Designing and Evaluating MPI-2 Dynamic
Process Management Support for
InfiniBand

Tejus Gangadharappa, Matthew Koop and
Dhabaleswar. K. (DK) Panda

Computer Science & Engineering Department
The Ohio State University

OHIO
SIATE

Outline

* Motivation and Problem Statement
* Dynamic Process Interface design
* Designing the Benchmark-suite

* Experimental results

* Future Work and Conclusions

OHIO
SIATE

Introduction

« Large scale multi-core clusters are becoming
Increasingly common

 MPI is the de-facto programming model for HPC

* The MPI-1 specification required the number of
processes in a job to be fixed at job launch

* Dynamic Process Management (DPM) feature
was introduced in MPI-2 to address this
limitation

OHIO
SIATE

NETWORK-BASED
I LOMBUTNG Ll

BORAT ORY

Dynamic Process Management

Interface
* Applications can use the DPM interface to

spawn new processes at run-time depending on
compute node availability

» Beneficial for
— Multi-scale modeling applications
— Applications based on master/slave paradigm

« MPI offers two types of communicator objects
— Intra-communicator and inter-communicator

 The DPM interface uses an inter-communicator
object for communication between the original
process set and the spawned process set

OHIO
SIAIE

Dynamic Process Interface

Inter-Communicator Creation

Parer‘ ‘d rOOt

Initial Process Spawned Process
group group

OHIO
SIATE

InfiniBand

* Almost 30% of the TOP500 Supercomputers use
InfiniBand as the high-speed interconnect
* Provides

— Low latency (~1.0 microsec)

— High bandwidth (~3.0 Gigabytes/sec unidirectional
with QDR)

* Necessary to have MPI implementations that

offer efficient dynamic process support over
InfiniBand

OHIO
SIATE

InfiniBand (Cont'd)

Remote DMA (RDMA) Operations
Supports atomic operations

Offers four transport modes
— Reliable Connection (RC)

— Unreliable Datagram (UD)

— Reliable Datagram (RD)

— Unreliable Connection (UC)

Trade-off between network reliability, memory
footprint and processing overheads

OHIO
SIATE

Problem Statement

 What are the challenges involved in designing

dynamic process support over InfiniBand
networks?

 What is the overhead of having a dynamic
process interface?

* How do the InfiniBand transport modes (RC and
UD) impact the performance of the dynamic
process interface?

« Can we design a benchmark-suite to evaluate

the performance of the dynamic process
interface over InfiniBand?

OHIO
SIAIE

Outline

* Dynamic Process Interface design
* Designing the Benchmark-suite

* Experimental results

» Future Work and Conclusions

OHIO
SIAIE

Dynamic Process Interface Design

MPI Application

Dynamic Process Interface

Startup

Spawn

Scheduling

MPI Communication

Communication

OHIO
SIATE

romicrort| | RS

LA BORAT ORY

Startup Component — Spawn and
Scheduling

* Applications interact with the job launcher tool
over the management network during the spawn

phase
* Two job launchers considered
— Multi-Purpose Daemon (MPD)
— Mpirun_rsh (a scalable job launching framework)

« Scheduling and mapping the dynamically

spawned processes is critical to the performance
of the application

« Two allocations (block and cyclic) considered

OHIO
SIATE

Startup Component —
Communication

Parent Process group Spawned Process group
' MPI_Init ‘ J MPIL_nit]
i I vl !
| MPI_Comm_spawn | [MPI_Comm_get_parent]
, v ,
' MPI_Comm_accept y

l [MPI_Comm_connect]

v

Process group information exchange

l

Inter-Communicator Creation

OHIO
SIATE

Startup Component —

Communication

Connection establishment overhead for each
spawn

* Design choices for inter-communicator setup
— RC and UD transport modes

UD mode has less overhead
— Reliability needs to be added

— Desirable for applications spawning small process
groups and frequently

RC mode has little higher overhead

— Provides reliability
— Desirable for large and infrequent spawns

OHIO
SIATE

Outline

* Designing the Benchmark-suite
* Experimental results
» Future Work and Conclusions

OHIO

Spawn Latency Benchmark

 Measures the average time spent in the
MP| _Comm_Spawn routine at the parent-root

Process

* Necessary to minimize the overhead of
spawning new jobs as it has a significant impact
on the overall application performance

 Benchmark has provision to change

— size of the parent communicator
— size of the spawned child communicator

OHIO
SIATE

Spawn Rate Benchmark

 Measures the rate at which an MPI
implementation can perform the
MPIl _Comm_Spawn operation

* The spawn rate metric gives insights into how
frequently MPI processes can spawn

OHIO
SIATE

NETWORK-BASED
e, e TworkBAsED [

LA BORATORY

Inter-Communicator Point-to-Point
Latency Benchmark

* Average time required to exchange data
between processes over an inter-communicator

* Inter-communicator message delivery involves
mapping from local process group to the remote
process group

* |f connections are setup on-demand, this
benchmark captures both the connection
establishment and the message exchange steps

* Inter-Communicator point-to-point exchanges
are critical to the performance of the applications

OHIO
SIAIE

Implementation

* Proposed designs have been implemented In
MVAPICH2 1.4

« MVAPICH/MVAPICH2
— Open-source MPI project for InfiniBand and 10GigE/iWARP
— Empowers many TOP500 systems
— Used by more than 975 organizations in 51 countries

— Available as a part of OFED and from many vendors and Linux
Distributions (RedHat, SUSE, etc.)

— http://mvapich.cse.ohio-state.edu

* Micro-benchmarks were implemented as a part of the
OSU MPI micro-benchmarks (OMB)

— http://mvapich/cse.ohio-state.edu/benchmarks/

OHIO
SIATE

Outline

* Experimental results
 Future Work and Conclusions

OHIO

Experimental Setup

 64-node Intel Clovertown cluster

Each node has
— 8 cores and 6GB RAM

« Evaluations up to 512 cores
InfiniBand Double Data Rate (DDR)
MVAPICHZ2 1.4RC1 and OpenMPI 1.3

OHIO
SIATE

Spawn Latency Benchmark

ﬁ

40.00 |
35.00
‘O 30.00
= =MV2-MPD-RC @
& 25.00
~C=MV2-MPD-UD =
==MV2-mpirun_rsh-RC 5 20.00
c
“X=MV2-mpirun_rsh-UD @ 15.00
#-OpenMP| S 10,00

8 16 32 64 128 256 512
Number of Processes

Cyclic Rank Allocation

» UD design shows benefit beyond job size of 32

« MPD startup mechanism is faster than mpirun_rsh for small job size,
however mpirun_rsh performs better as job size increases

» Up to 128 processes, MV2-mpirun_rsh-RC and OpenMPI perform similarly

» For > 128 processes, MV2-mpirun_rsh-UD performs the best

OHIO
SIATE

ﬁ

Spawn Latency Benchmark

40.00 I

35.00

= =MV2-MPD-RC
=C=MV2-MPD-UD
=a=MV2-mpirun_rsh-RC

N W
a S
o O
o O

Latency (usec)

=X=MV2-mpirun_rsh-UD 15.00
¥OpenMPI 10.00
5.00
0.00 E
1 2 4 8 16 32 64 128 256 512

Number of Processes

Block Rank Allocation

 Block allocation of ranks shows the effect of HCA contention on spawn
time

» The UD-based design performs better due to lesser overhead

« MV2-mpirun_rsh-UD design performs the best

OHIO
SIATE

OHIO
SIATE

Spawn Rate Benchmark

12 f{
10

(0]

\
A\N

= =MV2-MPD-RC

»

Spawn Rate

\{—'\D\G ~C=MV2-MPD-UD
S MV2-mpirun_rsh-RC

‘
\\ =X=MV2-mpirun_rsh-UD

2

= OpenMPI

OI T T T # - ' :‘:7”& ﬂ
1 2 4 8 16 32 64 128

256 512

Number of Processes

» UD designs provide better spawn rates than RC ones because of
the higher cost of creating and destroying RC queue pairs

* MPD designs provide higher spawn rates than mpirun_rsh for small
jobs due to the higher initial overhead in the later case

* Mpirun_rsh scales very well and maintains a steady spawn rate
with increasing job size.

Inter-Communicator Point-to-
Point Latency Benchmark

~
o

(o]
o

—
&
@ /
= 50 7
c>,, 40 / =—=MV2-Intra
c 30 =C=MV2-Inter
% 20 ==0penMPI-Intra
- 10 X~ OpenMPI-Inter
0 1 1 1 1 1 _ 1 1 1
1 4 16 64 256 1024 4096 16384 65536

Number of Processes

» Performance is very similar for small messages
« Performance differs in the medium message length (depends on
rendezvous threshold values)

* For large messages (64K), MV2 delivers better performance

OHIO
SIATE

Application Run-time (s)

Parallel POV-Ray Evaluati

o,

n

4096 T

2048 "

\

—
()
N
N

7
\
K

512

MV2-MPD-RC

256

—
‘\'E‘s\% ——MV2-MPD-UD

128

64

===MV2-mpirun_rsh-RC2

32

=X=MV2-mpirun_rsh-UD

16

¥ Traditional(MV/2)

- N b

2 4 8 16 32 64

Number of Processes

» Re-designed a dynamic process version of the POV-Ray application
* Render a 3000x3000 glass chess board with global illumination
» The dynamic process framework adds very little overhead

OHIO
SIAIE

Software Distribution

 The new DPM support is available with MVAPICH2 1.4
— Latest version is MVAPICH2 1.4RC2
— Downloadable from http://mvapich.cse.ohio-state.edu

* Micro-benchmarks will be available as a part of OSU MPI
Micro-benchmarks (OMB) in the near future

OHIO
SIATE

Conclusions & Future Work

* Presented alternative designs for DPM interface on InfiniBand

* Proposed new benchmarks to evaluate DPM designs

« MPD based framework is suitable for frequent small spawns

« Mpirun_rsh based startup is recommended for large infrequent spawns
 DPM interface has very little overhead on the application performance

Future Work:

« Explore a hybrid model that switches between UD and RC modes
based on job size

« Evaluate the performance of collectives and one-sided routines for the
dynamic process interface

OHIO
SIATE

OHIO

Thank you !

|y
=— MVAPICH

L http://mvapich.cse.ohio-state.edu
J

{gangadha, koop, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

