Nuclear Reaction Codes Development

T. Kawano, M.B. Chadwick, P. Talou, L. Bonneau
Los Alamos National Laboratory
Nuclear Reaction Theories above Resonance Region

- Optical Model
- Coupled-Channels Model
- DWBA
- Hauser-Feshbach Model
- Pre-Equilibrium Model
- Level Density
- Nuclear Structure
- Fission Barrier
- DSD Capture Model
- Cross-Section Distribution
- Energy Distribution
- Angular Distribution
- Total, Elastic, Direct Inelastic Cross-Sections
- Particle Emission
- Fission
- Pre-Equilibrium Model
- High Energy Capture
Status

- Coupled-Channels code, ECIS, is widely used.
- There are also many optical model codes available.
 - SCAT2, DWUCK4, CoH, ELIESE-3, CCOM, TWOSTP, etc.

Recent Topics and Issues

- Coding of ECIS is so tight, and it is almost impossible to make any modification to this code.
- A new compact module (Fortran95) for spherical calculations is available (LANL), which is a part of DSD module.
- A consistent treatment of deformation effect in the coupled-channels method and the Hauser-Feshbach model is needed.
Hauser-Feshbach Model

Status

- Extensive efforts have been paid to make the HF codes in many countries.
 - GNASH, McGNASH (LANL), EMPIRE-2 (BNL/IAEA), TALYS (NRG, Petten)
 - more new codes are also available in Japan and China.

Recent Topics and Issues

- The HF has been used for several decades, and it is known that the calculated quantities agree fairly well with experimental observables, when a reasonable parameter set is chosen.
- A full Monte-Carlo approach to calculate an exclusive cross section is feasible. The technique make us possible to evaluate a correlated γ and neutron emission, which is needed by an active interrogation technique.
- Further efforts needed to improve model parameters
 - Level densities — well-understood systematics or microscopic approach
 - Fission barriers — nuclear structure calculation, fission dynamics
 - γ-ray strength function — well-understood systematics or microscopic approach
Pre-Equilibrium Model

Status

- We still rely on a classical exciton model, because:
 - the classical model works well in many cases (cf. PRECO).
 - quantum-mechanical models have not been well understood yet.
 - TUL model in EMPIRE for n and p emissions
 - FKK/NWY one-step model in GNASH calculation (optional)
- McGNASH has an interface to a hybrid model, DDHMS.
- GEANIE experiments at LANSCE revealed an importance of PE spin physics.

Recent Topics and Issues

- Theoretical development in the quantum mechanical pre-equilibrium reaction is still needed.
- A high-performance computer will help a fully microscopic multi-step reaction calculations.
- The model also requires up-to-date nuclear structure calculations.
General Remarks Relevant to Code Development

- **Coding Style**
 - We can take advantages of modern computer languages to write a code — Fortran90/95, C, C++

- **Interface to Model Parameters**
 - IAEA has organized an international collaboration to compile a nuclear reaction model input parameter library, RIPL, and US has been involved in this project deeply. Many of model codes have an interface to this library.

- **International Collaboration**
 - International (or inside USA) collaborations on the code development are one of the key issues to improve our capability to predict unknown cross sections.
 - A framework in which model codes are freely exchangeable is needed.