parallel calculations on GPUs
⇒ No explicit coordination of thousands of threads
⇒ No explicit handling of the complex memory hierarchies

• Skeletons are flexible due to the ability to pass additional arguments

• Abstract vector data type implicitly transfers data to and from the device
⇒ No explicit data transfers to and from GPUs

• Distributions simplify parallelization across multiple GPUs
⇒ No explicit managing of data transfers between GPUs

• Experiments show minor overhead and significantly shorter codes

SkelCL is open-source and available at:
http://skelcl.uni-muenster.de

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

http://skelcl.uni-muenster.de

15What is next?

• Fully support heterogeneous systems
Advantage We built on top of OpenCL

⇒ SkelCL already can use every OpenCL device

Challenges • Find fair work balancing between different compute devices

• Optimize skeleton implementations for different devices

• Add two-dimensional data type

• Integrate more skeletons

M. Steuwer (University of Muenster): Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

	Introduction
	SkelCL

