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Introduction

« Large scale multi-core clusters are becoming
Increasingly common

 MPI is the de-facto programming model for HPC

* The MPI-1 specification required the number of
processes in a job to be fixed at job launch

* Dynamic Process Management (DPM) feature
was introduced in MPI-2 to address this
limitation
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Dynamic Process Management

Interface
* Applications can use the DPM interface to

spawn new processes at run-time depending on
compute node availability

» Beneficial for
— Multi-scale modeling applications
— Applications based on master/slave paradigm

« MPI offers two types of communicator objects
— Intra-communicator and inter-communicator

 The DPM interface uses an inter-communicator
object for communication between the original
process set and the spawned process set
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Dynamic Process Interface
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InfiniBand

* Almost 30% of the TOP500 Supercomputers use
InfiniBand as the high-speed interconnect
* Provides

— Low latency (~1.0 microsec)

— High bandwidth (~3.0 Gigabytes/sec unidirectional
with QDR)

* Necessary to have MPI implementations that

offer efficient dynamic process support over
InfiniBand
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InfiniBand (Cont'd)

Remote DMA (RDMA) Operations
Supports atomic operations

Offers four transport modes
— Reliable Connection (RC)

— Unreliable Datagram (UD)

— Reliable Datagram (RD)

— Unreliable Connection (UC)

Trade-off between network reliability, memory
footprint and processing overheads
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Problem Statement

 What are the challenges involved in designing

dynamic process support over InfiniBand
networks?

 What is the overhead of having a dynamic
process interface?

* How do the InfiniBand transport modes (RC and
UD) impact the performance of the dynamic
process interface?

« Can we design a benchmark-suite to evaluate

the performance of the dynamic process
interface over InfiniBand?
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Dynamic Process Interface Design

MPI Application

Dynamic Process Interface

Startup

Spawn

Scheduling

MPI Communication

Communication
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Startup Component — Spawn and
Scheduling

* Applications interact with the job launcher tool
over the management network during the spawn

phase
* Two job launchers considered
— Multi-Purpose Daemon (MPD)
— Mpirun_rsh (a scalable job launching framework)

« Scheduling and mapping the dynamically

spawned processes is critical to the performance
of the application

« Two allocations (block and cyclic) considered
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Startup Component —
Communication

Parent Process group Spawned Process group
' MPI_Init ‘ J MPIL_nit ]
i I vl !
| MPI_Comm_spawn | [MPI_Comm_get_parent ]
, v ,
' MPI_Comm_accept y

l [MPI_Comm_connect ]

v

Process group information exchange

l

Inter-Communicator Creation
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Startup Component —

Communication

Connection establishment overhead for each
spawn

* Design choices for inter-communicator setup
— RC and UD transport modes

UD mode has less overhead
— Reliability needs to be added

— Desirable for applications spawning small process
groups and frequently

RC mode has little higher overhead

— Provides reliability
— Desirable for large and infrequent spawns

OHIO
SIATE



Outline

* Designing the Benchmark-suite
* Experimental results
» Future Work and Conclusions

OHIO



Spawn Latency Benchmark

 Measures the average time spent in the
MP| _Comm_Spawn routine at the parent-root

Process

* Necessary to minimize the overhead of
spawning new jobs as it has a significant impact
on the overall application performance

 Benchmark has provision to change

— size of the parent communicator
— size of the spawned child communicator
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Spawn Rate Benchmark

 Measures the rate at which an MPI
implementation can perform the
MPIl _Comm_Spawn operation

* The spawn rate metric gives insights into how
frequently MPI processes can spawn
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Inter-Communicator Point-to-Point
Latency Benchmark

* Average time required to exchange data
between processes over an inter-communicator

* Inter-communicator message delivery involves
mapping from local process group to the remote
process group

* |f connections are setup on-demand, this
benchmark captures both the connection
establishment and the message exchange steps

* Inter-Communicator point-to-point exchanges
are critical to the performance of the applications
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Implementation

* Proposed designs have been implemented In
MVAPICH2 1.4

« MVAPICH/MVAPICH2
— Open-source MPI project for InfiniBand and 10GigE/iWARP
— Empowers many TOP500 systems
— Used by more than 975 organizations in 51 countries

— Available as a part of OFED and from many vendors and Linux
Distributions (RedHat, SUSE, etc.)

— http://mvapich.cse.ohio-state.edu

* Micro-benchmarks were implemented as a part of the
OSU MPI micro-benchmarks (OMB)

— http://mvapich/cse.ohio-state.edu/benchmarks/
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Experimental Setup

 64-node Intel Clovertown cluster

Each node has
— 8 cores and 6GB RAM

« Evaluations up to 512 cores
InfiniBand Double Data Rate (DDR)
MVAPICHZ2 1.4RC1 and OpenMPI 1.3
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Spawn Latency Benchmark
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» UD design shows benefit beyond job size of 32

« MPD startup mechanism is faster than mpirun_rsh for small job size,
however mpirun_rsh performs better as job size increases

» Up to 128 processes, MV2-mpirun_rsh-RC and OpenMPI perform similarly

» For > 128 processes, MV2-mpirun_rsh-UD performs the best
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Spawn Latency Benchmark

40.00 I

35.00

= =MV2-MPD-RC
=C=MV2-MPD-UD
=a=MV2-mpirun_rsh-RC

N W
a S
o O
o O

Latency (usec)

=X=MV2-mpirun_rsh-UD 15.00
¥OpenMPI 10.00
5.00
0.00 E
1 2 4 8 16 32 64 128 256 512

Number of Processes

Block Rank Allocation

 Block allocation of ranks shows the effect of HCA contention on spawn
time

» The UD-based design performs better due to lesser overhead

« MV2-mpirun_rsh-UD design performs the best
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Spawn Rate Benchmark
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» UD designs provide better spawn rates than RC ones because of
the higher cost of creating and destroying RC queue pairs

* MPD designs provide higher spawn rates than mpirun_rsh for small
jobs due to the higher initial overhead in the later case

* Mpirun_rsh scales very well and maintains a steady spawn rate
with increasing job size.



Inter-Communicator Point-to-
Point Latency Benchmark
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» Performance is very similar for small messages
« Performance differs in the medium message length (depends on
rendezvous threshold values)

* For large messages (64K), MV2 delivers better performance
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Application Run-time (s)

Parallel POV-Ray Evaluati

o,

n

4096 T

2048 "

\

—
()
N
N

7
\
K

512

MV2-MPD-RC

256

—
‘\'E‘s\% ——MV2-MPD-UD

128

64

===MV2-mpirun_rsh-RC2

32

=X=MV2-mpirun_rsh-UD

16

¥ Traditional(MV/2)

- N b

2 4 8 16 32 64

Number of Processes

» Re-designed a dynamic process version of the POV-Ray application
* Render a 3000x3000 glass chess board with global illumination
» The dynamic process framework adds very little overhead
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Software Distribution

 The new DPM support is available with MVAPICH2 1.4
— Latest version is MVAPICH2 1.4RC2
— Downloadable from http://mvapich.cse.ohio-state.edu

* Micro-benchmarks will be available as a part of OSU MPI
Micro-benchmarks (OMB) in the near future
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Conclusions & Future Work

* Presented alternative designs for DPM interface on InfiniBand

* Proposed new benchmarks to evaluate DPM designs

« MPD based framework is suitable for frequent small spawns

« Mpirun_rsh based startup is recommended for large infrequent spawns
 DPM interface has very little overhead on the application performance

Future Work:

« Explore a hybrid model that switches between UD and RC modes
based on job size

« Evaluate the performance of collectives and one-sided routines for the
dynamic process interface
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