
Exploiting Latent I/O Asynchrony in

Petascale Science Applications

Patrick Widener, Mary Payne, Patrick Bridges

University of New Mexico

Matthew Wolf, Hasan Abbasi, Scott McManus, Karsten Schwan

Georgia Institute of Technology

The research described in this presentation was supported by the
National Science Foundation’s HECURA program, the Department of

Energy’s Office of Science, and the U.S. Defense Threat Reduction Agency

Data intensities increasing

everywhere

Storage is challenging, let alone analysis: write-once, read-never

Large Hadron Collider
2 PB/sec

NG power grids
45 TB/day

Climate modeling
8 PB/run

ORNL Chimera
35K cores, 550 KB/core/sec => ~18 GB/sec

Data extract -> store -> analyze/visualize will not scale

ORNL GTC fusion simulation: 60

TB/run

 Analysis
•! Reorganization, cleaning
•! Filtering, extraction

•! Monitoring, playback

Gyrokinetic Toroidal Code
•! > 10000 nodes ORNL Cray XT4
•! 1024:1 compute / I/O ratio
•! Limited I/O node disk BW
•! Scarce memory, CPU on compute
nodes

Checkpoint / Restart
•! Periodic export of all particles
(potentially >109)

•! 10% of node memory (200MB/core)
•! ~8TB/write on 40K core XT4

Lustre
PFS

after run completed

I/O Demands are limiting scientific

applications on these systems

Problem: In-band data filtering, transformation, and analysis
slows core scientific computation with ancillary tasks

!! Thin pipe to I/O subsystem (I/O network, disk spindles) r

!! I/O generally synchronous because compute node
memory storing the I/O data is scarse

!! Metadata updates are frequently slow and often
unnecessary

!! Lack of systems to enable application scientists to move

tasks out of band

Decoupled data annotation &

processing

Contribution: I/O techniques to decouple filtering,
transformation, and analysis from compute nodes

!! IOgraphs decouple data manipulations in space from
applications

!! Metabots decouple data manipulations in time and space

Enabling Technologies:

!! DataTaps export data and “just enough” metadata using a smart,
context-aware RDMA transfer

!! Lightweight File System (LWFS) provides minimum filesystem semantics

Using these tools to decouple ancillary operations can improve application
I/O throughput, while giving end-users better abstractions to work with

Software architecture for “in-transit”

data annotation and processing

Datatap Client

Datatap Client

Datatap Client

Datatap
Server

IOgraph
Stone

Datatap Client

Datatap Client

Datatap Client

Datatap Client

Datatap Client

IOgraph
Stone

IOgraph
Stone

IOgraph
Stone

Datatap
Server

IOgraph
Stone

Metabot

IOgraph
Stone

Metabot

I/O Service Nodes Storage NodesCompute Nodes

IOgraph
Stone

IOgraph
Stone

IOgraphs decouple operations in space

IOgraph
bounding box

filter

IOgraph I/O
scheduler

IOgraph
router

IOgraph data
transformer

IOgraph
router

Other
data sink

Stream visualization

Parallel file
storage

Streaming from
GTC DataTap

Adjust # of nodes,
processes/node for
load or bandwidth
distribution

IOgraph
output
nodes

Act on data in transit
•! Dynamic overlay mapped to cluster,

 non-cluster nodes
•! Streaming model, structured data
•! Dynamically generated code, shared

 objects implement operations

What should IOgraphs look like?

!! For buffering and distribution of I/O: # of nodes, # of
processes/node?

...
transmitter scheduler

storage0

storage1

storage2

storageN

GTC restart
message
188 MB

round-robin

IOgraph

Simulates
DataTap

…

!! Modeling construction of GTC restart file

!! Transmitter sends 200 messages

!! Scheduler round-robins messages to storage nodes, which write to
disk

Adding nodes to IOgraph shortens

I/O phase

0

200

400

600

800

1000

1200

1400

1 2 4 8

Transmitter

Scheduler

Storage Client

Second storage node reduces
backpressure, speeding up

transmitter

Constrained by disk bandwidth

Number of storage nodes

T
im

e
to

 c
o
m

p
le

ti
o
n
 (

se
c)

Metabots decouple operations in time

!! Some operations can or must be delayed

!! Data formatting in long-running MPP codes

!! Some data products may not be needed

!! Service node numbers may be limited or overcommitted

!! Small, modular programs; specification-based

!! Well-defined input, output, transformation

!! Data consistency/availability, co-scheduling information

!! Ideal for just-in-time, on-demand conversions or metadata

fixups

!! Use same metadata, transport infrastructure as IOgraphs

Deferring directory metadata

creation

Lazy metadata construction

reduces wall-clock time

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

Raw

Metabot

In-band

0

500

1000

1500

2000

Raw

Metabot

In-band

!! In-band is 70% slower on flat structure

!! In-band is > 9X slower on tree structure

!! Metabot reconstruction time similar to in-band time, but decoupled

se
c

Directory depth

se
c

Number of files created

Flat structure Tree with 5 levels, 2 dir/level

!! Create structure without directory information (LANL FDTREE)

!! Fix up later (add to LWFS name service) with metabot

Combining IOgraphs and metabots

reduces overall execution time

In-band
Processing

Metabot
Processing

Total

Single In-series writer/sorter 2113.16 -- 2113.16

2 storage nodes + metabot 250.91 526.71 777.62

4 storage nodes + metabot 216.52 526.71 743.23

Re-orderer

In-band with IOgraph

Collects all messages
Separate
thread

produces
total in-

order restart
file

Metabot

storage0

storage1

storage2

storageN

…

File per message

Metabot

In-order
output

!! Create a fully-sorted restart file from collection of messages?

!! Single sorter vs. write-now, merge-later

Comparison to other work

!! High-performance parallel file systems
!! Many choices: NASD, Panasas, PVFS, Lustre, GPFS
!! Separation of data from metadata supports our approach
!! Manipulating data en route to/from storage

!! Availability of metadata enables better scheduling, staging, buffering
decisions

!! DataCutter and related tools
!! Similar goals (e.g. customize end-user visualizations)
!! Richer descriptions for filter and transformation, asynchrony

!! Out-of-band techniques are similar to workflow systems
!! Kepler, Pegasus, Condor/G, IRODS, others
!! Specifications like Data Grid Language

!! We focus on fine-grain scheduling, tightly-coupled systems, in-band /
out-of-band data manipulation

!! Can metabots be workflow actors?

These techniques provide traction on

data-intensive applications

!! IOgraphs and metabots provide several benefits

!! Shorten application I/O phases

!! Make analysis easier by making customization easier

!! Reduce net storage amounts

!! Generate custom metadata

!! Accommodate anonymous downstream consumers

Using these tools to decouple ancillary operations can
improve application I/O throughput, while giving end-users

better abstractions to work with

Future Work: Dynamic decoupling

!! Run-time scheduling decisions about whether to
implement operations in IOgraph or metabots

!! Longer-range goal is to incorporate feedback

!! CPU / node availability

!! Network bandwidth

!! Data consistency / availability

!! Anonymous / on-demand consumers

Completely in-band
(IOgraph-based)

Mix of IOgraph &
Metabot actions

Completely out-of-band
with Metabots

Application I/O
slider

Acknowledgements

Greg Eisenhauer, Ada Gavrilovska (Georgia Tech)

Barney Maccabe, Scott Klasky (Oak Ridge National
Laboratory)

Ron Oldfield (Sandia National Laboratories)

